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Abstract— Functional decomposition is an important 

and powerful technique in the logic synthesis. The 

ternary matrix cover approach is one of the existing 

methods of this type. This method is also used in 

decomposition of a system of completely specified 

Boolean functions. Before constructing the desired 

superposition, it needs to encode a table. There is a 

trivial encoding method. But to find a better solution, it 

is important to use a special approach, because the 

result of the encoding has a direct influence on the 

obtained functions. In this paper, an efficient algorithm 

to encode this table is presented. It uses the approach 

connected with the assembling Boolean hyper cube 

method. The proposed algorithm is explained in details 

with an example. The benefits and impacts of the 

suggested technique are also discussed. 

 

Index Terms— Boolean Functions, Compact Table, 

Boolean Hypercube, Optimization, Encoding and Logic 

Synthesis 

 

I. Introduction 

The problem of decomposition of a system of 

Boolean functions takes an important place in the logic 

design of discrete devices based on VLSI circuits [1], 

[2]. This problem is to represent a given system as a 

superposition of two or more systems of functions that 

are less complex than the given one [3], [4], [5]. Two 

block disjoint decomposition [4], [5] is the simpler and 

the most applicable type of decomposition which is 

discussed in this paper. 

The problem of minimization of a system of Boolean 

functions related to the search for the most compact 

(minimal as for the number of terms and letters in them) 

representation of the system. The necessity of the search 

for minimal representations of Boolean function 

systems and their superpositions arises when the 

problems of synthesis of digital devices on the base on 

micro-electronic technology are solved. The conditions 

that the solutions of those problems must satisfy are 

determined by the technology. The minimization and 

decomposition problems are different as for both the 

statement and the methods for solving, but there is some 

connection between them. The main goal of the current 

paper is minimizing the total number of disjunctive 

normal forms (DNFs) of the decomposed systems. This 

minimization will decrease the size of a PLA 

(Programmable Logic Array) which is important from 

practical point of view [5].  

To decompose a system of completely specified 

Boolean functions, first of all, one should search for an 

appropriate partition [6], [7]. This is also a challenging 

task and this paper does not deal with this problem. The 

suitable partition is supposed that already has been 

prepared. 

Various methods for decomposition of Boolean 

functions are based on representations of functions. A 

Boolean function can be given in the form of the 

compact table [8], [9] that is a two-dimension table as a 

Karnaugh map or decomposition chart but may have the 

less size. Using the compact table one can learn rather 

easily about existence of a solution of the problem for 

the given function, and find easily the corresponding 

superposition of functions if such a solution exists. In 

this paper, the ternary matrix cover approach for 

decomposition of a system of Boolean functions is used 

[9]. Cover map and compact table are the key features 

of this approach. To obtain the systems of Boolean 

functions as a result of decomposition, one must encode 

the columns and rows of the compact table according to 

the obtained covers of ternary matrices. They should be 

encoded by values of the subsets of arguments 

separated in a certain way. In addition, each column 

should be encoded by binary codes in optional manner. 

But the result of this encoding and consequently its 

method has the direct influence on the obtained 

superposition. A novel method for encoding of the 

columns is suggested that leads to lowering the number 

of elements of DNFs. The encoding process in the 

suggested method is described as a constructing a 

Boolean k-dimensional hypercube. It is like assembling 

a simple mechanical structure. Here k is related to the 

number of distinguished columns of the compact table. 
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The remainder of the paper is organized as follows. 

Section 2 briefly describes the theoretical part of the 

problem. Section 3 explains the suggested method for 

encoding and its computational complexity analysis in 

details. Section 4 presents an example along with 

discussion to increase the clarity. Conclusion and future 

works are given in the final section. 

 

II. Overview of the Problem 

2.1 The Problem Definition 

The problem of decomposition of a system of 

Boolean functions is considered in the following 

statement. Given a system of completely specified 

Boolean functions y = f(x), the superposition 

y =  (w, z2), w = g (z1) must be found where z1 and z2 

are vector variables whose components are Boolean 

variables in the subsets Z1 and Z2 of the set 

X = {x1, x2, …, xn} of the arguments, respectively such 

that X = Z1  Z2 and Z1  Z2 = . At that, the number of 

components of the vector variable w must be less than 

that of z1. Such a kind of decomposition is called two-

block disjoint decomposition [4], [5]. The subsets Z1 

and Z2 are called bound and free sets respectively. 

Let a system of this kind be given by matrices U and 

V that are the matrix representation of the system of 

DNFs of the given functions [4]. Matrix U is a ternary 

matrix of l  n dimension where l is the number of 

terms in the given DNFs. The columns of U are marked 

with the variables x1, x2, … , xn, and the rows represent 

the terms of the DNFs (the intervals of the space of the 

variables x1, x2, … , xn). The matrix V is a Boolean 

matrix. Its dimension is l  т, and its columns are 

marked with the variables y1, y2, … , ym. The ones in 

this columns point out the terms in the given DNFs. 

 

2.2 Cover Map and Compact Table 

Any family  of different subsets (blocks) of a set L 

whose union is L, is called a cover of L. Let 

L = {1, 2, ... , l} be the set of numbers of rows of a 

ternary matrix U. A cover  of L is called a cover of the 

ternary matrix U if for each value x* of the vector 

variable x there exists a block in  containing all the 

numbers of those and only those rows of U, which 

absorb x*. Block  corresponds to the value x*, which 

is absorbed by no row of U. Other subsets are not in . 

Let t(x*, U) be the set of numbers of those rows of U, 

which absorb x*. For every block j of , we define the 

Boolean function j(x) having assumed that j(x*) = 1 

for any x*  {0,1}n if t(x*, U) = j, and j(x*) = 0 

otherwise. 

Let us define an operation (i, V) over the rows of a 

binary matrix V, the result of which is the vector y* 

(y* = (i, V)) obtained by component-wise disjunction 

of rows V whose numbers are in the block i. If i = , 

all the components of y* are equal to 0. It has been 

shown in [8] that f(x*) = y* = (i, V) if i(x*) = 1. 

There is a convenient way to construct the cover of a 

ternary matrix U when the number of arguments is not 

large. This technique uses the cover map that has the 

structure of the Karnaugh map. In any cell of a cover 

map of U corresponding to a vector x*, there is the set 

t(x*, U), which is a block of the cover of U. 

Let a pair of matrices, U and V, give a system of 

completely specified Boolean functions y = f(x), and let 

the matrix U1 be composed of the columns of U, 

marked with the variables from the set Z1 and the matrix 

U2 from the columns marked with the variables from Z2. 

The covers of U1 and U2 are 1 = {1
1, 1

2, … , 1
r} and 

2 = {2
1, 2

2, … , 2
s}. 

Let us construct a table M. Assign the blocks 

1
1, 1

2, … , 1
r and the corresponding Boolean 

functions 1
1(z1), 1

2(z1), … , 1
r(z1) to the columns of 

M, and 2
1, 2

2, … , 2
s and 2

1(z2), 2
2(z2), … , 2

s(z2) 

to the rows of M. At the intersection of the i-th column, 

1  i  r and the j-th row, 1  j  s, of M, we put the 

value y* = (1
i  2

j, V). The table M is called the 

compact table. It gives the system of Boolean functions 

y = f(x) in the following way: the value of the Boolean 

vector function f(x*) is (1i  2j, V) at any set 

argument values x*, for which 1i(z1)  2j(z2) = 1. 

Having the compact table for a system of functions 

y = f(x), it is easy to construct the desired systems 

y =  (w, z2) and w = g (z1). The columns of the compact 

table are encoded with binary codes; equal columns 

may have the same codes. The length of the code is 

equal to log2r  where r is the number of different 

columns of the table and a is the least integer, which 

is not less than a. So, the system of functions w = g (z1) 

is defined. The value of the vector variable w at any set 

of values of the vector variable z1 turning the function 

1
i(z1) into 1 is the code of the i-th column, 1  i  r. 

Naturally, there is no solution to this task at the given 

partition {Z1, Z2} of the set X of arguments if the length 

of the code is not less than the length of z1. Otherwise, 

the compact table whose columns are assigned with the 

values of the variable w can be considered as a form of 

representation of the other desired system of functions 

y =  (w, z2). The value of y at the value of w assigned 

to the i-th column, 1  i  r, and at any value of z2 

turning 2
j(z2) into 1, 1  j  s, is the vector that is at the 

intersection of the i-th column and the j-th row [8], [9]. 

 

III. Constructing a Boolean Hypercube 

3.1 The Preliminary Stages 

Let M be a compact table whose columns must be 

encoded by Boolean vectors, and let wij be a function 

taking its values from the set of positive integers on the 

set of pairs of distinguished columns of M. The values 

of wij are obtained from the so-called difference table. 
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The values of compact table are binary codes. So, for 

each pair of distinguished columns, the number of 

different peer-to-peer bits is calculated. These values 

will form the difference table. At the start of the process 

of the hypercube construction, the vertices of the 

hypercube are ones of an empty graph (without edges) 

and related to the distinguished columns of M. 

The input data for constructing the n-dimensional 

hypercube are the values of difference table and the 

number of distinguished columns  of the given 

compact table M. If  is not an integer power of two, it 

will be increased to 2n where n = log2, and virtual 

vertices should be introduced respectively. It is 

regarded that wkl = ∞ if at least one of the vertices k or l 

is virtual. 

 

3.2 The Process of Construction 

The process of constructing the Boolean hypercube 

can be represented as the sequence of n steps. At the sth 

step, the set of (s – 1) - dimensional hypercubes are 

considered. They join into pairs, and s - dimensional 

hypercube is obtained from each pair by adding edges 

properly. As far as it is possible, those vertices, i and j, 

are chosen for being connected with an edge, which 

have the least value of corresponding wij. After n steps, 

an n - dimensional Boolean hypercube will be 

constructed. The n - component Boolean vectors are 

assigned to the vertices of the hypercube where the 

neighborhood relation between the vectors should be 

represented by the edges of the hypercube. 

At the first step of this process, 1 - dimensional 

hypercubes in the form of 2n – 1 nonadjacent edges are 

composed of 0-dimensional hypercubes which is 

represented by 2n isolated vertices. At the last, nth step, 

an n - dimensional hypercube is assembled from two 

(n – 1) - dimensional ones by adding 2n – 1 edges. 

Let us consider the formation of s - dimensional 

hypercubes on sth step more in details. The form of 

representation of hypercubes is very important here. 

Any k – dimensional hypercube is represented by a 

sequence S of 2k vertex indices which is taken from the 

set {1, 2, ..., 2n}. The edges are specified implicitly: two 

vertices are connected with an edge if and only if their 

places in S correspond to the places of neighbor codes 

in the Gray code sequence of the same length as the 

length of S. 

Before the performance of any step, the number of 

hypercubes is always even. More exactly, for sth step it 

is equal to 2n – s, 0  s < n. The current situation is that 

some set Cs of s-dimensional hypercubes (Cs =  before 

the performance of the step) and some set Cs – 1 of 

(s – 1) - dimensional hypercubes exists. All pairs of 

hypercubes from Cs – 1 are looked through and one of 

them is chosen according to the criterion specified at 

section 3.3. The suitable edges are added to form  

s - dimensional hypercube from this pair that is 

introduced to Cs, and then the pair is removed from  

Cs – 1. The performance of this step is accomplished 

when Cs – 1 = . 

 

3.3 Coupling the Hypercubes 

For two (s – 1) - dimensional hypercubes which have 

been represented by sequences S and S, the sum wij 

is calculated. The summing is performed over all pairs i, 

j of indices of the vertices that take the same places in 

the sequences. This sum varies with permutations of 

vertices of one of the sequences, say S. Of course, only 

those permutations may be taken here into consideration, 

which preserve the adjacency relation among the 

vertices. 

For all the proper permutations, wij is calculated. 

Then according to its minimum value, the equivalent 

pair of hypercubes is chosen. They are joined into an 

s - dimensional hypercube by edges between vertices 

that are in the related places of S and S. The sequence 

that represents the composed hypercube is formed by 

concatenation of the sequences S and S. The sequence 

S may be changed its order according to the selected 

permutation before the concatenation. 

It is convenient to determine the permutation that 

mentioned above by an operator Ek. The action of Ek 

results in all the vertices which are adjacent with kth 

dimension by exchanging their places. Evident 

properties of such an operator are EiEk = EkEi and 

EiEi = 1. These properties give the possibility to look 

through 2s – 1 variants for each pair of hypercubes at the 

sth step. The variants are generated by applying all 

combinations of the operators E1, E2, ..., Es – 1. 

 

3.4 Complexity of constructing the hypercube 

The number of pairs of hypercubes looked through at 

the sth step is expressed by the following formula: 

2
1

1

1 2( 1)1
3

(2 1)(2 2 1)

2 (2 1) 2 .

n s

n s n s

s

i

n s n s n s

L i i



  



    

     

    


 

Taking into account the permutations which have 

been determined by the operators Ek, k = 1, 2, ..., s-1, at 

the sth step of the process, we find the number of 

variants looked through at this step: 

1 2 2( 1)1
3

2 2 (2 1) 2 .s n n s n s

s sL L            

To facilitate the enumeration of variants, we do not 

take into consideration the permutations that also 

preserve the adjacency relation among vertices and they 

are not concerned with any Ek. Otherwise, Ls’ should be 

multiplied by 1( 1)! 2ss   . 
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Finally, we obtain the number of variants looked 

through during the whole process of constructing the n-

dimensional Boolean hypercube: 

1

2 2( 1)1
9

2 (2 3 13) 2 .

n

s

s

n n n

L L

n



 



     


 

Since 2n is the number of distinguished columns 

(with virtual vertices) in this case, the number of 

variants looked through during the described process 

can be estimated as 3 power polynomial of the number 

of distinguished columns of a obtained compact table. 

 

IV. An Example 

Let the system of completely specified Boolean 

functions to be given as follows: 

.i 7 

.o 4 

.ilb x1 x2 x3 x4 x5 x6 x7 

.ob y1 y2 y3 y4 

.p 12 

1011-1- 1001 

-10-1-- 0111 

1010-00 1000 

00--001 1011 

--0---- 1110 

--1-00- 0100 

1--00-- 0010 

-0011-0 1101 

1-1---- 1110 

1--0100 0101 

10--1-0 1101 

-1-11-- 1111 
.e 
 

It has 7 inputs, 4 outputs and the number of DNFs is 

represented in its description by 12 rows. The partition 

of the set of arguments into subsets Z1 = {х2, х5, х6, х7} 

and Z2 = {х1, х3, х4} is considered. Using the ternary 

matrix cover approach [8] and according to the section 

2, the cover map of the arguments,  will be obtained. 

Then by dividing  by the covers of the columns of Z1 

and Z2, 1 and 2 are calculated respectively. So the 

obtained results are: 1 = {{5, 9}, {1, 5, 9}, {5, 7, 9}, {1, 

5, 7, 9}, {2, 5, 9, 12}, {5, 6, 7, 9}, {1, 5, 8, 9, 11}, {2, 5, 

9, 10, 12}, {3, 5, 6, 7, 9}, {4, 5, 6, 7, 9}, {3, 5, 8, 9, 10, 

11}}; and 2 = {{4, 6}, {2, 4, 5}, {4, 6, 12}, {1, 6, 9, 11, 

12}, {2, 4, 5, 8, 12}, {2, 5, 7, 10, 11}, {2, 5, 8, 11, 12}, 

{3, 6, 7, 9, 10, 11}}. 

According to the section 2, the compact table for the 

covers 1 and 2 is represented by Table 1, as well. It 

has seven different columns. To encode these columns, 

three variables are sufficient. The encoding process can 

be done in an arbitrary manner. 

The Boolean hypercube encoding method is used to 

establish a better superposition. Here, a better solution 

is related to the size of PLA, and it is specified by the 

number of rows of the decomposed systems. The 

smaller number of the rows of each system implies a 

better solution of the task. The columns are also 

encoded by trivial encoding method for the comparison 

purpose. 

 

4.1 The Trivial Encoding Method 

The obtained codes for the columns using the trivial 

and the hypercube encoding method are shown at the 

bottom of Table 1. The method of trivial encoding is 

simple. It begins from zero for the first column and 

continues to the last column by increasing one unit for 

each distinguished column. The equivalent binary 

number will be the code of the column. More zeros can 

be added to the left of each number to fit the length of 

codes in the desired lengths. 

 

4.2 The Process of the Hypercube Construction 

Now, the process of the hypercube construction is 

explained in a step by step manner. It is like assembling 

a simple mechanical structure. The difference table is 

calculated by using the compact table and it is shown in 

Table 2. It represents the values of function wij. The 

rows and columns of this table correspond to the seven 

distinguished columns of the compact table. To make 

the number of vertices of the equivalent hypercube 

equal to an integer power of two (in this example 23), a 

virtual vertex should be added. The infinity values of 

wi8 are not given in Table 2. 

 
Table 2: The difference table for the example of section 4 

v2 v3 v4 v5 v6 v7  

1 9 2 5 10 10 v1 

 8 3 4 9 11 v2 

  9 6 1 7 v3 

   7 10 8 v4 

    5 13 v5 

     8 v6 

 

The minimum is w12 = 1. Therefore, according to the 

encoding method which has been explained in section 

3.2, the edge v1v2 is introduced, then v3v6, v4v5 and v7v8. 

So, at the first step, four 1 - dimensional hypercubes is 

obtained that are shown in Fig. 1 
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Table 1: The compact table for the partition from the example of section 4 

 5,9 1,5,9 5,7,9 1,5,7,9 2,5,9,12 5,6,7,9 1,5,8,9,11 2,5,9,10,12 3,5,6,7,9 4,5,6,7,9 3,5,8,9,10,11 

4,6 0000 0000 0000 0000 0000 0100 0000 0000 0100 1111 0000 

2,4,5 1110 1110 1110 1110 1111 1110 1110 1111 1110 1111 1110 

4,6,12 0000 0000 0000 0000 1111 0100 0000 1111 0100 1111 0000 

1,6,9,11,12 1110 1111 1110 1111 1111 1110 1111 1111 1110 1110 1111 

2,4,5,8,12 1110 1110 1110 1110 1111 1110 1111 1111 1110 1111 1111 

2,5,7,10,11 1110 1110 1110 1110 1111 1110 1111 1111 1110 1110 1111 

2,5,8,11,12 1110 1110 1110 1110 1111 1110 1111 1111 1110 1110 1111 

3,6,7,9,10,11 1110 1110 1110 1110 1110 1110 1111 1111 1110 1110 1111 

Trivial 000 001 000 001 010 011 100 101 011 110 100 

Hypercube 001 000 001 000 100 011 010 110 011 101 010 

 

v1                   v3                   v4                  v7 

 

 

  v2                   v6                   v5                  v8 

Fig 1: 1-dimensional hypercubes for the example of section 4 
 

Then, 2 - dimensional hypercubes will be constructed. 

It is performed by adding two edges, vivj and vkvl such 

that wij + wkl would be the minimum among all the 

selectable edges. All the variants of such adding are 

given in Table 3. The edge incident with vertex v8 is not 

considered. 

 
Table 3: The variants of the adding edges at the second step 

Edges wij + wkl 

v1v3, v2v6 18 

v1v6, v2v3 18 

v1v4, v2v5 6 

v1v5, v2v4 8 

v3v4, v6v5 14 

v3v5, v6v4 16 

 

Having chosen the first variant, 2 - dimensional 

hypercube on the vertices v1, v2, v5 and v4 is obtained. 

Similarly, the second hypercube is constructed by 

vertices v3, v6, v8 and v7. They are illustrated in Fig. 2. 

      v1                   v2                    v3                    v6 

 

 

       v4                   v5                    v7                    v8 

Fig 2: 2-dimensional hypercubes for the example of section 4 

 

To finish the process, four edges should be added to 

obtain the final 3 - dimensional hypercube. The variants 

of such adding are given in Table 4. One of the edges 

among them has infinity value of wij. Therefore, the 

value of this edge is not considered in the resulting 

summation. 

Table 4: The variants of the adding edges at the third step 

Edges wij 

v1v3, v2v6, v5v8, v4v7 25 

v1v7, v2v3, v5v6, v4v8 23 

v1v8, v2v7, v5v3, v4v6 27 

v1v6, v2v8, v5v7, v4v3 31 

v1v7, v2v8, v5v6, v4v3 24 

v1v3, v2v7, v5v8, v4v6 30 

v1v6, v2v3, v5v7, v4v8 31 

v1v8, v2v6, v5v3, v4v7 23 

 

Having chosen the second variant, the final 

hypercube is constructed which is shown in Fig. 3. 

                                      v7                           v3 

               v1                         v2 

                               v8                    v6 

                              v4                   v5 

Fig. 3: The final constructed hypercube for the example of section 4 

 

4.3 The Process of Encoding of the Hypercube 

The final process to encode the compact table is 

encoding of the constructed hypercube. The hypercube 

will be encoded according to the neighborhood relation 

represented by the graph in Fig. 3. 

 

4.3.1 The basic encoding 

The method of the encoding is as follows. At first, 

the basic encoding is obtained by using Karnaugh map. 

The sequence of the vertices of the constructed 

hypercube is put in the Karnaugh map. The order of the 

vertices in the sequence is considered as Fig. 4a for the 

hypercube of Fig. 3. In this paper, this sequence is 

called the vector representation of the hypercube. 

It is noticed that the placement of the Gray codes for 

Karnaugh map is performed according to the 
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neighborhood relations of the constructed hypercube. It 

means that the concept of Karnaugh map is used and for 

some rank of the obtained hypercube some 

modifications are needed to reorder the map. It is 

necessary to keep the vicinity relations of the vertices. 

So, the basic encoding for the hypercube of Fig. 3 is 

represented in Fig. 4.b. 

 

4.3.2 The optimized encoding 

A supplementary improvement is made on the basic 

encoding if it is needed and it can be possible. It means 

with additional efforts, sometimes it is possible to 

achieve to the more efficient encoding. In case the 

current hypercube contains some virtual vertices, it 

would be done. 

The final aim is obtaining a feasible version of the 

encoding vector which assigns the maximum possible 

1’s for the codes of the virtual vertices. A feasible 

version is related to such permutations keeping the 

neighborhood relations. The operations of searching for 

the feasible version are similar to the hypercube 

construction. 

Unfortunately, it is not possible always to find the 

optimal version, especially when the number of virtual 

vertices is more. But the basic encoding is still 

improved. The optimized encoding for the hypercube of 

Fig. 3 is shown in Fig. 4c. In the current example, the 

virtual vertex is only v8. So the binary code “111” has 

been assigned for it which has the maximum possible 

1's. For this example the obtained encoding is optimal. 

 

a. v1 v2 v5 v4 v8 v6 v3 v7 

 

b. 000 001 011 010 110 111 101 100 

 

c. 001 000 010 011 111 110 100 101 

Fig. 4: The encoding for the constructed hypercube. (a) The vector 

representation of the hypercube of Fig. 3 (b) The basic encoding (c) 

The optimized encoding 

 

Finally, the distinct columns of the compact table will 

be encoded as v1 – 001, v2 – 000, v3 – 100, v4 – 011, 

v5 – 010, v6 – 110 and v7 – 101, by using the hypercube 

encoding method. The repetitive columns of the 

compact table will be encoded according to their 

equivalent distinct encoded columns. In fact, the 

encoded columns will form the vector w. 

 

4.4 To Obtain the Desired Superposition 

The main object of the paper for this example was 

done. But, to obtain the solution of the task, the systems 

of functions y =  (w, z2) and w = g (z1) should be 

constructed [8], [9]. For that, the functions connected 

with the blocks of the cover maps of Z1 and Z2 must be 

obtained. Then the DNFs of the functions connected 

with the blocks of 1 and 2 will be calculated. After a 

minimization with the well-known Espresso logic 

minimizer; the following systems representing the 

desired superposition y =  (w, z2), w = g (z1) are 

obtained. For that, each of the calculated codes can be 

used. As mentioned before, for the comparison purpose; 

the desired superposition using each of them will be 

constructed. 

 

4.4.1 The obtained superposition by using the trivial 

encoding method 

The first system of superposition by using the trivial 

encoding method is: 

.i 6 

.o 4 

.ilb w1 w2 w3 x1 x3 x4 

.ob y1 y2 y3 y4 

.p 13 

-01111 0001 

10--01 0001 

010-0- 0001 

011--- 0100 

1100-- 1111 

010--1 1111 

101--1 1111 

101-0- 1111 

--01-- 1110 

0--1-- 1110 

10-1-- 1111 

--0-0- 1110 

0---0- 1110 

.e 

 

And the second system of superposition by using the 

trivial encoding method is: 

.i 4 

.o 3 

.ilb x2 x5 x6 x7 

.ob w1 w2 w3 

.p 9 

0001 100 

111- 010 

01-0 100 

0-11 001 

1100 101 

1-01 010 

00-0 001 

100- 001 

-00- 010 

.e 

 

4.4.2 The obtained superposition by using the 

hypercube encoding method 

Also, the first system of superposition by using the 

hypercube encoding method is: 
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.i 6 

.o 4 

.ilb w1 w2 w3 x1 x3 x4 

.ob y1 y2 y3 y4 

.p 10 

--0111 0001 

-10-01 0001 

011--- 0100 

1010-- 1111 

0--1-- 1010 

0---0- 1110 

-0-1-- 1110 

1-0--1 1111 

1-0-0- 1111 

-101-- 1111 

.e 
 

And the second system of superposition by using the 

hypercube encoding method is: 

.i 4 

.o 3 

.ilb x2 x5 x6 x7 

.ob w1 w2 w3 

.p 8 

0001 100 

01-0 010 

0-01 001 

11-- 100 

100- 010 

--00 010 

10-- 001 

-00- 001 

.e 

 

4.5 Discussion 

As it is seen from the obtained superpositions, the 

numbers of rows of the systems which have been 

constructed using the hypercube encoding method are 

less than their equivalent systems from trivial encoding 

method. This reduction is expected to be the more by 

increasing the number of the arguments or the DNFs of 

the original system. We also performed this method on 

the several examples and observed the similar results. In 

addition, the comparable work has been done on the 

problem of the state assignment of a finite state machine 

(FSM) to decrease the power of the implementing 

circuit [10]. Those results are confirmed our method as 

well. 

 

V. Conclusion and Future Works 

The ternary matrix cover approach is an efficient 

technique for the problem of decomposition of systems 

of Boolean functions. The encoding of the compact 

table columns has a direct influence on the quality and 

cost of the designing of the digital devices. So, its 

optimization will cause a significant improvement on 

the obtained solution. In this paper, we suggested the 

assembling of Boolean hypercube for the encoding of 

the columns. This encoding improves the desired 

superposition and reduces the size of PLA which is 

important in the practical applications. 

Development and implementation of a software tool 

for investigation of the existing benchmarks is proposed. 

This will demonstrate the full impacts of the suggested 

method. 
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