
I.J. Information Technology and Computer Science, 2014, 10, 1-10
Published Online September 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.10.01

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

Linear Hybrid Automaton Generation Using

Mapping Algorithm for Hybrid Dynamic Systems

Sekhri Larbi
Industrial Computing and Networking Laboratory, Computer Science Department, University of Oran, BP 1524 Oran,

Algeria

Email: larbi.sekhri@univ-oran.dz

Haffaf Hafid
Industrial Computing and Networking Laboratory, Computer Science Department, University of Oran, BP 1524 Oran,

Algeria

Email: haffaf.hafid@univ-oran.dz

Abstract—Hybrid dynamic systems are analyzed through linear

hybrid automaton. In this paper, we propose a mapping

algorithm to deal with a new Continuous elementary HPN. The

method shown enables us to analyze some system properties

using a linear hybrid automaton generated by a mapping

process. The application involves a water system of three tanks,

which is analyzed by a PHAVer (Polyhedral Hybrid Automaton

Verifier) software tool. Its effectiveness is illustrated by

numerical simulation results.

Index Terms— Hybrid Dynamic System, Hybrid Petri- Nets,

Evolution Graph, Linear Hybrid Automaton

I. INTRODUCTION

Hybrid dynamic systems (HDS) are a class of reactive

systems. Modeling such systems and verifying their

behavior are current research topics in both the automatic

control community and the computer science community.

HDS concern all industrial domains: automated

production systems, traffic systems, energetic systems,

telecommunications, etc. HDS systems coexist with each

other, as well as with discrete behavior and continuous

behavior. A system is then characterized by the nature of

its state’s variables, which can be continuous or discrete.

Many research, such as new specification languages,

tools and models have been developed for modeling and

analyzing HDS. These works may concern efficient

performance in monitoring, control, diagnosis, and

structural properties analysis; these studies often rely on

mathematical models [1] and [2] or graphical models [3].

In order to model complex systems, formal

specifications are needed. The latter are subject to

validation software tools that are able to check system

properties [4], [5], [6], [7], [8], [9], [10] and [11]. In the

HDS domain, there are three kinds of models:

The hybrid bond graph model expands on the

continuous model, similar to bond graph models, by

including specific elements such as switch elements to

represent physical TOR transitions (also known as binary

transitions) [12], [13] and [14].

- Extensions of discrete models, such as continuous

Petri nets, consider marking as real number and

transition firing as a continuous process [15].

Examples of such extensions include Hybrid Petri nets

(HPN) which are composed of a discrete part and a

continuous part [16]. Hybrid systems modeling results

in HPN inheriting all advantages known for Petri nets.

In [17], HPN are used to model a traffic network

control, considered a hybrid system. Another model,

the hybrid state Petri net (HSPN), offers the analyzing

capacity of stochastic hybrid systems as well, the

automata formal verification power is proposed in

[18].

- Mixed models; that are based on collaboration

between two sub-models in the same structure. The

first models discrete event aspects, and is generally

based on the finite state automaton or on the classical

discrete Petri net. The second is based on state

equations representation or any other continuous

model to describe the continuous part of the HDS.

Hybrid aspects are taken in the interface between the

sub-models [19], or by combining Bond-graph and

(Max, +) algebra [20]. Among these models we can

cite hybrid automatons which function alternatively

between continuous steps (involving state variables

and continuous time evolutes) and discrete steps (in

which many discrete transition can be fired). The

Hybrid automaton is an extension of timed automaton

where the continuous dynamics model is represented

by means of differential equations.

- For monitoring purposes, the improvement of the

decision-making step is realized through a Hybrid

Bayesian Network (HBN) model using a hybrid

inference procedure. Time is seen as a continuous

variable and its evolution interacts with discrete

transitions. The automaton includes clocks whose

values belong to the set of real numbers, and

continuously increase [21]. Another model of timed

automata has been proposed in [22] for the supervisory

control. The method presented in this paper extends

Sava’s work [22]. Sava proposed an approach to build

the timed automaton (TA) which models the exact

mailto:larbi.sekhri@univ-oran.dz

2 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

behavior of a discrete event system (DES) modeled by

a time Petri net (TPN). The forbidden states of DES

are modeled by forbidden timed automaton locations.

Reachability analysis is one of the major problems

encountered in verifying the properties of HDS as

modeled by the hybrid automaton. In this work, we are

interested in modeling a particular class of HDS: Systems

with continuous flow (materials flow or products flow)

supervised by discrete event systems.

This paper has two aims: first, to formally present a

new class of HPN called Discrete Continuous

Elementary HPN (DC elementary HPN) and, second, to

propose a systematic method, based on mapping

algorithms, to build a linear hybrid automaton (LHA)

from an evolution graph of a DC-elementary HPN.

Properties analysis of LHA is evaluated by the PHAVer

(Polyhedral Hybrid Automaton Verifier) software tool

developed at VERIMAG laboratory of Grenoble (France)

[23].

The paper is organized as follows: section 2 introduces

some formal definitions (HDS, HPN and DC-elementary

HPN). In section 3, a formal definition of linear hybrid

automaton (LHA) is given and a mapping algorithm is

presented. Section 4 offers a case study which consists of

a system of three water tanks. In this section the mapping

algorithm is applied and a detailed simulated analysis is

performed using PHAVer. Finally, we conclude our work

and discuss some potential areas of future research.

II. FOMAL DEFINITIONS

A. Introduction

Hybrid Petri nets (HPN) are developed from

continuous Petri nets [24]. HPN are characterized by the

interaction of two major components: Discrete Part and

Continuous Part. The Discrete part models logical

functionalities while the continuous part models

continuous phenomenon. HPN presented in previous

research literature are formed by two kinds of Petri nets:

Discrete timed Petri nets, and continuous Petri nets,

which function at a higher speed. Elementary HPN are a

class of HPN where no transformation of marking exists

between discrete and continuous parts. Elementary HPN

combining the time Petri net [25] and the continuous

Petri net with constant speed are called D-elementary

HPN. In this model only the discrete part can influence

the continuous part [26] and [27]. In this section we

define an extension of D-elementary HPN known as DC-

elementary HPN where the continuous part can also

influence the discrete part, and vice versa. This is

motivated by two facts: first, in real systems, the

continuous part has a direct influence on the discrete part.

For instance, when a threshold is reached after

introducing a continuous steady state variable, it could

stop or automatically trigger buttons that correspond to

Boolean variables. In this case, each value would

correspond to continuous values in an interval, thus

providing discrete state transition. In these transitions,

problems can arise concerning initial values in the new

state, referred to as the “warm” initialization. The second

motivation is that for hybrid systems, two models are

always required, where the discrete model governs the

transition between the continuous models. With this

under consideration, our approach follows a recent trend

towards a unified and unique model. In the remainder of

the paper, we assume the reader familiar with formal

definitions of continuous systems and discrete event

systems.

B. Hybrid dynamic systems

Formally a HDS is a 5-tuple: HDS= (T, (x, q), (x0, q0),

Uc Ud, Φ) [28]:

 T is the time interval

 (x, q)  X × Q represents the complete state of

hybrid system

 (x0, q0) is the set of initial states

 Uc  Ud is the set of continuous commands and

discrete commands

 Φ : X × Q  n defines a sub-set of trajectories for

each discrete state

C. Hybrid Petri net

Formally, a marked hybrid Petri net is an 8-tuple:

HPN=< P; T; h ; Pre; Post; Tempo; V; M0 > where:

P= {P1, P2,…, Pn} finite set of places

T= {T1, T2,…, Tm} finite set of transitions

P∩T=Ø

h: PT  {D, C} hybrid function indicating for each

node if it is a discrete node (PD, TD) or a continuous

node (PC, TC) of HPN.

Pre: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the

forward application

Post: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the

backward application

Tempo: TD Q+ application associating to each D-

transition Tj their duration

V: TC R+ application associating to each C-

transition Tj their maximal firing speed Vj

M0: P R+
 (if Pi  PC) or N (if Pi  PD) is the initial

marking

Pre and Post applications must satisfy the following

condition:

if Pi and Tj with h(Pi) = D and h(Tj) = C then Pre (Pi;

Tj) = Post (Pi; Tj)

This condition enables the marking of a D-place stay

integer in the evolution of HPN.

D. DC-elementary hybrid Petri net

Formally, a DC-elementary HPN is defined as 9-tuple

<P; T; h; Pre; Post; I; SIM; V; M0> where:

P= {P1, P2,…, Pn} finite set of places

T= {T1, T2,…,Tm} finite set of transitions

P∩T=Ø

h: PT  {D, C} hybrid function indicating discrete

nodes (PD, TD) and continuous nodes (PC, TC)

Pre: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the

forward application

 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 3

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

Post: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the

backward application

Pre and Post satisfy the following condition:

 (Pi,Tj) (PD×TC) (PC×TD) then Pre (Pi, Tj) = (Pi,

Tj)

I: (Pi, Tj) R Inhibition application

SIM: TD Q+ × (Q+ ∞): application associating

with each discrete transition Tj their firing static interval

[αj, βj],

V: TC R+ application associating with each

continuous transition Tj their maximal firing speed Vj

M0: P R+ (if Pi  PC) or N (if Pi  PD) is the initial

marking.

III. FROM EVOLUTION GRAPH TO LINEAR HYBRID

AUTOMATON

A. Introduction

The state of a linear hybrid automaton (LHA) is given

by a couple E=(s, v) where s is a summit and v is a

valuation, defining the values of the variable x at t

moment. This state can change either by discrete

transition firing, or by time passing in the same summit.

Contrary to HPN, hybrid automata (HA) are difficult to

integrate into modeling systems. HPN have the

advantage of clearly and efficiently modeling systems

without presenting an exhaustive enumeration of the

state space; however, there is no simulation software that

can directly handle HPN. There are many algorithms in

research literature which translate different classes of

HPN into hybrid automaton [29], [30], [31], [32] and

[33]. In [29] an algorithm with the ability to build a

hybrid automaton equivalent to HPN is presented. The

resulting automaton has the same number of summits as

the IB- state (Invariant Behavior-state) number of HPN.

The state variables represent the marking of continuous

places and the clocks measure the time of enabled

transitions. The obtained automaton is linear and

deterministic. In order to ensure the convergence of this

mapping algorithm, the HPN must be bounded. Sava’s

algorithm translates a time Petri net into timed automaton

by determining for each reachable summit L, reachable

space, the enabled discrete transitions and clocks [31].

Expanding on ideas presented in [29] and [31], Ghomri,

in [26], proposes an algorithm which translates a

Discrete-elementary HPN into hybrid automaton. The

algorithm uses two main steps in its mapping process. At

first, it translates the time Petri net into a timed

automaton; at the second stage, it maps the continuous

constant speed Petri net into a hybrid automaton. The

summit number of the hybrid automaton resulting from

this algorithm is less or equal to N.2n, where N represents

the macro-summits number of timed automaton that

corresponds to the discrete part, while n is the C-places

number of the D-elementary HPN. However, in practice

we are not obligated to explore all the possibilities, as

some do not possess physical realizations.

Based on Sava’s work, El-Touati et al. propose an

algorithm that translates extended time Petri nets into

linear hybrid automaton (LHA). The obtained temporal

behavior of LHA is similar to the behavior of the

extended temporal Petri net since the summit’s number is

equal to marking number of the marking graph.

Many problems concerning properties analysis of

hybrid automaton are expressed as reachability problem,

which are in turn, not definitive. In order to reduce this

complexity, strong restrictions are imposed, in order to

obtain specific classes of hybrid automaton to which

existing tools could be applied. The existence of software

tools that enable the resolution reachability analysis for

some classes of hybrid automaton leads to the hybrid

systems analysis through a mapping process.

B. Linear hybrid automaton

A linear hybrid automaton (LHA) is defined by A= (X,

S, δ, Inv, dyn, λ, a, guard, aff) where:

X
nR is a finite set of variables.

S is a finite set of summits.

δ is a finite set of synchronization labels

Inv is a function associating for every s Є S an

invariant Inv (s).

dyn: S×X Q is a function describing the evolution of

variables in each summit.

λ is a finite set of transitions, each transition e=(s, s’)

Є λ identifies a starting summit s Є S and an arrival

summit s’ Є S.

a Є δ is a synchronization label associated to

transition e=(s, s’).

guard is a function that associates to each transition

e=(s, s’) a predicate Ce called guard. If Ce is verified then

the transition e=(s, s’) is executed.

aff is a function that associates to each transition e=(s,

s’) an assignment relation.

C. Mapping algorithm

In this section, a translation algorithm for DC-

elementary HPN is proposed. As input, this algorithm

accepts an evolution graph of a DC-elementary HPN and

gives as output a linear hybrid automaton (LHA). The

LHA is more compact than an evolution graph, which

facilitates the analysis activities. We have developed a

software tool using C++ programming language to

implement our algorithm. In the rest of this paper, the

notation given below is adopted:

L: set of summits,

T: transitions set {TD: temporal set and TC: dynamic},

Td
c: set of temporal transitions depending on marking

of continuous places of HPN,

M = {Mc, Md}: set of markings,

D: set of dynamic continuous places of HPN,

N: summits counter,

P: stack saving (memorizing) visited summits not

analyzed. Each element of the stack memorizes the

summit name, dynamics of continuous place in the

summit and the active clocks in this summit.

4 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

The main steps of our algorithm can be summarized as

follows:

 For each enabled transition in Ln-1 create a summit Ln,

 Define Dn (dynamics of continuous places in Ln),

 Define active clocks in Ln and compute invariant Id (Ln)

for each enabled Tj Є Td,

 Define a dynamic transition Tj
C and compute invariant

Ic(Ln) from firing interval of Tj
C for each enabled Tj Є

Td
c and associate a null clock to Tj in Ln,,

 Define a dynamic transition Tci (pi
c) and compute

Ici(Ln) for each pi
c with Dn(pi

c) <0,

 Create a transition, Tn-1,n=(Ln-1, gn-1,n, An-1 ,n, Ln-1,n) and

save in P the visit of (Ln, Tn-1,n).

The algorithm is concluded when all the summits have

been visited.

Step 1: Initialization (creating of initial summit L0)

Initially, all continuous places are marked and

consequently all transitions are fired to their maximum

speed. From the initial discrete marking, we determine

the fireable transitions set. So, we create the initial

summit of the hybrid automaton by associating the

activity 𝑀̇ = Wc.V enabling the computation of the

dynamics of the C-places (W: incidence matrix; V:

maximal firing speed vector). Then we determine the

enabled transitions set following the first step of our

algorithm.

Algorithm for LHA generation

Algorithm of Step 1: Initialization

Begin

1. Let M0 {Md, Mc} the initial marking of DC-

elementary HPN.

2. Create a summit L0 associated to initial marking,

3. Determine D0 dynamics of continuous places in

summit L0,

4. Determine validated transitions by marking

M0
d

5. If Tj Є Td then

6. Determine active clocks in summit L0

7. Compute the invariant Id(L0) from intervals of

validated firing transitions in the marking M0
d

8. endif

9. If Tj Є Td
c then Tj is fireable if M (Pc

i) =S (Smax

or Smin)

10. Associate a nil clock to Tj in summit L0

11. Determine a dynamic transition Tj
C

12. Compute his invariant Ic(L0) from firing

interval of Tj
C

13. Update I(L0)=Id(L0)  Ic(L0)

14. endif

15. For each i=1 to p do

16. If D0 (pi
c) <0 and Ici(L0) (pi

c)= Ø then

17. efine a dynamic transition Tci (pi
c)

18. Compute Ici(L0) of Tci = Mpi
c
 >= 0

19. I(L0)=I(L0)  Ici(L0),

20. endif

21. endfor

22. Create an entry transition by associating an

affectation updating all active clocks to zero in summit L0

and the continuous initial markings.

23. Memorize this visit of summit L0 in the stack P :

(L0, T0,0)

24. Actualize the sets M :={M0}; D := {D0} ;

L :={L0}; T= {T0,0}; n :=1.

End.

Algorithm of Step 2: Analyze the last visit saved in

the stack (Ln summit)

Begin

1. The analysis of summit Ln by firing of Tm,n

2. Take out from the stack element memorizing

this visit

3. Determine the enabled transitions set

4. For each firing of Tj do determine Md
n+1 and

Dn+1

5. if Md
n+1 Md then go to step 3 else go to step 4

6. endif

7. endfor

End.

Algorihm of Step 3: Creating summit Ln+1

associated to reachable M n+1 marking

Begin

1. Create summit Ln+1 associated to reachable

marking M n+1

2. Determine dynamics of all continuous marking

in summit Ln+1 :Dn+1

3. Determine validated transitions in marking Md

n+1

4. if Tj Є Td then

5. Determine active clocks in summit Ln+1

6. Compute the invariant Id (Ln+1) from the

interval of validated transitions in marking Md n+1

7. endif

8. if Tj Є Td
c (S is equal to Smax or Smin) then

9. if the fired transition Tn ,n+1=TC
j then

10. Activate the clock of Tj

11. Compute the invariant Idj(Ln+1) = Idj(Ln+1)

12. Update Id (Ln+1)=Id (Ln+1)  Idj (Ln+1)

else

13. Associate a nill clock to Tj in summit Ln+1

14. Determine a dynamic transition TC
j

15. Compute his invariant Ici,(Ln+1) from the firing

condition CT
c
j, obtained from the dynamic Dn+1(pi

c)=k,

(k=cst), his continuous place pi
c, and the firing interval

of Tj . I(Ln+1)=Id(Ln+1)  Ici,(Ln+1)

16. Endif

17. endif

18. For i=1 to p do

19. If Dn+1(pi
c) <0 and Ici (Ln+1) = Ø then

20. Define a dynamic transition TC (pi
c)

21. Compute Ici (Ln+1) equal to Mpi
c
 >= 0

22. I(Ln+1)=I(Ln+1)  Ici(Ln+1),

23. endif

24. endfor

25. Create a transition Tn,n+1=(Ln, gn,n+1, An ,n+1, Ln+1)

modeling the firing of Tj .

26. Add his guard gn, n+1 equal to: [aj, dj] if Tj Є TD ;

[bi, ci] if Tj Є Tj
C ; Mpi

c=0 if Tj Є Tci [aj, dj] and

Mpc
i,Tj,,=S if Tj Є Td

c

 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 5

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

27.

28. Save in stack P the visit of summit Ln+1 : (Ln+1,
Tn,n+1)

29. Actualize the sets:M:=M{Mn+1},

D:=D{Dn+1}, L:=L {Ln+1}, T:=T {Tn,n+1}, n :=n+1.

End.

Algorithm of step 4: Associating transition to an

existed summit

Begin

1. if Md
n+1= Md

L then

2. if Dn+1 = DL then

3. Create a transition Tn,l=(Ln, gn,l, An,l, Ll),

4. Add his guard gn,l ,

5. T:=T {Tn , l}

6. else go to step 3

7. endif

8. endif

9. If P≠Ø then go to step 2.

10. endif

End.

Remark 1: This algorithm converges for bounded DC

elementary HPN. The algorithm concludes when the

stack to analyze becomes empty and when all summits

are created. The visit of summit is totally characterized

by the invariant behavior state (IB-state) of the DC-

elementary HPN.

A DC-elementary HPN is made up by a T-temporal

Petri net and a continuous Petri net with constant speed.

Many algorithms in previous research have demonstrated

a convergence that is due to the bounded aspect of the T-

temporal Petri net [31]. The translation of continuous

Petri net with constant speed in a hybrid automaton is

always a convergent process, even if this Petri net is not

bounded. This is due to the fact that we characterize a

place not by his marking but by a macro-marking. The

LHA associated to the DC-elementary HPN then has a

finite set of summits. The visit of a summit corresponds

to a transition execution. If the summit is not yet created

in the stack, then we save the summit and the visit

together in the stack, or we create the summit without the

visit in the stack. Since the summit’s number is finite, the

transition’s number is also finite.

IV. ILLUSTRATIVE EXAMPLE

A. Case study: Three water tanks system

The method proposed in this paper will be illustrated

with a three- tanks system presented in Fig. 1. This is a

pedagogical example, in which all kinds of interactions

between discrete and continuous parts in the same system.

We assume the reader has a general familiarity with

continuous Petri nets [15]. In Hybrid Petri nets,

continuous places are modeled by double circles and

continuous transitions by rectangles.

Let us consider the system of three tanks illustrated by

the Fig.1. The flow rates 2, 5, 3, 6 and 7 litres/sec are

associated to valve1, valve 2, valve 3, valve 4 and valve

5 respectively. This system is modeled by a DC-

elementary HPN illustrated by the Fig. 2. Tanks are

represented by continuous places P5, P6 and P7 while the

maximum values of speed V5, V6, V7, V8 and V9 are

associated to continuous transitions T5, T6, T7, T8 and T9

respectively.

m1, m2 and m3 represent the initial marking of places

P5, P6 and P7 respectively, v5 (t), v6 (t), v7 (t), v8 (t) and v9

(t) represent the firing speed of transitions T5, T6, T7, T8

and T9 respectively. Valve3 (Valve4) has two discrete

working modes (stop, work) and is modeled by two

discrete places P1 and P2 (P3 and P4).

Transition from the open state to the closed state of

Valve3 (Valve4) takes 3t.u to 5t.u, therefore the time

interval [3, 5] is associated with discrete transitions T2

and T3. This transition is constrained by the water level

in tank1 (tank2) modeled by the valuation in the arrow

P5→T2 (P6→T3). On the other hand, the passage from the

closed state to the open state of Valve3 (Valve4) takes

place after 10 t. u. from the last opening action, therefore

the time interval [10, 10] is associated with discrete

transition T1 and T4. P2→T6, P4→T8 (P5→T2, P6→T3)

represent the influence of discrete (continuous) part on

continuous (discrete).

Assume m1 (0) = 26 litres, m2 (0) = 10 litres and m3 (0)

= 12 litres:

The markings m1, m2 and m3 are positive thus the

continuous transitions T5, T6 and T7 are strongly

validated. P4 is not marked and T8 is not enabled any

more, and v8 (t) = 0. Markings m1, m2 and m3 evolve

according to curves of Fig. 3. The dynamics of markings

m1, m2 and m3 is equal to:

𝑉1 = 𝑚1̇ = 𝑉5 − 𝑉6 = −1𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐

𝑉2 = 𝑚2̇ = 𝑉7 = 5𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐

𝑉3 = 𝑚3̇ = 𝑉6 − 𝑉9 = −4𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐

At t = [3, 3]: m3 = 0 then its dynamic is null

𝑉3 = 𝑚3̇ = 𝑉6 − 𝑉9 = 0 𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐

After t= [1, 3]: 20 ≤ m1 ≤ 22 thus T2 is enabled. After t

= [3, 5], T2 is fireable, m1=17 and its dynamic 𝑉1 =
𝑚1̇ = 𝑉5 = 2𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 (P2 being not marked thus T6 m1,

m2 and m3 is not enabled any more). The evolution

dynamics of continues places evolves according to the

curves illustrated by Fig. 4.

The behavior of continuous Petri nets can be defined

by the marking and their instantaneous firing speeds

vector. For HPN, an IB-state (Invariant Behavior-state)

concept is introduced [26]. An IB-state represents stages

where HPN evolutions of marking remain constant and

continuous. Formally, an IB-state is a time interval where:

1. Marking MD of D-places is constant,

2. Validation vector eD of discrete transitions is

constant,

3. Instantaneous speeds vector of continuous

transitions is constant,

4. Markings vector for discrete and continuous places

is constant.

5. When an IB-state is reached, the marking of

continuous places MC is constant.

6 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

Consequently, a DC-elementary HPN evolution graph

is a succession of IB-state modeled by nodes. The

evolution between nodes is guided by the occurrence of

events like

C1-event (continuous place marking becomes null),

D1-event (firing of discrete-transition) and D2-event

(change validation degree of discrete transition by a

marking of a continuous place).

Fig. 5 illustrates the evolution graph of the DC-

elementary HPN of Fig. 2.

Fig. 1. Three water tanks system

Fig. 2. DC-elementary HPN

Fig. 3. Evolution marking

Fig. 4. Evolution dynamics of continuous places

Fig. 5. Evolution graph of the DC-elementary HPN

B. Construction of LHA

Let us illustrate our algorithm from the example of Fig.

1. We consider that the initial marking of the DC-

elementary HPN of figure 2 is M0= [Md {0, 1, 1, 0}, Mc

{26, 10, 12}]. The proposed algorithm generates summits

without taking into account the reachabilty of summits,

which is a non-decidable problem for LHA. Nevertheless,

the existence of software tools like Hytech and PHAVer

(Polyhedral Hybrid Automaton Verifier) facilitates the

computation of the reachable space. The mapping

algorithm applied upon our illustrative example gives the

LHA illustrated by the Fig. 6.

C. Analysis of three water tanks system

The set of generated summits keeps the syntax and the

semantics of the evolution graph. The results of the

simulation, which is based on software tool PHAVer

(http://www.cs.ru.nl/~goranf/) for analyzing LHA 𝒜, are

summarized in Table 1. Reachability space by forward

analysis was obtained after 5 iterations and time duration

of 0,094s.

Let us now interpret these results, represented as linear

constraints in table 1. For instance, the relation -6.x2 –

5.x4 – 5.p5 >= -160 (forward analysis column and L3

state line) yields remarkable information (an upper limit

of accessibility space): all trajectories in the upper part of

this limit lead to dangerous states. In this state (summit),

minimum water level in tank 1 exceeds and alarms may

be triggered.

Comparison between tank 3 and the opening of

valve 4

To illustrate the results of Table 1 and to be able to

interpret them, the data from PHAVer was used to

generate a bi-dimensional graph (Fig. 7) through a

Matlab script.

 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 7

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

In Fig. 7, we clearly see that the interval of the clock

x4 is [0, 3], which is illustrated by the relation (x4 >= 0

and -x4 >= -3). We see also that the marking of place p7

is positive in this interval (4.x4+p7=12) (forward analysis

column and L1 state line).

Fig. 6. LHA obtained by the mapping algorithm

Comparison between activity of tank 1 and

activities of valve 3 and valve 4

The bi-dimensional graph of clock x2 in term of place

p5 for all states {L1… L14} is illustrated in Fig. 8. In the

accessible space (authorized trajectories) of summit L3,

we note that the temporal interval of the clock x2 is [0,5]

(p5 >= 17, x2 + p5 >= 20 and -x2 - p5 >= -22) where

the marking place p5 in this interval will be greater than

or equal to 17. At the same time the valve 4 begins to

open, since clock x4 is activated (-x4 >= -10).

Comparison between activity of tank2 and the

valve 4 closed
In the accessible state (authorized trajectories) of

summit L13, the temporal interval of clock x3 is [0, 5]

(x3 >= 0, –x3 >= -5, x3+p6>=12, -x3-p6>=-14). This

means that tank 2 has reached a dangerous interval and

valve 4 is in the process of opening, in order to prevent

tank 2 from bypassing its minimum threshold equal to 9

(see Fig. 9).

8 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

Table 1. Reachable space of LHA 𝒜

Forward analysis

L1
4.x4 + p7 =12, 5.x4 - p6 = -10, x4 + p5 = 26,

x2 = 0, x4 >= 0,-x4 >= -3

L2 x2 =0, -x4 >= -10, p5 >= 20

L3

x2 >= 0, -x4 >= -10, -x2 - p5 >= -22,

-6.x2 – 5.x4 – 5.p5 >= -160, p5 >= 17,

x2 + p5 >= 20, -x2 >= -5

L4 p6 >= 12, p5 >= 20

L5 x4 =0, p7 >= 0, -x2 >= -5

L6 x1 >= 0, -x1 >= -10, -x4 >= -10

L7 p6 >= 12

L8 p6 >= 12, p5 >= 20, -p6 >= -14

L9 x4 =0, x1 = 0, p7 >= 0

L10 x3 = 0, -x1 >= -10, p6 >= 12, -p6 >= -14

L11 p6 >= 12, -x1 >= -10

L12 x1 >= 0, -x1 >= -10, p7 >= 0, p6 >= 12

L13
-x3 >= -5, -x3 - p6 >= -14, x3 >= 0,

x3 + p6 >= 12, -x2 >= -5

L14 x1 >= 0, -x1 >= -10

Fig. 7. Graph x4 versus p7 for states {L1,…, L14}

Fig. 8. Accessible space accepted by the hybrid automaton (p5 in term

of x2)

Comparison between activities of tank 1 and tank 3

We observe that activities of tank 1 and tank 3 are

identical since the two tanks emptied (4.x4 + p7 = 12,

5.x4 - p6 = -10, x4 + p5 = 26) as shown in figure 10.

While no constraint is imposed on tank 3, this tank

reaches the 0 level without water alimentation. Contrary

to the tank 1, once the water level reaches a minimum

threshold of 17, its activity changes (see Fig. 11).

Fig. 9. Accessible space accepted by the hybrid automaton (p6 in term

of x3)

Fig. 10. Trajectories authorized by the hybrid automaton (p5 in term of

p7)

Fig. 11. Accessible states accepted by the hybrid automaton
(comparison of p5 and p7)

Comparison between closing process of valve 3 and

valve 4

Valve 3 closes at a faster rate than valve 4 (see Fig.

12). This is a consequence of the debit difference of tank

1 and tank 2 respectively.

 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 9

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

Fig. 12. Accessible space accepted: comparison between x3 and x2

In the same manner we can graphically interpret all

information found in the table 1. We have obtained many

interesting results [32] and [33].

V. CONCLUSION AND FUTURE WORK

This paper analyzes the properties of the Petri net

hybrid system. It expands on our previous works on

discrete event systems modeled by a functional graph [4],

[8] and [9]. The main intent of this work is to introduce a

new class of HPN (DC-elementary HPN) that will be

able to take into account the interaction between discrete

part and continuous part in hybrid systems. We have also

proposed an algorithm that allows for translation from an

evolution graph to a hybrid dynamic system graph called

a linear hybrid automaton. This graph is analyzed by a

PHAVer software tool in order to demonstrate the

system’s properties. In future research, we will explore

the possibility of studying diagnostic properties in hybrid

systems, using this new kind of linear hybrid automaton.

ACKNOWLEDGMENT

This work was supported in part by the Industrial

Computing and Networking Laboratory of Oran

University.

 REFERENCES

[1] A. Zaidi, M. Tagina and B. Ould Bouamama, Reliability

Data for improvement of Decision-Making in Analytical

Redundancy Relations Bond Graph based Diagnosis,

IEEE/ASME International Conference on Advanced

Intelligent Mechatronics Montréal, Canada, July 6-9, 2010.

[2] B. Brandin and W.M. Wonham, Supervisory control of

timed discrete event systems, IEEE Transactions on

Automatic control, vol. 39, 2, pp. 329-341, 1994

[3] A. Zaidi, N. Zandouri and M. Tagina ‘Graphical

Approaches for Modelling and Diagnosis of Hybrid

Dynamic Systems, WSEAS Transaction on Systems, 5(10),

pp. 2322-2327, 2006, Springer.

[4] A.K.A. Toguyéni, E. Craye and L. Sekhri, Study of the

Diagnosability of Automated Production Systems Based

on Functional Graphs, Mathematics and Computers in

Simulation, vol. 70, issues 5-6, 24, pp. 377-393, Elsevier,

February 2006.

[5] H. Guéguen, M.A. Lefebvre, O. Nasri and J. Zaytoon,

Safety Verification and Reachability Analysis for Hybrid

Systems, Proceedings of the 17th World Congress,

International Federation of Automatic Control Seoul,

Korea, July 6-11, 2008.

[6] J. Zaytoon and J.L. Ferrier, Rappels sur les Systèmes à

Evénements Discrets dans les Systèmes Dynamiques

Hybrides, Edition Hermès, 2001, France.

[7] L. Sekhri, A.K.A. Toguyeni and E. Craye, A Relational

Based Approach for Analysing Functional Graphs of

Automated Production Systems, IEEE International

Conference on Systems, Man and Cybernetics, (SMC’02),

October 6-9, 2002, Hammamet, Tunisia.

[8] L. Sekhri, A.K.A Toguyeni and E. Craye,

Diagnosability of Automated Production Systems Using

Petri Net Based Models. IEEE International Conference

on Systems, Man and Cybernetics, (SMC’04), October 10-

13, 2004, The Hague, Netherlands.

[9] L. Sekhri, A.K.A. Toguyeni and E. Craye, Surveillabilité

d’un Système Automatisé de Production Modélisé par un

Graphe Fonctionnel, Journal Européen des Systèmes

Automatisés (JESA), vol.38, N° 3-4, Pages 243-268,

Octobre, 2004, ISSN 1269-6935.

[10] P. Manon and C. Valentin-Roubinet, On the use of

trajectory synthesis to return to nominal mode for a class

of hybrid systems, Journal Européen des Systèmes

automatisés, vol. 33, No. 8-9, November, 1999, MSR’99,

pp. 995-1014.

[11] Z. Juarez, B. Denis and J.J. Lesage, Réseaux d’automates

hybrides à synchronisations typées pour la modélisation

des SDH, Conférence Internationale d'Automatique

Francophone, CIFA, 2008, Bucarest, Roumanie.

[12] B. Ould-Bouamama, R. El Harabi, M.N. Abdelkrim and

M.K. Ben Gayed, Bond graph for the Diagnosis of

Chemical Processes, Computers and Chemical

Engineering, 36, 301-324, 2012, Elsevier.

[13] M. Daigle, I. Roychoudhury, G. Biswas and X.

Koutsoukos, Efficient simulation of component-based

hybrid models represented as hybrid bond graphs,

Technical Report ISIS-06-712, 2006, Institute for software

integrated Systems, Vanderbilt university, Nashville, USA.

[14] P. Gawthrop and B. Geraint, Bond Graph Modeling, IEEE

Control Systems Magazine, vol. 27, 2007.

[15] H. Alla and R. David, Continuous and Hybrid Nets,

Journal of Circuits, Systems and Computers, vol. 8, No.1,

pp. 159-188, 1998.

[16] R. David and H. Alla, Discrete, Continuous and Hybrid

Petri Nets, 2005, Springer.

[17] K. Youngwoo, Traffic Network Control Based on Hybrid

System Modeling, Petri Nets Applications, pp. 589-623,

In:Tech, Ed., P. Pawlewski, 2010, ISBN 978-953-307-

047-6.

[18] L. Chang Boon, W. Danwei, A. Shai and Z. Jing Bing,

Causality Assignment and Model Approximation for

Hybrid Bond Graph: Fault Diagnosis Perspectives’ IEEE

Transactions on Automaton, Science and Engineering, vol.

7, No. 3, July, pp. 570-580, July 2010.

[19] Y. EL-Touati, M. Yeddes, N. Ben Hadj Alouane and H.

Halla, Du réseau de Petri temporel étendu vers les

automates hybrides linéaires pour l’analyse des systèmes,

2009, Conférence Internationale d'Automatique

Francophone CIFA, Bucarest, Romania.

10 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 10, 1-10

[20] M. Tagian and I. Fliss, Diganosing Multiple faults in

dynamic hybrid systems, Intelligent Informatics, AISC

129-189, 2013, Springer Verlag, Heilderberg.

[21] A. Gouin and J.L. Ferier, Modeling and Supervisory

Control of Timed Automata, Journal Européen des

Systèmes automatisés, Vol. 33, No. 8-9, MSR’99, pp.

1093-1110, November 1999.

[22] A.T. Sava and H. Alla, A Control Synthesis Approach for

Time Discrete Event Systems, Mathematics and

Computers in Simulation, vol. 70, issues 5-6, 24, pp. 250-

265, Elsevier, February 2006.

[23] Freshe, Phaver: Algorithmic Verification of Hybrid

Systems Past Hytech’. In: M. Morari and L. Thiele ed.,

Hybrid Systems: Computation and Control: 8th

International Workshop, HSCC2005, Zurich, Switzerland,

LNCS 3414, 2004, pp. 258–273, Springer.

[24] J. LeBail, Sur les Réseaux de Petri Continus et Hybrides,

Thèse de Doctorat, Institut National Polytechnique de

Grenoble (France), 1992.

[25] B. Berthomieu and M. Diaz, Modeling and verification of

time dependent systems using time Petri nets, IEEE

Transaction on soft. Eng., vol. 17, No. 3, pp. 259-273,

1991.

[26] L. Ghomri, Modélisation structurelle utilisant les

automates hybrides et les réseaux de Petri hybrides en vue

de la synthèse de contrôleur des systèmes dynamiques

hybrides, Mémoire de Magister, Université A. Belkaïd,

Tlemcen (Algeria), 2005.

[27] L. Ghomri and H. Alla, Modeling and analysis using

hybrid Petri nets, Nonlinear Analysis Hybrid Systems,

2007, pp. 141-153, Elsevier.

[28] P. Peter and H. Philips, Modelling Control and Fault

Detection of Discretely-Observed Systems, Thesis,

Technische Universities Eindhoven, 2001.

[29] H. Alla and R. David, A Modeling and Analysis Tool for

Discrete Events Systems: Continuous Petri net,

Performances evaluation, vol. 33, No. 3, 175, 1998.

[30] T. Henzinger, P. Peter, W. Kopke, A. Puri and P. Varaiya,

Whats decidable about hybrid automata?, The algorithmic

analysis of hybrid systems, Proceedings of 27th annual

ACM Symposium on theory of computing, pp. 373-382,

1995.

[31] A.T. Sava, Sur la synthèse de la commande des systèmes à

évènements discrets temporisés. Thèse de Doctorat,

Grenoble, France, 2001.

[32] R. Hakiki, Etude et Analyse des Systèmes Hybrides :

Approche par les Réseaux de Petri Hybrides et Automates

Hybrides Linéaires, Thèse de Magister en Informatique,

Université d’Oran Sénia, 2010.

[33] R. Hakiki and L. Sekhri, Hybrid Petri Nets Based

Approach For Analyzing Complex Dynamic Systems,

First International Conference on Machine and Web

Intelligence (ICMWI’2010), 3-5 October 2010, Algiers,

Algeria.

Authors’ Profiles

Sekhri Larbi is an Associate Professor at

the Computer Science Department of

Oran University. His current research area

of interests include formal modeling in

distributed and mobile systems, wireless

ad-hoc and sensor networks, systems

modeling using Petri nets, diagnosability

and monitoring of automated production

systems. He is member of the Industrial Computing and

Networking Laboratory at Oran University. He has been a

visiting professor at Cedric-CNAM research laboratory, in

Paris, France, and Ecole Centrale de Lille (LAGIS) where he

worked in Diagnosis of Industrial systems; and LIUPA

Laboratory at the University of Pau, France.

Haffaf Hafid Obtained Doctor

degree in computer Science in

2000; is a senior lecturer at the

University of Oran Es-Senia

(Algeria). He actually heads the

L.I.I.R Laboratory at Computer

science department –Oran University. His researchers concern

different domain as Automatic control and diagnosis,

optimisation, reconfiguration using matroid theory, system of

system approaches and their applications in Bond graph and

monitoring. He has many collaborations projects with European

laboratory: Polytech lille where he worked in Intelligent

transport systems infrastructures- and LIUPA, Pau (France) in

the domain of Wireless sensor Networks

How to cite this paper: Sekhri Larbi, Haffaf Hafid,"Linear

Hybrid Automaton Generation Using Mapping Algorithm for

Hybrid Dynamic Systems", International Journal of

Information Technology and Computer Science(IJITCS), vol.6,

no.10, pp.1-10, 2014. DOI: 10.5815/ijitcs.2014.10.01

