
I.J. Information Technology and Computer Science, 2014, 01, 25-32
Published Online December 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.01.03

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

Improved Decomposition for a System of

Completely Specified Boolean Functions

Saeid Taghavi Afshord

Computer Engineering Department, Shabestar Branch, Islamic Azad University, Shabestar, Iran

E-mail: taghavi@iaushab.ac.ir

Yuri Pottosin

United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Belarus

E-mail: pott@newman.bas-net.by

Abstract— Functional decomposition is an important

and powerful technique in the logic synthesis. The

ternary matrix cover approach is one of the existing

methods of this type. This method is also used in

decomposition of a system of completely specified

Boolean functions. Before constructing the desired

superposition, it needs to encode a table. There is a

trivial encoding method. But to find a better solution, it

is important to use a special approach, because the

result of the encoding has a direct influence on the

obtained functions. In this paper, an efficient algorithm

to encode this table is presented. It uses the approach

connected with the assembling Boolean hyper cube

method. The proposed algorithm is explained in details

with an example. The benefits and impacts of the

suggested technique are also discussed.

Index Terms— Boolean Functions, Compact Table,

Boolean Hypercube, Optimization, Encoding and Logic

Synthesis

I. Introduction

The problem of decomposition of a system of

Boolean functions takes an important place in the logic

design of discrete devices based on VLSI circuits [1],

[2]. This problem is to represent a given system as a

superposition of two or more systems of functions that

are less complex than the given one [3], [4], [5]. Two

block disjoint decomposition [4], [5] is the simpler and

the most applicable type of decomposition which is

discussed in this paper.

The problem of minimization of a system of Boolean

functions related to the search for the most compact

(minimal as for the number of terms and letters in them)

representation of the system. The necessity of the search

for minimal representations of Boolean function

systems and their superpositions arises when the

problems of synthesis of digital devices on the base on

micro-electronic technology are solved. The conditions

that the solutions of those problems must satisfy are

determined by the technology. The minimization and

decomposition problems are different as for both the

statement and the methods for solving, but there is some

connection between them. The main goal of the current

paper is minimizing the total number of disjunctive

normal forms (DNFs) of the decomposed systems. This

minimization will decrease the size of a PLA

(Programmable Logic Array) which is important from

practical point of view [5].

To decompose a system of completely specified

Boolean functions, first of all, one should search for an

appropriate partition [6], [7]. This is also a challenging

task and this paper does not deal with this problem. The

suitable partition is supposed that already has been

prepared.

Various methods for decomposition of Boolean

functions are based on representations of functions. A

Boolean function can be given in the form of the

compact table [8], [9] that is a two-dimension table as a

Karnaugh map or decomposition chart but may have the

less size. Using the compact table one can learn rather

easily about existence of a solution of the problem for

the given function, and find easily the corresponding

superposition of functions if such a solution exists. In

this paper, the ternary matrix cover approach for

decomposition of a system of Boolean functions is used

[9]. Cover map and compact table are the key features

of this approach. To obtain the systems of Boolean

functions as a result of decomposition, one must encode

the columns and rows of the compact table according to

the obtained covers of ternary matrices. They should be

encoded by values of the subsets of arguments

separated in a certain way. In addition, each column

should be encoded by binary codes in optional manner.

But the result of this encoding and consequently its

method has the direct influence on the obtained

superposition. A novel method for encoding of the

columns is suggested that leads to lowering the number

of elements of DNFs. The encoding process in the

suggested method is described as a constructing a

Boolean k-dimensional hypercube. It is like assembling

a simple mechanical structure. Here k is related to the

number of distinguished columns of the compact table.

26 Improved Decomposition for a System of Completely Specified Boolean Functions

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

The remainder of the paper is organized as follows.

Section 2 briefly describes the theoretical part of the

problem. Section 3 explains the suggested method for

encoding and its computational complexity analysis in

details. Section 4 presents an example along with

discussion to increase the clarity. Conclusion and future

works are given in the final section.

II. Overview of the Problem

2.1 The Problem Definition

The problem of decomposition of a system of

Boolean functions is considered in the following

statement. Given a system of completely specified

Boolean functions y = f(x), the superposition

y =  (w, z2), w = g (z1) must be found where z1 and z2

are vector variables whose components are Boolean

variables in the subsets Z1 and Z2 of the set

X = {x1, x2, …, xn} of the arguments, respectively such

that X = Z1  Z2 and Z1  Z2 = . At that, the number of

components of the vector variable w must be less than

that of z1. Such a kind of decomposition is called two-

block disjoint decomposition [4], [5]. The subsets Z1

and Z2 are called bound and free sets respectively.

Let a system of this kind be given by matrices U and

V that are the matrix representation of the system of

DNFs of the given functions [4]. Matrix U is a ternary

matrix of l  n dimension where l is the number of

terms in the given DNFs. The columns of U are marked

with the variables x1, x2, … , xn, and the rows represent

the terms of the DNFs (the intervals of the space of the

variables x1, x2, … , xn). The matrix V is a Boolean

matrix. Its dimension is l  т, and its columns are

marked with the variables y1, y2, … , ym. The ones in

this columns point out the terms in the given DNFs.

2.2 Cover Map and Compact Table

Any family  of different subsets (blocks) of a set L

whose union is L, is called a cover of L. Let

L = {1, 2, ... , l} be the set of numbers of rows of a

ternary matrix U. A cover  of L is called a cover of the

ternary matrix U if for each value x* of the vector

variable x there exists a block in  containing all the

numbers of those and only those rows of U, which

absorb x*. Block  corresponds to the value x*, which

is absorbed by no row of U. Other subsets are not in .

Let t(x*, U) be the set of numbers of those rows of U,

which absorb x*. For every block j of , we define the

Boolean function j(x) having assumed that j(x*) = 1

for any x*  {0,1}n if t(x*, U) = j, and j(x*) = 0

otherwise.

Let us define an operation (i, V) over the rows of a

binary matrix V, the result of which is the vector y*

(y* = (i, V)) obtained by component-wise disjunction

of rows V whose numbers are in the block i. If i = ,

all the components of y* are equal to 0. It has been

shown in [8] that f(x*) = y* = (i, V) if i(x*) = 1.

There is a convenient way to construct the cover of a

ternary matrix U when the number of arguments is not

large. This technique uses the cover map that has the

structure of the Karnaugh map. In any cell of a cover

map of U corresponding to a vector x*, there is the set

t(x*, U), which is a block of the cover of U.

Let a pair of matrices, U and V, give a system of

completely specified Boolean functions y = f(x), and let

the matrix U1 be composed of the columns of U,

marked with the variables from the set Z1 and the matrix

U2 from the columns marked with the variables from Z2.

The covers of U1 and U2 are 1 = {1
1, 1

2, … , 1
r} and

2 = {2
1, 2

2, … , 2
s}.

Let us construct a table M. Assign the blocks

1
1, 1

2, … , 1
r and the corresponding Boolean

functions 1
1(z1), 1

2(z1), … , 1
r(z1) to the columns of

M, and 2
1, 2

2, … , 2
s and 2

1(z2), 2
2(z2), … , 2

s(z2)

to the rows of M. At the intersection of the i-th column,

1  i  r and the j-th row, 1  j  s, of M, we put the

value y* = (1
i  2

j, V). The table M is called the

compact table. It gives the system of Boolean functions

y = f(x) in the following way: the value of the Boolean

vector function f(x*) is (1i  2j, V) at any set

argument values x*, for which 1i(z1)  2j(z2) = 1.

Having the compact table for a system of functions

y = f(x), it is easy to construct the desired systems

y =  (w, z2) and w = g (z1). The columns of the compact

table are encoded with binary codes; equal columns

may have the same codes. The length of the code is

equal to log2r where r is the number of different

columns of the table and a is the least integer, which

is not less than a. So, the system of functions w = g (z1)

is defined. The value of the vector variable w at any set

of values of the vector variable z1 turning the function

1
i(z1) into 1 is the code of the i-th column, 1  i  r.

Naturally, there is no solution to this task at the given

partition {Z1, Z2} of the set X of arguments if the length

of the code is not less than the length of z1. Otherwise,

the compact table whose columns are assigned with the

values of the variable w can be considered as a form of

representation of the other desired system of functions

y =  (w, z2). The value of y at the value of w assigned

to the i-th column, 1  i  r, and at any value of z2

turning 2
j(z2) into 1, 1  j  s, is the vector that is at the

intersection of the i-th column and the j-th row [8], [9].

III. Constructing a Boolean Hypercube

3.1 The Preliminary Stages

Let M be a compact table whose columns must be

encoded by Boolean vectors, and let wij be a function

taking its values from the set of positive integers on the

set of pairs of distinguished columns of M. The values

of wij are obtained from the so-called difference table.

 Improved Decomposition for a System of Completely Specified Boolean Functions 27

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

The values of compact table are binary codes. So, for

each pair of distinguished columns, the number of

different peer-to-peer bits is calculated. These values

will form the difference table. At the start of the process

of the hypercube construction, the vertices of the

hypercube are ones of an empty graph (without edges)

and related to the distinguished columns of M.

The input data for constructing the n-dimensional

hypercube are the values of difference table and the

number of distinguished columns  of the given

compact table M. If  is not an integer power of two, it

will be increased to 2n where n = log2, and virtual

vertices should be introduced respectively. It is

regarded that wkl = ∞ if at least one of the vertices k or l

is virtual.

3.2 The Process of Construction

The process of constructing the Boolean hypercube

can be represented as the sequence of n steps. At the sth

step, the set of (s – 1) - dimensional hypercubes are

considered. They join into pairs, and s - dimensional

hypercube is obtained from each pair by adding edges

properly. As far as it is possible, those vertices, i and j,

are chosen for being connected with an edge, which

have the least value of corresponding wij. After n steps,

an n - dimensional Boolean hypercube will be

constructed. The n - component Boolean vectors are

assigned to the vertices of the hypercube where the

neighborhood relation between the vectors should be

represented by the edges of the hypercube.

At the first step of this process, 1 - dimensional

hypercubes in the form of 2n – 1 nonadjacent edges are

composed of 0-dimensional hypercubes which is

represented by 2n isolated vertices. At the last, nth step,

an n - dimensional hypercube is assembled from two

(n – 1) - dimensional ones by adding 2n – 1 edges.

Let us consider the formation of s - dimensional

hypercubes on sth step more in details. The form of

representation of hypercubes is very important here.

Any k – dimensional hypercube is represented by a

sequence S of 2k vertex indices which is taken from the

set {1, 2, ..., 2n}. The edges are specified implicitly: two

vertices are connected with an edge if and only if their

places in S correspond to the places of neighbor codes

in the Gray code sequence of the same length as the

length of S.

Before the performance of any step, the number of

hypercubes is always even. More exactly, for sth step it

is equal to 2n – s, 0  s < n. The current situation is that

some set Cs of s-dimensional hypercubes (Cs =  before

the performance of the step) and some set Cs – 1 of

(s – 1) - dimensional hypercubes exists. All pairs of

hypercubes from Cs – 1 are looked through and one of

them is chosen according to the criterion specified at

section 3.3. The suitable edges are added to form

s - dimensional hypercube from this pair that is

introduced to Cs, and then the pair is removed from

Cs – 1. The performance of this step is accomplished

when Cs – 1 = .

3.3 Coupling the Hypercubes

For two (s – 1) - dimensional hypercubes which have

been represented by sequences S and S, the sum wij

is calculated. The summing is performed over all pairs i,

j of indices of the vertices that take the same places in

the sequences. This sum varies with permutations of

vertices of one of the sequences, say S. Of course, only

those permutations may be taken here into consideration,

which preserve the adjacency relation among the

vertices.

For all the proper permutations, wij is calculated.

Then according to its minimum value, the equivalent

pair of hypercubes is chosen. They are joined into an

s - dimensional hypercube by edges between vertices

that are in the related places of S and S. The sequence

that represents the composed hypercube is formed by

concatenation of the sequences S and S. The sequence

S may be changed its order according to the selected

permutation before the concatenation.

It is convenient to determine the permutation that

mentioned above by an operator Ek. The action of Ek

results in all the vertices which are adjacent with kth

dimension by exchanging their places. Evident

properties of such an operator are EiEk = EkEi and

EiEi = 1. These properties give the possibility to look

through 2s – 1 variants for each pair of hypercubes at the

sth step. The variants are generated by applying all

combinations of the operators E1, E2, ..., Es – 1.

3.4 Complexity of constructing the hypercube

The number of pairs of hypercubes looked through at

the sth step is expressed by the following formula:

2
1

1

1 2(1)1
3

(2 1)(2 2 1)

2 (2 1) 2 .

n s

n s n s

s

i

n s n s n s

L i i



  



    

     

    



Taking into account the permutations which have

been determined by the operators Ek, k = 1, 2, ..., s-1, at

the sth step of the process, we find the number of

variants looked through at this step:

1 2 2(1)1
3

2 2 (2 1) 2 .s n n s n s

s sL L          

To facilitate the enumeration of variants, we do not

take into consideration the permutations that also

preserve the adjacency relation among vertices and they

are not concerned with any Ek. Otherwise, Ls’ should be

multiplied by 1(1)! 2ss   .

28 Improved Decomposition for a System of Completely Specified Boolean Functions

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

Finally, we obtain the number of variants looked

through during the whole process of constructing the n-

dimensional Boolean hypercube:

1

2 2(1)1
9

2 (2 3 13) 2 .

n

s

s

n n n

L L

n



 



     



Since 2n is the number of distinguished columns

(with virtual vertices) in this case, the number of

variants looked through during the described process

can be estimated as 3 power polynomial of the number

of distinguished columns of a obtained compact table.

IV. An Example

Let the system of completely specified Boolean

functions to be given as follows:

.i 7

.o 4

.ilb x1 x2 x3 x4 x5 x6 x7

.ob y1 y2 y3 y4

.p 12

1011-1- 1001

-10-1-- 0111

1010-00 1000

00--001 1011

--0---- 1110

--1-00- 0100

1--00-- 0010

-0011-0 1101

1-1---- 1110

1--0100 0101

10--1-0 1101

-1-11-- 1111
.e

It has 7 inputs, 4 outputs and the number of DNFs is

represented in its description by 12 rows. The partition

of the set of arguments into subsets Z1 = {х2, х5, х6, х7}

and Z2 = {х1, х3, х4} is considered. Using the ternary

matrix cover approach [8] and according to the section

2, the cover map of the arguments,  will be obtained.

Then by dividing  by the covers of the columns of Z1

and Z2, 1 and 2 are calculated respectively. So the

obtained results are: 1 = {{5, 9}, {1, 5, 9}, {5, 7, 9}, {1,

5, 7, 9}, {2, 5, 9, 12}, {5, 6, 7, 9}, {1, 5, 8, 9, 11}, {2, 5,

9, 10, 12}, {3, 5, 6, 7, 9}, {4, 5, 6, 7, 9}, {3, 5, 8, 9, 10,

11}}; and 2 = {{4, 6}, {2, 4, 5}, {4, 6, 12}, {1, 6, 9, 11,

12}, {2, 4, 5, 8, 12}, {2, 5, 7, 10, 11}, {2, 5, 8, 11, 12},

{3, 6, 7, 9, 10, 11}}.

According to the section 2, the compact table for the

covers 1 and 2 is represented by Table 1, as well. It

has seven different columns. To encode these columns,

three variables are sufficient. The encoding process can

be done in an arbitrary manner.

The Boolean hypercube encoding method is used to

establish a better superposition. Here, a better solution

is related to the size of PLA, and it is specified by the

number of rows of the decomposed systems. The

smaller number of the rows of each system implies a

better solution of the task. The columns are also

encoded by trivial encoding method for the comparison

purpose.

4.1 The Trivial Encoding Method

The obtained codes for the columns using the trivial

and the hypercube encoding method are shown at the

bottom of Table 1. The method of trivial encoding is

simple. It begins from zero for the first column and

continues to the last column by increasing one unit for

each distinguished column. The equivalent binary

number will be the code of the column. More zeros can

be added to the left of each number to fit the length of

codes in the desired lengths.

4.2 The Process of the Hypercube Construction

Now, the process of the hypercube construction is

explained in a step by step manner. It is like assembling

a simple mechanical structure. The difference table is

calculated by using the compact table and it is shown in

Table 2. It represents the values of function wij. The

rows and columns of this table correspond to the seven

distinguished columns of the compact table. To make

the number of vertices of the equivalent hypercube

equal to an integer power of two (in this example 23), a

virtual vertex should be added. The infinity values of

wi8 are not given in Table 2.

Table 2: The difference table for the example of section 4

v2 v3 v4 v5 v6 v7

1 9 2 5 10 10 v1

 8 3 4 9 11 v2

 9 6 1 7 v3

 7 10 8 v4

 5 13 v5

 8 v6

The minimum is w12 = 1. Therefore, according to the

encoding method which has been explained in section

3.2, the edge v1v2 is introduced, then v3v6, v4v5 and v7v8.

So, at the first step, four 1 - dimensional hypercubes is

obtained that are shown in Fig. 1

 Improved Decomposition for a System of Completely Specified Boolean Functions 29

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

Table 1: The compact table for the partition from the example of section 4

 5,9 1,5,9 5,7,9 1,5,7,9 2,5,9,12 5,6,7,9 1,5,8,9,11 2,5,9,10,12 3,5,6,7,9 4,5,6,7,9 3,5,8,9,10,11

4,6 0000 0000 0000 0000 0000 0100 0000 0000 0100 1111 0000

2,4,5 1110 1110 1110 1110 1111 1110 1110 1111 1110 1111 1110

4,6,12 0000 0000 0000 0000 1111 0100 0000 1111 0100 1111 0000

1,6,9,11,12 1110 1111 1110 1111 1111 1110 1111 1111 1110 1110 1111

2,4,5,8,12 1110 1110 1110 1110 1111 1110 1111 1111 1110 1111 1111

2,5,7,10,11 1110 1110 1110 1110 1111 1110 1111 1111 1110 1110 1111

2,5,8,11,12 1110 1110 1110 1110 1111 1110 1111 1111 1110 1110 1111

3,6,7,9,10,11 1110 1110 1110 1110 1110 1110 1111 1111 1110 1110 1111

Trivial 000 001 000 001 010 011 100 101 011 110 100

Hypercube 001 000 001 000 100 011 010 110 011 101 010

v1 v3 v4 v7

 v2 v6 v5 v8

Fig 1: 1-dimensional hypercubes for the example of section 4

Then, 2 - dimensional hypercubes will be constructed.

It is performed by adding two edges, vivj and vkvl such

that wij + wkl would be the minimum among all the

selectable edges. All the variants of such adding are

given in Table 3. The edge incident with vertex v8 is not

considered.

Table 3: The variants of the adding edges at the second step

Edges wij + wkl

v1v3, v2v6 18

v1v6, v2v3 18

v1v4, v2v5 6

v1v5, v2v4 8

v3v4, v6v5 14

v3v5, v6v4 16

Having chosen the first variant, 2 - dimensional

hypercube on the vertices v1, v2, v5 and v4 is obtained.

Similarly, the second hypercube is constructed by

vertices v3, v6, v8 and v7. They are illustrated in Fig. 2.

 v1 v2 v3 v6

 v4 v5 v7 v8

Fig 2: 2-dimensional hypercubes for the example of section 4

To finish the process, four edges should be added to

obtain the final 3 - dimensional hypercube. The variants

of such adding are given in Table 4. One of the edges

among them has infinity value of wij. Therefore, the

value of this edge is not considered in the resulting

summation.

Table 4: The variants of the adding edges at the third step

Edges wij

v1v3, v2v6, v5v8, v4v7 25

v1v7, v2v3, v5v6, v4v8 23

v1v8, v2v7, v5v3, v4v6 27

v1v6, v2v8, v5v7, v4v3 31

v1v7, v2v8, v5v6, v4v3 24

v1v3, v2v7, v5v8, v4v6 30

v1v6, v2v3, v5v7, v4v8 31

v1v8, v2v6, v5v3, v4v7 23

Having chosen the second variant, the final

hypercube is constructed which is shown in Fig. 3.

 v7 v3

 v1 v2

 v8 v6

 v4 v5

Fig. 3: The final constructed hypercube for the example of section 4

4.3 The Process of Encoding of the Hypercube

The final process to encode the compact table is

encoding of the constructed hypercube. The hypercube

will be encoded according to the neighborhood relation

represented by the graph in Fig. 3.

4.3.1 The basic encoding

The method of the encoding is as follows. At first,

the basic encoding is obtained by using Karnaugh map.

The sequence of the vertices of the constructed

hypercube is put in the Karnaugh map. The order of the

vertices in the sequence is considered as Fig. 4a for the

hypercube of Fig. 3. In this paper, this sequence is

called the vector representation of the hypercube.

It is noticed that the placement of the Gray codes for

Karnaugh map is performed according to the

30 Improved Decomposition for a System of Completely Specified Boolean Functions

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

neighborhood relations of the constructed hypercube. It

means that the concept of Karnaugh map is used and for

some rank of the obtained hypercube some

modifications are needed to reorder the map. It is

necessary to keep the vicinity relations of the vertices.

So, the basic encoding for the hypercube of Fig. 3 is

represented in Fig. 4.b.

4.3.2 The optimized encoding

A supplementary improvement is made on the basic

encoding if it is needed and it can be possible. It means

with additional efforts, sometimes it is possible to

achieve to the more efficient encoding. In case the

current hypercube contains some virtual vertices, it

would be done.

The final aim is obtaining a feasible version of the

encoding vector which assigns the maximum possible

1’s for the codes of the virtual vertices. A feasible

version is related to such permutations keeping the

neighborhood relations. The operations of searching for

the feasible version are similar to the hypercube

construction.

Unfortunately, it is not possible always to find the

optimal version, especially when the number of virtual

vertices is more. But the basic encoding is still

improved. The optimized encoding for the hypercube of

Fig. 3 is shown in Fig. 4c. In the current example, the

virtual vertex is only v8. So the binary code “111” has

been assigned for it which has the maximum possible

1's. For this example the obtained encoding is optimal.

a. v1 v2 v5 v4 v8 v6 v3 v7

b. 000 001 011 010 110 111 101 100

c. 001 000 010 011 111 110 100 101

Fig. 4: The encoding for the constructed hypercube. (a) The vector

representation of the hypercube of Fig. 3 (b) The basic encoding (c)

The optimized encoding

Finally, the distinct columns of the compact table will

be encoded as v1 – 001, v2 – 000, v3 – 100, v4 – 011,

v5 – 010, v6 – 110 and v7 – 101, by using the hypercube

encoding method. The repetitive columns of the

compact table will be encoded according to their

equivalent distinct encoded columns. In fact, the

encoded columns will form the vector w.

4.4 To Obtain the Desired Superposition

The main object of the paper for this example was

done. But, to obtain the solution of the task, the systems

of functions y =  (w, z2) and w = g (z1) should be

constructed [8], [9]. For that, the functions connected

with the blocks of the cover maps of Z1 and Z2 must be

obtained. Then the DNFs of the functions connected

with the blocks of 1 and 2 will be calculated. After a

minimization with the well-known Espresso logic

minimizer; the following systems representing the

desired superposition y =  (w, z2), w = g (z1) are

obtained. For that, each of the calculated codes can be

used. As mentioned before, for the comparison purpose;

the desired superposition using each of them will be

constructed.

4.4.1 The obtained superposition by using the trivial

encoding method

The first system of superposition by using the trivial

encoding method is:

.i 6

.o 4

.ilb w1 w2 w3 x1 x3 x4

.ob y1 y2 y3 y4

.p 13

-01111 0001

10--01 0001

010-0- 0001

011--- 0100

1100-- 1111

010--1 1111

101--1 1111

101-0- 1111

--01-- 1110

0--1-- 1110

10-1-- 1111

--0-0- 1110

0---0- 1110

.e

And the second system of superposition by using the

trivial encoding method is:

.i 4

.o 3

.ilb x2 x5 x6 x7

.ob w1 w2 w3

.p 9

0001 100

111- 010

01-0 100

0-11 001

1100 101

1-01 010

00-0 001

100- 001

-00- 010

.e

4.4.2 The obtained superposition by using the

hypercube encoding method

Also, the first system of superposition by using the

hypercube encoding method is:

 Improved Decomposition for a System of Completely Specified Boolean Functions 31

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

.i 6

.o 4

.ilb w1 w2 w3 x1 x3 x4

.ob y1 y2 y3 y4

.p 10

--0111 0001

-10-01 0001

011--- 0100

1010-- 1111

0--1-- 1010

0---0- 1110

-0-1-- 1110

1-0--1 1111

1-0-0- 1111

-101-- 1111

.e

And the second system of superposition by using the

hypercube encoding method is:

.i 4

.o 3

.ilb x2 x5 x6 x7

.ob w1 w2 w3

.p 8

0001 100

01-0 010

0-01 001

11-- 100

100- 010

--00 010

10-- 001

-00- 001

.e

4.5 Discussion

As it is seen from the obtained superpositions, the

numbers of rows of the systems which have been

constructed using the hypercube encoding method are

less than their equivalent systems from trivial encoding

method. This reduction is expected to be the more by

increasing the number of the arguments or the DNFs of

the original system. We also performed this method on

the several examples and observed the similar results. In

addition, the comparable work has been done on the

problem of the state assignment of a finite state machine

(FSM) to decrease the power of the implementing

circuit [10]. Those results are confirmed our method as

well.

V. Conclusion and Future Works

The ternary matrix cover approach is an efficient

technique for the problem of decomposition of systems

of Boolean functions. The encoding of the compact

table columns has a direct influence on the quality and

cost of the designing of the digital devices. So, its

optimization will cause a significant improvement on

the obtained solution. In this paper, we suggested the

assembling of Boolean hypercube for the encoding of

the columns. This encoding improves the desired

superposition and reduces the size of PLA which is

important in the practical applications.

Development and implementation of a software tool

for investigation of the existing benchmarks is proposed.

This will demonstrate the full impacts of the suggested

method.

Acknowledgements

This work was done in the logical design laboratory

at the united institute of informatics problems of the

NAS of Belarus. The authors like to thank this

laboratory by its support in providing the examples of

the completely specified Boolean function to test.

References

[1] Martinelli A. Advances in Functional

Decomposition: Theory and Applications. Doctoral

Dissertation, Royal Institute of Technology (KTH),

Stockholm, Sweden, 2006

[2] Morawiecki P, Rawski M, Selvaraj H. Application

of Functional Decomposition in Synthesis of

Boolean Function Sets. In: Proceedings of the 19th

International Conference on Systems Engineering

(ICSENG), Aug. 2008, Las Vegas, USA, 350-355.

[3] Perkowski M A, Grygiel S. A Survey of Literature

on Functional Decomposition, Version IV.

Technical report, Department of Electrical

Engineering, Portland State University, Portland,

USA, 1995

[4] Zakrevskij A, Pottosin Yu V, Cheremisinova L.

Optimization in Boolean Space. Tallinn, Estonia,

TUT Press, 2009

[5] Hassoun S, Sasao T. Logic Synthesis and

Verification. The Springer International Series in

Engineering and Computer Science, Kluwer

Academic Publishers, 2001.

[6] Rawski M. Input Variable Partitioning Method for

Decomposition-Based Logic Synthesis targeted

Heterogeneous FPGAs. International Journal of

Electronics and Telecommunications, 2012, vol 58

(1), 15–20.

[7] Muthukumar V, Bignall R J, Selvaraj H. An

efficient variable partitioning approach for

functional decomposition of circuits. Journal of

Systems Architecture, 2007, vol. 53, no. 1, 53-67.

[8] Pottosin Yu V, Shestakov E A. Tabular Methods

for Decomposition of Systems of Completely

Specified Boolean Functions. Byelorusskaya

Nauka, Belarus, 2006 (in Russian)

32 Improved Decomposition for a System of Completely Specified Boolean Functions

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 01, 25-32

[9] Taghavi Afshord, S, Pottosin, Yu V. On

Decomposing Systems of Boolean Functions via

Ternary Matrix Cover Approach. International

Journal of Advanced Science and Technology,

June 2013, Vol. 55, 33-42.

[10] Pottosin, Yu V, Pottosina, S A. State assignment of

a finite state machine for a low power

implementing circuit. In: Proceedings of the 8th

International Conference, Nov. 2011, University of

Zilina, Zilina, Slovak Republic, 113-116.

Authors’ Profiles

Saeid Taghavi Afshord received his BSc degree in

applied mathematics and MSc degree in computer

engineering from the Islamic Azad University, Tabriz

and Qazvin branches in 2003 and 2006, Iran

respectively. He joined the Islamic Azad University,

Shabestar branch, Iran, as a faculty member in 2008.

Currently he is a PhD student in computer engineering

at the United Institute of Informatics Problems of the

NAS of Belarus, from March 2011. His research areas

are Energy Saving in Ad Hoc and Sensor Networks,

Methods for Boolean functions Decomposition, and

optimization problems.

Yuri Vasilievich Pottosin graduated from Tomsk State

University (Russia), department of radio-physics and

electronics, in 1960. From the beginning of 1961 until

1973, he worked at that university as a researcher. In

1970, he defended his PhD thesis. From 1973 until now,

he works at the United Institute of Informatics Problems

of National Academy of Sciences of Belarus. Now he is

a leading researcher. His main scientific interest is

logical design. He also teaches the related courses for

the students of Byelorussian State University of

Informatics and Radio-Electronics.

How to cite this paper: Saeid Taghavi Afshord, Yuri

Pottosin,"Improved Decomposition for a System of

Completely Specified Boolean Functions", International

Journal of Information Technology and Computer

Science(IJITCS), vol.6, no.1, pp.25-32, 2014. DOI:

10.5815/ijitcs.2014.01.03

