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Abstract—Hybrid dynamic systems are analyzed through linear 

hybrid automaton. In this paper, we propose a mapping 

algorithm to deal with a new Continuous elementary HPN. The 

method shown enables us to analyze some system properties 

using a linear hybrid automaton generated by a mapping 

process. The application involves a water system of three tanks, 

which is analyzed by a PHAVer (Polyhedral Hybrid Automaton 

Verifier) software tool. Its effectiveness is illustrated by 

numerical simulation results.  

 

Index Terms— Hybrid Dynamic System, Hybrid Petri- Nets, 

Evolution Graph, Linear Hybrid Automaton 

 

I.  INTRODUCTION 

Hybrid dynamic systems (HDS) are a class of reactive 

systems. Modeling such systems and verifying their 

behavior are current research topics in both the automatic 

control community and the computer science community. 

HDS concern all industrial domains: automated 

production systems, traffic systems, energetic systems, 

telecommunications, etc. HDS systems coexist with each 

other, as well as with discrete behavior and continuous 

behavior. A system is then characterized by the nature of 

its state’s variables, which can be continuous or discrete. 

Many research, such as new specification languages, 

tools and models have been developed for modeling and 

analyzing HDS. These works may concern efficient 

performance in monitoring, control, diagnosis, and 

structural properties analysis; these studies often rely on 

mathematical models [1] and [2] or graphical models [3].  

In order to model complex systems, formal 

specifications are needed. The latter are subject to 

validation software tools that are able to check system 

properties [4], [5], [6], [7], [8], [9], [10] and [11]. In the 

HDS domain, there are three kinds of models: 

The hybrid bond graph model expands on the  

continuous model, similar to bond graph models, by 

including specific elements such as switch elements to 

represent physical TOR transitions (also known as binary 

transitions) [12], [13] and [14]. 

- Extensions of discrete models, such as continuous 

Petri nets, consider marking as real number and 

transition firing as a continuous process [15]. 

Examples of such extensions include Hybrid Petri nets 

(HPN) which are composed of a discrete part and a 

continuous part [16]. Hybrid systems modeling results 

in HPN inheriting all advantages known for Petri nets. 

In [17], HPN are used to model a traffic network 

control, considered a hybrid system. Another model, 

the hybrid state Petri net (HSPN), offers the analyzing 

capacity of stochastic hybrid systems as well, the 

automata formal verification power  is proposed in 

[18].   

- Mixed models; that are based on collaboration 

between two sub-models in the same structure. The 

first models discrete event aspects, and is generally 

based on the finite state automaton or on the classical 

discrete Petri net. The second is based on state 

equations representation or any other continuous 

model to describe the continuous part of the HDS. 

Hybrid aspects are taken in the interface between the 

sub-models [19], or by combining Bond-graph and 

(Max, +) algebra [20]. Among these models we can 

cite hybrid automatons which function alternatively 

between continuous steps (involving state variables 

and continuous time evolutes) and discrete steps (in 

which many discrete transition can be fired). The 

Hybrid automaton is an extension of timed automaton 

where the continuous dynamics model is represented 

by means of differential equations. 

- For monitoring purposes, the improvement of the 

decision-making step is realized through a Hybrid 

Bayesian Network (HBN) model using a hybrid 

inference procedure. Time is seen as a continuous 

variable and its evolution interacts with discrete 

transitions. The automaton includes clocks whose 

values belong to the set of real numbers, and 

continuously increase [21]. Another model of timed 

automata has been proposed in [22] for the supervisory 

control. The method presented in this paper extends 

Sava’s work [22]. Sava proposed an approach to build 

the timed automaton (TA) which models the exact 

mailto:larbi.sekhri@univ-oran.dz


2 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 

Copyright © 2014 MECS                                            I.J. Information Technology and Computer Science, 2014, 10, 1-10 

behavior of a discrete event system (DES) modeled by 

a time Petri net (TPN). The forbidden states of DES 

are modeled by forbidden timed automaton locations.  

Reachability analysis is one of the major problems 

encountered in verifying the properties of HDS as 

modeled by the hybrid automaton. In this work, we are 

interested in modeling a particular class of HDS: Systems 

with continuous flow (materials flow or products flow) 

supervised by discrete event systems.  

This paper has two aims: first, to formally present a 

new class of HPN called Discrete Continuous 

Elementary HPN (DC elementary HPN) and, second, to 

propose a systematic method, based on mapping 

algorithms, to build a linear hybrid automaton (LHA) 

from an evolution graph of a DC-elementary HPN. 

Properties analysis of LHA is evaluated by the PHAVer 

(Polyhedral Hybrid Automaton Verifier) software tool 

developed at VERIMAG laboratory of Grenoble (France) 

[23].  

The paper is organized as follows: section 2 introduces 

some formal definitions (HDS, HPN and DC-elementary 

HPN). In section 3, a formal definition of linear hybrid 

automaton (LHA) is given and a mapping algorithm is 

presented. Section 4 offers a case study which consists of 

a system of three water tanks. In this section the mapping 

algorithm is applied and a detailed simulated analysis is 

performed using PHAVer. Finally, we conclude our work 

and discuss some potential areas of future research.  

 

II.  FOMAL DEFINITIONS 

A.  Introduction 

Hybrid Petri nets (HPN) are developed from 

continuous Petri nets [24]. HPN are characterized by the 

interaction of two major components: Discrete Part and 

Continuous Part. The Discrete part models logical 

functionalities while the continuous part models 

continuous phenomenon. HPN presented in previous 

research literature are formed by two kinds of Petri nets: 

Discrete timed Petri nets, and continuous Petri nets, 

which function at a higher speed. Elementary HPN are a 

class of HPN where no transformation of marking exists 

between discrete and continuous parts. Elementary HPN 

combining the time Petri net [25] and the continuous 

Petri net with constant speed are called D-elementary 

HPN. In this model only the discrete part can influence 

the continuous part [26] and [27]. In this section we 

define an extension of D-elementary HPN known as DC-

elementary HPN where the continuous part can also 

influence the discrete part, and vice versa. This is 

motivated by two facts: first, in real systems, the 

continuous part has a direct influence on the discrete part.   

For instance, when a threshold is reached after 

introducing a continuous steady state variable, it could 

stop or automatically trigger buttons that correspond to 

Boolean variables. In this case, each value would 

correspond to continuous values in an interval, thus 

providing discrete state transition. In these transitions, 

problems can arise concerning initial values in the new 

state, referred to as the “warm” initialization. The second 

motivation is that for hybrid systems, two models are 

always required, where the discrete model governs the 

transition between the continuous models. With this 

under consideration, our approach follows a recent trend 

towards a unified and unique model.  In the remainder of 

the paper, we assume the reader familiar with formal 

definitions of continuous systems and discrete event 

systems.  

B.  Hybrid dynamic systems 

Formally a HDS is a 5-tuple: HDS= (T, (x, q), (x0, q0), 

Uc Ud, Φ) [28]: 

 T  is the time interval 

 (x, q)   X × Q  represents the complete state of 

hybrid system 

 (x0, q0)   is the set of initial states 

 Uc  Ud  is the set of continuous commands and 

discrete commands 

 Φ : X × Q  n defines a sub-set of trajectories for 

each discrete state  

C. Hybrid Petri net 

Formally, a marked hybrid Petri net is an 8-tuple:  

HPN=< P; T; h ; Pre; Post; Tempo; V; M0 > where: 

P= {P1, P2,…, Pn} finite set of places 

T= {T1, T2,…, Tm} finite set of transitions 

P∩T=Ø 

h: PT  {D, C} hybrid function indicating for each 

node if it is a discrete node (PD, TD) or a continuous 

node (PC, TC) of HPN. 

Pre: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the 

forward application      

Post: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the 

backward application      

Tempo: TD Q+ application associating to each D-

transition Tj their duration  

V: TC R+ application associating to each C-

transition Tj their maximal firing speed Vj 

M0: P R+
 (if Pi  PC) or N (if Pi  PD) is the initial 

marking 

Pre and Post applications must satisfy the following 

condition: 

if Pi and Tj with h(Pi) = D and  h(Tj) = C then Pre (Pi; 

Tj) = Post (Pi; Tj) 

This condition enables the marking of a D-place stay 

integer in the evolution of HPN.  

D. DC-elementary hybrid Petri net 

Formally, a DC-elementary HPN is defined as 9-tuple 

<P; T; h; Pre; Post; I; SIM; V; M0> where: 

P= {P1, P2,…, Pn} finite set of places 

T= {T1, T2,…,Tm} finite set of transitions 

P∩T=Ø 

h: PT  {D, C} hybrid function indicating discrete 

nodes (PD, TD) and continuous nodes (PC, TC) 

Pre: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the 

forward application      
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Post: P×T Q+ (if Pi  PC) or N (if Pi  PD) is the 

backward application      

Pre and Post satisfy the following condition:   

 (Pi,Tj) (PD×TC) (PC×TD) then Pre (Pi, Tj) = (Pi, 

Tj) 

I: (Pi, Tj) R Inhibition application 

SIM: TD Q+ × (Q+ ∞): application associating 

with each discrete transition Tj their firing static interval 

[αj, βj], 

V: TC R+ application associating with each 

continuous transition Tj their maximal firing speed Vj 

M0: P R+ (if Pi  PC) or N (if Pi  PD) is the initial 

marking. 

 

III.  FROM EVOLUTION GRAPH TO LINEAR HYBRID 

AUTOMATON 

A. Introduction 

The state of a linear hybrid automaton (LHA) is given 

by a couple E=(s, v) where s is a summit and v is a 

valuation, defining the values of the variable x at t 

moment. This state can change either by discrete 

transition firing, or by time passing in the same summit. 

Contrary to HPN, hybrid automata (HA) are difficult to 

integrate into modeling systems. HPN have the 

advantage of clearly and efficiently modeling systems 

without presenting an exhaustive enumeration of the 

state space; however, there is no simulation software that 

can directly handle HPN. There are many algorithms in 

research literature which translate different classes of 

HPN into hybrid automaton [29], [30], [31], [32] and 

[33]. In [29] an algorithm with the ability to build a 

hybrid automaton equivalent to HPN is presented. The 

resulting automaton has the same number of summits as 

the IB- state (Invariant Behavior-state) number of HPN. 

The state variables represent the marking of continuous 

places and the clocks measure the time of enabled 

transitions. The obtained automaton is linear and 

deterministic. In order to ensure the convergence of this 

mapping algorithm, the HPN must be bounded. Sava’s 

algorithm translates a time Petri net into timed automaton 

by determining for each reachable summit L, reachable 

space, the enabled discrete transitions and clocks [31]. 

Expanding on ideas presented in [29] and [31], Ghomri, 

in [26], proposes an algorithm which translates a 

Discrete-elementary HPN into hybrid automaton. The 

algorithm uses two main steps in its mapping process. At 

first, it translates the time Petri net into a timed 

automaton; at the second stage, it maps the continuous 

constant speed Petri net into a hybrid automaton. The 

summit number of the hybrid automaton resulting from 

this algorithm is less or equal to N.2n, where N represents 

the macro-summits number of timed automaton that 

corresponds to the discrete part, while n is the C-places 

number of the D-elementary HPN. However, in practice 

we are not obligated to explore all the possibilities, as 

some do not possess physical realizations.  

Based on Sava’s work, El-Touati et al. propose an 

algorithm that translates extended time Petri nets into 

linear hybrid automaton (LHA). The obtained temporal 

behavior of LHA is similar to the behavior of the 

extended temporal Petri net since the summit’s number is 

equal to marking number of the marking graph. 

Many problems concerning properties analysis of 

hybrid automaton are expressed as reachability problem, 

which are in turn, not definitive. In order to reduce this 

complexity, strong restrictions are imposed, in order to 

obtain specific classes of hybrid automaton to which 

existing tools could be applied. The existence of software 

tools that enable the resolution reachability analysis for 

some classes of hybrid automaton leads to the hybrid 

systems analysis through a mapping process. 

B. Linear hybrid automaton 

A linear hybrid automaton (LHA) is defined by A= (X, 

S, δ, Inv, dyn, λ, a, guard, aff) where: 

X
nR  is a finite set of variables. 

S is a finite set of summits. 

δ is a finite set of synchronization labels 

Inv is a function associating for every s Є S an 

invariant Inv (s). 

dyn: S×X Q is a function describing the evolution of 

variables in each summit. 

λ is a finite set of transitions, each transition e=(s, s’) 

Є λ identifies a starting summit s Є S and an arrival 

summit s’ Є S. 

a Є δ is a synchronization label associated to 

transition e=(s, s’). 

guard is a function that associates to each transition 

e=(s, s’) a predicate Ce called guard. If Ce is verified then 

the transition e=(s, s’) is executed. 

aff is a function that associates to each transition e=(s, 

s’) an assignment relation. 

C. Mapping algorithm 

In this section, a translation algorithm for DC-

elementary HPN is proposed. As input, this algorithm 

accepts an evolution graph of a DC-elementary HPN and 

gives as output a linear hybrid automaton (LHA). The 

LHA is more compact than an evolution graph, which 

facilitates the analysis activities. We have developed a 

software tool using C++ programming language to 

implement our algorithm. In the rest of this paper, the 

notation given below is adopted: 

L: set of summits, 

T: transitions set {TD: temporal set and TC: dynamic},  

Td
c: set of temporal transitions depending on marking 

of continuous places of HPN,  

M = {Mc, Md}: set of markings,  

D: set of dynamic continuous places of HPN,  

N: summits counter, 

P: stack saving (memorizing) visited summits not 

analyzed. Each element of the stack memorizes the 

summit name, dynamics of continuous place in the 

summit and the active clocks in this summit. 
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The main steps of our algorithm can be summarized as 

follows: 

 For each enabled transition in Ln-1 create a summit Ln, 

 Define Dn (dynamics of continuous places in Ln), 

 Define active clocks in Ln and compute invariant Id  (Ln) 

for each enabled  Tj Є Td, 

 Define a dynamic transition Tj
C and compute invariant 

Ic(Ln) from firing interval of Tj
C for each enabled Tj Є 

Td
c  and associate a null clock to Tj in Ln,, 

   Define a dynamic transition Tci  (pi
c) and compute 

Ici(Ln) for each pi
c with Dn(pi

c) <0, 

   Create a transition, Tn-1,n=(Ln-1, gn-1,n, An-1 ,n, Ln-1,n) and 

save in P the visit of (Ln, Tn-1,n). 

The algorithm is concluded when all the summits have 

been visited.  

Step 1: Initialization (creating of initial summit L0) 

Initially, all continuous places are marked and 

consequently all transitions are fired to their maximum 

speed. From the initial discrete marking, we determine 

the fireable transitions set. So, we create the initial 

summit of the hybrid automaton by associating the 

activity 𝑀̇ = Wc.V enabling the computation of the 

dynamics of the C-places (W: incidence matrix; V: 

maximal firing speed vector). Then we determine the 

enabled transitions set following the first step of our 

algorithm. 

Algorithm for LHA generation 

Algorithm of Step 1: Initialization 

Begin 

1. Let M0 {Md, Mc} the initial marking of DC-

elementary HPN. 

2. Create a summit L0 associated to initial marking, 

3.  Determine D0 dynamics of continuous places in 

summit L0, 

4.  Determine validated transitions by marking 

M0
d  

5.   If Tj Є Td then   

6.  Determine active clocks in summit L0 

7.  Compute the invariant Id(L0) from intervals of 

validated firing transitions in the marking M0
d 

8.  endif  

9.  If Tj Є Td
c  then Tj is fireable if M (Pc

i) =S (Smax 

or Smin)    

10.  Associate a nil clock to Tj in summit L0  

11.  Determine a dynamic transition Tj
C  

12.  Compute his invariant Ic(L0) from firing 

interval of Tj
C   

13. Update I(L0)=Id(L0)  Ic(L0) 

14.  endif 

15. For each i=1 to p do 

16.  If D0 (pi
c) <0 and Ici(L0) (pi

c)= Ø then 

17. efine a dynamic  transition Tci  (pi
c) 

18. Compute Ici(L0) of Tci = Mpi
c
 >= 0 

19. I(L0)=I(L0)  Ici(L0), 

20. endif 

21. endfor 

22. Create an entry transition by associating an 

affectation updating all active clocks to zero in summit L0 

and the continuous initial markings. 

23. Memorize this visit of summit L0 in the stack P : 

(L0, T0,0) 

24. Actualize the sets M :={M0}; D := {D0} ; 

L :={L0}; T= {T0,0}; n :=1. 

End. 

 

Algorithm of Step 2: Analyze the last visit saved in 

the stack (Ln summit) 

Begin 

1.  The analysis  of summit Ln by firing of Tm,n 

2.  Take out from the stack element memorizing 

this visit 

3.  Determine the enabled transitions set  

4.  For each firing of Tj do determine Md
n+1 and 

Dn+1   

5.  if Md
n+1 Md then go to step 3 else go to step 4 

6.  endif 

7.  endfor 

End. 

 

Algorihm of Step 3:  Creating summit Ln+1 

associated to reachable M n+1 marking 

Begin 

1.  Create summit Ln+1 associated to reachable 

marking M n+1   

2.  Determine  dynamics of all continuous marking 

in summit Ln+1 :Dn+1 

3.  Determine validated transitions in marking Md 

n+1  

4.  if Tj Є Td then  

5.  Determine active clocks in summit Ln+1 

6.  Compute the invariant Id (Ln+1) from the 

interval of validated transitions in       marking Md n+1 

7.  endif 

8.  if Tj Є Td
c  (S is equal to Smax or Smin) then   

9.  if the fired transition Tn ,n+1=TC
j  then   

10. Activate the clock of Tj 

11. Compute the invariant Idj(Ln+1) = Idj(Ln+1)    

12. Update Id (Ln+1)=Id (Ln+1)  Idj (Ln+1) 

else   

13. Associate a nill clock to Tj  in summit Ln+1 

14. Determine a dynamic transition TC
j  

15. Compute his invariant Ici,(Ln+1) from the firing 

condition CT
c
j, obtained from the dynamic  Dn+1(pi

c)=k, 

(k=cst), his continuous place pi
c, and the firing interval 

of Tj . I(Ln+1)=Id(Ln+1)  Ici,(Ln+1) 

16. Endif 

17.  endif 

18.  For i=1 to p do 

19. If Dn+1(pi
c) <0 and Ici (Ln+1) = Ø then  

20. Define a dynamic transition TC (pi
c) 

21. Compute Ici (Ln+1) equal to Mpi
c
 >= 0 

22. I(Ln+1)=I(Ln+1)  Ici(Ln+1), 

23. endif 

24. endfor 

25. Create a transition Tn,n+1=(Ln, gn,n+1, An ,n+1, Ln+1) 

modeling the firing of Tj . 

26.  Add his guard gn, n+1 equal to: [aj, dj] if Tj Є TD ;  

[bi, ci] if Tj Є Tj
C ;  Mpi

c=0 if Tj Є Tci [aj, dj] and 

Mpc
i,Tj,,=S  if Tj Є Td

c 
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27.  

28. Save in stack P the visit of summit Ln+1 : (Ln+1, 
Tn,n+1) 

29. Actualize the sets:M:=M{Mn+1}, 

D:=D{Dn+1}, L:=L {Ln+1}, T:=T {Tn,n+1}, n :=n+1. 

End. 

 

Algorithm of step 4: Associating transition to an 

existed summit  

Begin 

1.  if Md
n+1= Md

L then 

2.  if Dn+1 = DL then  

3.  Create a transition Tn,l=(Ln, gn,l, An,l,  Ll),  

4.  Add his guard gn,l ,    

5.  T:=T {Tn , l}  

6. else go to step 3 

7.  endif  

8.  endif  

9.  If P≠Ø then go to step 2. 

10. endif 

End. 

 

Remark 1: This algorithm converges for bounded DC 

elementary HPN. The algorithm concludes when the 

stack to analyze becomes empty and when all summits 

are created. The visit of summit is totally characterized 

by the invariant behavior state (IB-state) of the DC- 

elementary HPN. 

A DC-elementary HPN is made up by a T-temporal 

Petri net and a continuous Petri net with constant speed. 

Many algorithms in previous research have demonstrated 

a convergence that is due to the bounded aspect of the T-

temporal Petri net [31]. The translation of continuous 

Petri net with constant speed in a hybrid automaton is 

always a convergent process, even if this Petri net is not 

bounded. This is due to the fact that we characterize a 

place not by his marking but by a macro-marking. The 

LHA associated to the DC-elementary HPN then has a 

finite set of summits. The visit of a summit corresponds 

to a transition execution. If the summit is not yet created 

in the stack, then we save the summit and the visit 

together in the stack, or we create the summit without the 

visit in the stack. Since the summit’s number is finite, the 

transition’s number is also finite. 

 

IV.  ILLUSTRATIVE EXAMPLE 

A. Case study: Three water tanks system 

The method proposed in this paper will be illustrated 

with a three- tanks system presented in Fig. 1.  This is a 

pedagogical example, in which all kinds of interactions 

between discrete and continuous parts in the same system. 

We assume the reader has a general familiarity with 

continuous Petri nets [15]. In Hybrid Petri nets, 

continuous places are modeled by double circles and 

continuous transitions by rectangles. 

Let us consider the system of three tanks illustrated by 

the Fig.1. The flow rates 2, 5, 3, 6 and 7 litres/sec are 

associated to valve1, valve 2, valve 3, valve 4 and valve 

5 respectively. This system is modeled by a DC-

elementary HPN illustrated by the Fig. 2. Tanks are 

represented by continuous places P5, P6 and P7 while the 

maximum values of speed V5, V6, V7, V8 and V9 are 

associated to continuous transitions T5, T6, T7, T8 and T9 

respectively.  

m1, m2 and m3 represent the initial marking of places 

P5, P6 and P7 respectively, v5 (t), v6 (t), v7 (t), v8 (t) and v9 

(t) represent the firing speed of transitions T5, T6, T7, T8 

and T9 respectively. Valve3 (Valve4) has two discrete 

working modes (stop, work) and is modeled by two 

discrete places P1 and P2 (P3 and P4).  

Transition from the open state to the closed state of 

Valve3 (Valve4) takes 3t.u to 5t.u, therefore the time 

interval [3, 5] is associated with discrete transitions T2 

and T3. This transition is constrained by the water level 

in tank1 (tank2) modeled by the valuation in the arrow 

P5→T2 (P6→T3). On the other hand, the passage from the 

closed state to the open state of Valve3 (Valve4) takes 

place after 10 t. u. from the last opening action, therefore 

the time interval [10, 10] is associated with discrete 

transition T1 and T4.  P2→T6, P4→T8 (P5→T2, P6→T3) 

represent the influence of discrete (continuous) part on 

continuous (discrete). 

Assume m1 (0) = 26 litres, m2 (0) = 10 litres and m3 (0) 

= 12 litres: 

The markings m1, m2 and m3 are positive thus the 

continuous transitions T5, T6 and T7 are strongly 

validated. P4 is not marked and T8 is not enabled any 

more, and v8 (t) = 0. Markings m1, m2 and m3 evolve 

according to curves of Fig. 3. The dynamics of markings 

m1, m2 and m3 is equal to: 

𝑉1 = 𝑚1̇  = 𝑉5 − 𝑉6 = −1𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 

𝑉2 =   𝑚2̇ = 𝑉7 = 5𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 

𝑉3 =  𝑚3̇ = 𝑉6 − 𝑉9 = −4𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 

At t = [3, 3]: m3 = 0 then its dynamic is null 

𝑉3 =  𝑚3̇ = 𝑉6 − 𝑉9 = 0 𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 

After t= [1, 3]: 20 ≤ m1 ≤ 22 thus T2 is enabled. After t 

= [3, 5], T2 is fireable, m1=17 and its dynamic 𝑉1 =
𝑚1̇ = 𝑉5 = 2𝑙𝑖𝑡𝑟𝑒𝑠/𝑠𝑒𝑐 (P2 being not marked thus T6 m1, 

m2 and m3 is not enabled any more). The evolution 

dynamics of continues places evolves according to the 

curves illustrated by Fig. 4. 

The behavior of continuous Petri nets can be defined 

by the marking and their instantaneous firing speeds 

vector. For HPN, an IB-state (Invariant Behavior-state) 

concept is introduced [26]. An IB-state represents stages 

where HPN evolutions of marking remain constant and 

continuous. Formally, an IB-state is a time interval where: 

1. Marking MD of D-places is constant, 

2. Validation vector eD of discrete transitions is 

constant, 

3. Instantaneous speeds vector of continuous 

transitions is constant, 

4. Markings vector for discrete and continuous places 

is constant. 

5. When an IB-state is reached, the marking of 

continuous places MC is constant. 
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Consequently, a DC-elementary HPN evolution graph 

is a succession of IB-state modeled by nodes. The 

evolution between nodes is guided by the occurrence of 

events like  

C1-event (continuous place marking becomes null), 

D1-event (firing of discrete-transition) and D2-event 

(change validation degree of discrete transition by a 

marking of a continuous place).  

Fig. 5 illustrates the evolution graph of the DC-

elementary HPN of Fig. 2.  

 

Fig. 1. Three water tanks system 

 

 

Fig. 2. DC-elementary HPN 

 

 

Fig. 3. Evolution marking 

 

 

Fig. 4. Evolution dynamics of continuous places 

 

Fig. 5. Evolution graph of the DC-elementary HPN 

B.  Construction of LHA 

Let us illustrate our algorithm from the example of Fig. 

1. We consider that the initial marking of the DC-

elementary HPN of figure 2 is M0= [Md {0, 1, 1, 0}, Mc 

{26, 10, 12}]. The proposed algorithm generates summits 

without taking into account the reachabilty of summits, 

which is a non-decidable problem for LHA. Nevertheless, 

the existence of software tools like Hytech and PHAVer 

(Polyhedral Hybrid Automaton Verifier) facilitates the 

computation of the reachable space. The mapping 

algorithm applied upon our illustrative example gives the 

LHA illustrated by the Fig. 6.  

C. Analysis of three water tanks system 

The set of generated summits keeps the syntax and the 

semantics of the evolution graph. The results of the 

simulation, which is based on software tool PHAVer 

(http://www.cs.ru.nl/~goranf/) for analyzing LHA 𝒜, are 

summarized in Table 1. Reachability space by forward 

analysis was obtained after 5 iterations and time duration 

of 0,094s. 

Let us now interpret these results, represented as linear 

constraints in table 1. For instance, the relation -6.x2 – 

5.x4 – 5.p5 >= -160 (forward analysis column and L3 

state line) yields remarkable information (an upper limit 

of accessibility space): all trajectories in the upper part of 

this limit lead to dangerous states. In this state (summit), 

minimum water level in tank 1 exceeds and alarms may 

be triggered. 

Comparison between tank 3 and the opening of 

valve 4 

To illustrate the results of Table 1 and to be able to 

interpret them, the data from PHAVer was used to 

generate a bi-dimensional graph (Fig. 7) through a 

Matlab script. 



 Linear Hybrid Automaton Generation Using Mapping Algorithm for Hybrid Dynamic Systems 7 

Copyright © 2014 MECS                                            I.J. Information Technology and Computer Science, 2014, 10, 1-10 

In Fig. 7, we clearly see that the interval of the clock 

x4 is [0, 3], which is illustrated by the relation (x4 >= 0 

and -x4 >= -3). We see also that the marking of place p7 

is positive in this interval (4.x4+p7=12) (forward analysis 

column and L1 state line).  

 

 
Fig. 6. LHA obtained by the mapping algorithm 

 

Comparison between activity of tank 1 and 

activities of valve 3 and valve 4 

The bi-dimensional graph of clock x2 in term of place 

p5 for all states {L1… L14} is illustrated in Fig. 8. In the 

accessible space (authorized trajectories) of summit L3, 

we note that the temporal interval of the clock x2 is [0,5] 

(p5 >= 17, x2 + p5 >= 20 and -x2 - p5 >= -22) where 

the marking place p5 in this interval will be greater than 

or equal to 17. At the same time the valve 4 begins to 

open, since clock x4 is activated (-x4 >= -10).  

Comparison between activity of tank2 and the 

valve 4 closed  
In the accessible state (authorized trajectories) of 

summit L13, the temporal interval of clock x3 is [0, 5] 

(x3 >= 0, –x3 >= -5, x3+p6>=12, -x3-p6>=-14). This 

means that tank 2 has reached a dangerous interval and 

valve 4 is in the process of opening, in order to prevent 

tank 2 from bypassing its minimum threshold equal to 9 

(see Fig. 9). 
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Table 1. Reachable space of LHA 𝒜 

Forward analysis 

L1 
4.x4 + p7 =12, 5.x4 - p6 = -10, x4 + p5 = 26, 

x2 = 0,  x4 >= 0,-x4 >= -3 

L2 x2 =0, -x4 >= -10, p5 >= 20 

L3 

x2 >= 0, -x4 >= -10, -x2 - p5 >= -22, 

-6.x2 – 5.x4 – 5.p5 >= -160, p5 >= 17, 

x2 + p5 >= 20, -x2 >= -5 

L4 p6 >= 12, p5 >= 20 

L5 x4 =0, p7 >= 0, -x2 >= -5 

L6 x1 >= 0, -x1 >= -10, -x4 >= -10 

L7 p6 >= 12 

L8 p6 >= 12, p5 >= 20, -p6 >= -14 

L9 x4 =0, x1 = 0, p7 >= 0 

L10 x3 = 0, -x1 >= -10, p6 >= 12, -p6 >= -14 

L11 p6 >= 12, -x1 >= -10 

L12 x1 >= 0, -x1 >= -10, p7 >= 0, p6 >= 12 

L13 
-x3 >= -5, -x3 - p6 >= -14, x3 >= 0, 

x3 + p6 >= 12, -x2 >= -5 

L14 x1 >= 0, -x1 >= -10 

 

 

Fig. 7. Graph x4 versus p7 for states {L1,…, L14} 

 

 

Fig. 8. Accessible space accepted by the hybrid automaton (p5 in term 

of x2) 

 

Comparison between activities of tank 1 and tank 3 

We observe that activities of tank 1 and tank 3 are 

identical since the two tanks emptied (4.x4 + p7 = 12, 

5.x4 - p6 = -10, x4 + p5 = 26) as shown in figure 10. 

While no constraint is imposed on tank 3, this tank 

reaches the 0 level without water alimentation. Contrary 

to the tank 1, once the water level reaches a minimum 

threshold of 17, its activity changes (see Fig. 11). 

 

Fig. 9. Accessible space accepted by the hybrid automaton (p6 in term 

of x3) 

 

 

Fig. 10. Trajectories authorized by the hybrid automaton (p5 in term of 

p7) 

 

 

Fig. 11.  Accessible states accepted by the hybrid automaton 
(comparison of p5 and p7) 

 

Comparison between closing process of valve 3 and 

valve 4 

Valve 3 closes at a faster rate than valve 4 (see Fig. 

12). This is a consequence of the debit difference of tank 

1 and tank 2 respectively.  
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Fig. 12. Accessible space accepted: comparison between x3 and x2 

 

In the same manner we can graphically interpret all 

information found in the table 1. We have obtained many 

interesting results [32] and [33]. 

 

V. CONCLUSION AND FUTURE WORK 

This paper analyzes the properties of the Petri net 

hybrid system. It expands on our previous works on 

discrete event systems modeled by a functional graph [4], 

[8] and [9]. The main intent of this work is to introduce a 

new class of HPN (DC-elementary HPN) that will be 

able to take into account the interaction between discrete 

part and continuous part in hybrid systems. We have also 

proposed an algorithm that allows for translation from an 

evolution graph to a hybrid dynamic system graph called 

a linear hybrid automaton. This graph is analyzed by a 

PHAVer software tool in order to demonstrate the 

system’s properties. In future research, we will explore 

the possibility of studying diagnostic properties in hybrid 

systems, using this new kind of linear hybrid automaton. 
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