
I.J. Information Technology and Computer Science, 2014, 11, 42-47
Published Online October 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.11.06

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

Similar Words Identification Using Naive and

TF-IDF Method

Divya K.S.
PG Scholar, Department of CSE, Sri Krishna College of Technology, Coimbatore, India

Email: divyaks.1990@gmail.com

Dr. R. Subha
Assistant Professor, Department of CSE, Sri Krishna College of Technology, Coimbatore, India

Email: kris.subha@gmail.com

Dr. S. Palaniswami
Principal, Government College of Engineering, Bodinayakanur, India

Email:joegct81@yahoo.com

Abstract—Requirement satisfaction is one of the most

important factors to success of software. All the requirements

that are specified by the customer should be satisfied in every

phase of the development of the software. Satisfaction

assessment is the determination of whether each component of

the requirement has been addressed in the design document.

The objective of this paper is to implement two methods to

identify the satisfied requirements in the design document. To

identify the satisfied requirements, similar words in both of the

documents are determined. The methods such as Naive

satisfaction assessment and TF-IDF satisfaction assessment are

performed to determine the similar words that are present in the

requirements document and design documents. The two

methods are evaluated on the basis of the precision and recall

value. To perform the stemming, the Porter’s stemming

algorithm is used. The satisfaction assessment methods would

determine the similarity in the requirement and design

documents. The final result would give a accurate picture of the

requirement satisfaction so that the defects can be determined at

the early stage of software development. Since the defects

determines at the early stage, the cost would be low to correct

the defects.

Index Terms—Requirements Document, Design Documents,

Requirement Satisfaction, Porter’s Stemming Algorithm, Term

Frequency, Inverse Document Frequency

I. INTRODUCTION

Software Engineering is the study and application of

engineering to the design, development, and maintenance

of software [9]. Software engineering may also be

defined as the systematic design and development of

software products and the management of the software

process. Requirements engineering (RE) refers to the

process of formulating, documenting and maintaining

software requirements and to the subfield of Software

Engineering concerned with this process [10]. The major

activities of requirement engineering are requirement

elicitation, requirement analysis, requirement

specification and requirement validation.

Fig. 1. Requirements Engineering activities

The requirements elicitation step includes all of the

activities involved in identifying the requirement’s

stakeholders, selecting representatives from each

stakeholder class, and determining the needs of each

class of stakeholders. The goal of the elicitation activity

is to improve the understanding of the requirements that

is to achieve progress in the content dimension. During

the elicitation activity, requirements are elicited from

stakeholders and other requirement sources.

Requirements analysis, also called requirements

engineering, is the process of determining user

expectations for a new or modified product. These

features, called requirements, must be quantifiable,

relevant and detailed. In software engineering, such

requirements are often called functional specifications.

Requirements analysis is an important aspect of project

management. A Software requirements specification

(SRS), a requirements specification for a software system,

is a complete description of the behavior of a system to

be developed and may include a set of use cases that

Requirements Elicitation

Requirements Analysis

Requirements

Specifications

Requirements Validation

 Similar Words Identification Using Naive and TF-IDF Method 43

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

describe interactions the users will have with the software.

In addition it also contains non-functional requirements.

Requirements validation is the assurance that a product,

service, or system meets the needs of the customer and

other identified stakeholders. It often involves acceptance

and suitability with external customers.

The major problems found in requirement engineering

[11] are the following:

 Poor Requirements Quality

 Over Emphasis on Simplistic Use Case Modeling

 Inappropriate Constraints

 Requirements Not Traced

 Missing Requirements

 Excessive Requirements Volatility including

Unmanaged Scope Creep

 Inadequate Verification of Requirements Quality

 Inadequate Requirements Validation

 Inadequate Requirements Management

 Inadequate Requirements Process

 Inadequate Tool Support

 Unprepared Requirements Engineers

Satisfaction assessment is the determination of

whether each component of the requirement document

has been addressed in the design document. The steps of

Satisfaction assessment[1] are the following:

 Analyzing a high level document and identifying the

high level element

 Analyzing a low level document and identifying the

low level element

 Determining whether each aspect of high level element

have been addressed by the low level elements

 Assign a label to the high level element

The paper presents a satisfaction approach to identify

the similarities between the requirements document and

the design document. The documents are preprocessed to

find outs the words that have least importance in the

phrases. Porter’s stemming algorithm is used for

reducing derived words to their stems. The Naive

satisfaction assessment and TF-IDF satisfaction

assessment are performed to find the similarities in the

documents.

According to this method, the rest of the paper is

structured as follows. In Section 2, some related works

are presented. In section 3, more details about the

methodology of the proposed system are described.

Finally in section 5 conclusions and some future works

are discussed.

II. RELATED WORKS

Elizabeth Ashlee Holbrook, Jane Huffman Hayes,

Alex Dekhtyar and Wenbin Li perform a study of

methods for textual satisfaction assessment [1]. The

objective of the system is to perform the textual

satisfaction method. Satisfaction assessment helps in

identifying the unsatisfied requirements. The RTM for

the data set is constructed and the requirement and design

text into chunks. Stop word removal and the stemming

for the chunks are performed. The chunks are tokenized

into individual terms. The synonym pairs for the terms

are determined. For TF-IDF and Naïve Satisfaction

method, the threshold values are predefined. For NLP

satisfaction method, the rules are generated. Finally the

candidate satisfaction assessment mapping is performed.

Holbrook E A, Hayes J H and Dekhtyar A proposed

automating requirements satisfaction assessment [2]. The

system introduces the automation of satisfaction

assessment, the process of determining the satisfaction

mapping of natural language textual requirements to

natural language design elements. The system describes

the satisfaction assessment approach algorithmically and

then evaluates the effectiveness of two proposed

information retrieval (IR) methods in two industrial

studies. Mainly focuses on assessing whether

requirements have been satisfied by lower level artifacts

such as design. A three-step approach to addressing the

problem is proposed. The important components for

each individual requirement/design element are identified.

The satisfaction assessment as determination of whether

each component of each requirement has been addressed

in the design document is defined. The requirements

document, broken into components to the design

document, also broken into chunks is traced. Two

methods are used to determine the mapping of

requirement to design element chunks. The first method

is based on a simple idea of tracking and thresholding the

percentage of common terms between the two chunks.

The second method is vector space information retrieval

using TF-IDF term weighting.

Hayes J H, Dekhtyar A, Sundaram S, Holbrook A and

Vadlamudi S proposed a tool for improving software

maintenance through traceability recovery [3]. The

recovery of traceability for artifacts containing

unstructured textual narrative is addressed. RETRO uses

information retrieval (IR) and text mining methods to

construct candidate traces. The task is to find documents

in the collection that are deemed relevant to the query.

The tool consists of a set of IR and text mining methods

as well as a front-end that provides functionality for the

analyst to use during the tracing process. The method

vector space retrieval with tf-idf term weighting is the

default tracing technique in RETRO. Each document and

query is passed through a stop word removal procedure.

The remaining text is stemmed to ensure that words such

as “information,” “informational” and “informative” are

treated as the same term. RETRO includes support for

relevance feedback.

Jane Huffman Hayes, Alex Dekhtyar and Senthil

Karthikeyan Sundaram proposed a new method for

requirements tracing [4]. The issues related to improving

the overall quality of the dynamic candidate link

generation for the requirements tracing process for

Verification and Validation are addressed. The goals for

a tracing tool based on analyst responsibilities in the

tracing process are defined. The several new measures

for validating that the goals have been satisfied are

introduced. The analyst feedback in the tracing process is

implemented. A prototype tool, RETRO (REquirements

TRacing On-target), to address the goals is presented.

44 Similar Words Identification Using Naive and TF-IDF Method

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

The methods and tool can be used to trace any textual

artifact to any other textual artifact. An additional IR

technique, Latent Semantic Indexing is used for

requirements tracing. A requirements tracing tool is

defined that is a special purpose software that takes as

input two or more documents in the project document

hierarchy and outputs a traceability matrix that is a

mapping between the requirements of the input

documents. Two IR algorithms TF-IDF vector retrieval

and vector retrieval with a simple thesaurus one newly

implemented method, Latent Semantic Indexing are used

for determining requirement similarity. LSI is a

dimensionality-reduction method, which allows one to

capture the similarity of underlying concepts, rather than

simple keyword matches.

Robinson W N presented an implementation of rule-

based monitors, which are derived from system

requirements [5]. A language for requirements and

monitor definitions are defined by the framework. A

methodology for defining requirements, identifying

potential requirements obstacles, and analyzing monitor

feedback is defined. The framework address three

interrelated monitoring issues such as Formalization of

high-level goals, requirements, and their monitors,

Automation of monitor generation, deployment, and

optimization and Traceability between high-level

descriptions and lower-level run-time events. The

monitoring approach integrates requirements language

research with commercial business process monitoring.

The approach defines the logical monitoring model. The

goals and requirements are defined. Potential

requirements obstacles are uncovered and their monitors

are derived. The monitoring architecture and

implementation are defined. The requirements of the

monitoring event sources and sinks are defined. A

logical-physical mapping to ensure traceability of events

back to requirements is defined. The monitoring system

is implemented and deployed. The high-level feedback

on the systems actions and requirements compliance is

provided. The compensation and adaptation rules are

executed when violations occur. The high-level feedback

on the monitoring system itself, thereby providing

historical information used in defining new monitoring

optimization rules is provided.

Marcus A and Maletic J I proposed a method to

recover traceability links between documentation and

source code, using an information retrieval method,

namely Latent Semantic Indexing [6]. The traceability

links based on similarity measures are identified. The

method utilizes all the comments and identifier names

within the source code to produce semantic meaning with

respect to the entire input document space. The vector

space model (VSM) is a widely used classic method for

constructing vector representations for documents. Latent

Semantic Indexing (LSI) is a VSM based method for

inducing and representing aspects of the meanings of

words and passages reflective in their usage. LSI uses a

user constructed corpus to create a term-by-document

matrix. New document vectors (and query vectors) are

obtained by orthogonally projecting the corresponding

vectors in a VSM space (spanned by terms) onto the LSI

subspace. The LSI subspace captures the most significant

factors (i.e., those associated with the largest singular

values) of a term-by-document matrix, it is expected to

capture the relations of the most frequently co-occurring

terms.

Cleland-Huang J, Chang C K, Sethi G, Javvaji K,

Haijian H U and Jinchun Xia proposed a method for

establishing and utilizing traceability links between

requirements and performance models [7]. An activity

that is of critical importance to handling and managing

changing requirements effectively is described. A method

for establishing and utilizing traceability links between

requirements and performance models is proposed.

Traceability links are established through the use of a

dynamic traceability scheme capable of speculatively

driving the impacted models whenever a quantitative

requirement is changed. Key values from within the

individual performance models representing probabilities,

rates, counts and sizes etc are placed in the central

requirements repository. Finely tuned links are then

established between the data-values in the models and

those in the repository. The process of analyzing the

impact of a proposed change upon the performance of the

system through dynamic re-execution of requirement

dependent models is supported.

Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza,

Andrea De Lucia and Ettore Merlo proposed a method

based on information retrieval to recover traceability

links between source code and free text documents [8].

The method proposed ranks the free-text documents

against queries constructed from the identifiers of source

code components and can be customized to work with

different IR models. Both a probabilistic and a vector

space information retrieval model are applied. In the

probabilistic model, free-text documents are ranked

according to the probability of being relevant to a query

computed on a statistical basis. A language model for

each document or identifiable section is estimated and

uses a Bayesian classifier to score the sequences of

mnemonics extracted from each source code component

against the models. The vector space model treats

documents and queries as vectors in an n-dimensional

space. Documents are ranked against queries by

computing a distance function between the corresponding

vectors. The documents are ranked according to a widely

used distance function, i.e., the cosine of the angle

between the vectors. The construction of the vocabulary

and the indexing of the documents are preceded by a text

normalization phase performed in three steps. In the first

step, all capital letters are transformed into lower case

letters. In the second step, stop-words (such as articles,

punctuation, numbers, etc.) are removed. In the third step,

a morphological analysis is used to convert plurals into

singulars and to transform conjugated forms of verbs into

infinitives. The construction of a query consists of three

steps. Identifier extraction parses the source code

component and extracts the list of its identifiers.

Identifier separation splits identifiers composed of two or

more words into separate words. Text normalization

 Similar Words Identification Using Naive and TF-IDF Method 45

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

applies the three steps described above for document

indexing. Finally, a classifier computes the similarity

between queries and documents and returns a ranked list

of documents for each source code component.

III. METHODOLOGY

The system design is shown in Fig 2.

Fig. 2. System design

Fig 2 shows that the input is the requirement document

and the design document that was written in natural

language. It aims to determine the similarities between

the requirement document and the design document. The

sentences in the documents are tokenized into individual

words. The stop word removal and stemming are

performed. The term frequency for each word is

calculated to determine the TF-IDF similarity calculation.

The number of occurrence of the terms is determined to

calculate the similarity score. Finally the similar words

are calculated.

A. Document Preprocessing

The requirement document and the design document

are given as the input. The preprocessing of the document

is performed. Stop word removal find outs the words that

have least importance in the phrases. Stemming is the

process for reducing derived words to their stems.

Porter’s stemmer algorithm [12] is used to perform the

stemming process. The Porter’s stemmer algorithm

consists of the following steps:

Step 1: Gets rid of plurals and -ed or -ing suffixes.

Step 2: Turns terminal y to i when there is another

vowel in the stem.

Step 3: Maps double suffixes to single ones: -ization, -

ational, etc.

Step 4: Deals with suffixes, -full, -ness etc.

Step 5: Takes off -ant, -ence, etc.

Step 6: Removes a final -e

B. Similarity score calculation

The similarity score of the document is calculated

using the Naive satisfaction method. The similarity score

of each of the term in both the requirement document and

design document is determined using the following

equation

 (1)

The similarity score of each word in the document is

stored. The value of each of the term in the requirement

document is compared with the term in the design

document. The similar terms are determined by

comparing the similarity score measure.

C. TF-IDF similarity calculation

The TF-IDF of each of the word in the document is

calculated. Term frequency–inverse document frequency,

is a numerical statistic that reflects how important a word

is to a document in a collection or corpus. Term

frequency is the count of number of times a particular

word / term occurred in a document. Inverse document

frequency, IDF is calculated using the following equation

where, N is the total number of documents in a

collection, and DF is the document frequency that is the

number of documents where a given term occurs.

TF-IDF weight for each term is calculated using the

following equation

The TF-IDF similarity measure of each word in the

document is stored. The value of each of the term in the

requirement document is compared with the term in the

design document. The similar terms are determined by

comparing the TF-IDF similarity measure.

D. Performance analysis

Precision and recall of both the methods are compared.

Precision is the fraction of retrieved documents that are

relevant to the find. Precision is calculated by using the

following equation.

 (4)

Recall in information retrieval is the fraction of the

documents that are relevant to the query that are

successfully retrieved. Recall is calculated using the

following equation

 (5)

IV. RESULTS

Fig 3 shows the stemming of the terms in the

documents using Porter’s stemmer algorithm.

Requirement

Document

Design

Document

Tokenization

Stop Word Removal

Stemming algorithm

TF-IDF calculation Similarity Score

calculation

Similar

Words
Similar

Words

46 Similar Words Identification Using Naive and TF-IDF Method

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

Fig 4 shows the calculation of the similarity score of

each term in the document using equation (1).

Fig 5 shows the determination of the similar words

based on the similarity scores of each of the term in the

documents

Fig 6 shows the calculation of the TF-IDF value of

each term in the document using equation (3).

Fig 7 shows the determination of the similar words

based on the TF-IDF value of each of the term in the

documents.

Table 1 shows the calculation of precision and recall of

some of the elements in the requirement documents using

naive method and TF-IDF method.

Table 2 shows the average precision and recall value

of the naive and TF-IDF method. For the similarity score

calculation method the precision and recall is 16% and

74%. For the TF-IDF value calculation method the

precision and recall is 31% and 67%. The F-measure for

the similarity score calculation method is 26% and that of

TF-IDF value calculation method is 43%.

Fig. 3. Stemming of the terms in the document

Fig. 4. Similarity score calculation

Fig. 5. Similar words determination using similarity score

Fig. 6. TF-IDF calculation

Fig. 7. Similar words determination using TF-IDF value

 Similar Words Identification Using Naive and TF-IDF Method 47

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 42-47

Table 1. Precision and Recall calculation

Elements
Naive method TF-IDF method

Precision Recall Precision Recall

Timeout 0.111 0.666 0.1935 0.568

Number 0.1759 0.84 0.30645 0.76

Complete 0.1388 1.058 0.2419 0.8823

Sequence 0.1666 0.68 0.3387 0.84

Original 0.1481 0.76 0.2903 0.72

Table 2. Average Precision and Recall

Method
Average

Precision

Average

Recall
F-Measure

Naive method 16% 74% 26%

TF-IDF method 31% 67% 43%

V. CONCLUSION

In this paper two methods for the satisfaction

assessment of requirements are proposed. The methods

are based on the TF-IDF value calculation and the

similarity score calculation. The methods find out the

satisfied requirements in the design document by

identifying the similar words in both the documents.

Porter’s stemmer algorithm could be used to reduce the

derive words into their stems. The two methods provide

the terms that are similar in the requirement document

and design document. The method based on TF-IDF

value is more efficient compared to the method based on

similarity score value based on their precision and recall

value. The concept of contextual tracing could be

included for the future work. Contextual tracing could

help to find out the similar words that share the same

meaning.

REFERENCES

[1] Elizabeth Ashlee Holbrook, Jane Huffman Hayes, Alex

Dekhtyar, Wenbin Li. A study of methods for textual

satisfaction assessment. Springer- Empirical Software

Engineering,2013,18(1):139-176.

[2] Holbrook Ea, Hayes J H, Dekhtyar A. Towards

automating requirements satisfaction assessment. In:

Proceedings of IEEE International Conference on

Requirements Engineering, 2009, 149 – 158.

[3] Hayes J H, Dekhtyar A, Sundaram S, Holbrook A,

Vadlamudi S. Requirements Tracing on Target (RETRO):

Improving software maintenance through traceability

recovery. Springer Innovations System Software

Engineering,2007,3(3):193-202.

[4] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan

Sundaram. Advancing candidate link generation for

requirements tracing: the study of methods. IEEE

Transactions on Software Engineering,2006,32(1): 4 – 19.

[5] Robinson W N. Implementing rule-based monitors within

a framework for continuous requirements monitoring. In:

Proceedings of Annual Hawaii International Conference

on System Sciences, 2005, 188a.

[6] Marcus A, Maletic J I. Recovering documentation-to-

source code traceability links using latent semantic

indexing. In: Proceedings of International Conference on

Software Engineering, 2003,125-135.

[7] Cleland-Huang J, Chang C K, Sethi G, Javvaji K, Haijian

H U, Jinchun Xia. Automating speculative queries through

event-based requirements traceability. In: Proceedings of

IEEE Joint Conference on Requirements

Engineering,2002,289-296.

[8] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza,

Andrea De Lucia, Ettore Merlo. Recovering traceability

links between code and documentation. IEEE Transactions

On Software Engineering,2002,28(10): 970 – 983.

[9] Roger S Pressman. Software Engineering: a practitioner’s

approach. 6th edition, McGraw-Hill Pub Co, New

York,2005.

[10] Phillip A Laplante. Requirements Engineering for

Software and Systems. 2nd edition, CRC press, New York.

[11] Donald Firesmith. Common Requirements Problems,

Their Negative Consequences, and the Industry Best

Practices to Help Solve Them. Journal of Object

Technology,2007,6(1).

[12] Noraida Haji Ali, Noor Syakirah Ibrahim. Porter

Stemming Algorithm for Semantic Checking. In:

Proceedings of 16th International Conference on Computer

and Information Technology, 2012, 253 – 258.

Authors’ Profiles
Ms. Divya K.S. was born in Ernakulam, India

in 1990. She received Bachelor of Technology

degree in Computer Science and Engineering

under Cochin University, in 2012. She is

currently pursuing Master of Engineering

degree in Computer Science and Engineering

under Anna University, Chennai, India.

Dr.R.Subha received B.E in Computer

Science and Engineering from Periyar

University and M.E in Software Engineering

from Anna University, Chennai in 2002 and

2006 respectively and completed the Ph.D.

degree in software engineering in 2014. At

Present, she is working as Assistant

Professor in the department of Computer Science & Engg, Sri

Krishna College of Technology, Coimbatore. She is currently

pursuing Ph.D under Anna University, Coimbatore. Her

research interest includes Software Engineering, Computer

Architecture and NLP.

Dr.S.Palaniswami received the B.E. degree

in electrical and electronics engineering

from the Govt., college of Technology,

Coimbatore, University of Madras, Madras,

India, in 1981, the M.E. degree in electronics

and communication engineering (Applied

Electronics) from the Govt., college of

Technology, Bharathiar University,

Coimbatore, India, in 1986 and the Ph.D. degree in electrical

engineering from the PSG Technology, Bharathiar University,

Coimbatore, India, in 2003. He is currently the Registrar of

Anna University Coimbatore, Coimbatore, India, Since May

2007. His research interests include Control systems,

Communication and Networks, Fuzzy logic and Networks, AI,

Sensor Networks. He has about 25 years of teaching experience,

since 1982. He has served as lecturer, Associate Professor,

Professor, Registrar and the life Member of ISTE, India.

