
I.J. Information Technology and Computer Science, 2014, 12, 53-60
Published Online November 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.12.07

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

Measuring Complexity, Development Time and

Understandability of a Program: A Cognitive

Approach

Amit Kumar Jakhar
Department of CSE, BIT, Mesra, Ranchi-835 215, Jharkhand, India

Email: amitkumar.cs08@pec.edu.in

Kumar Rajnish
Department of CSE, BIT, Mesra, Ranchi-835 215, Jharkhand, India

Email: krajnish@bitmesra.ac.in

Abstract－ One of the central problems in software engineering

is the inherent complexity. Since software is the result of

human creative activity and cognitive informatics plays an

important role in understanding its fundamental characteristics.

This paper models one of the fundamental characteristics of

software complexity by examining the cognitive weights of

basic software control structures. Cognitive weights are the

degree of the difficulty or relative time and effort required for

comprehending a given piece of software, which satisfy the

definition of complexity. Based on this approach a new concept

of New Weighted Method Complexity (NWMC) of software is

developed. Twenty programs are distributed among 5 PG

students and development time is noted of all of them and mean

is considered as the actual time needed time to develop the

programs and Understandability (UA) is also measured of all

the programs means how much time needed to understand the

code. This paper considers Jingqiu Shao et al Cognitive

Functional Size (CFS) of software for study. In order to

validate the new complexity metrics we have calculated the

correlation between proposed metric and CFS with respect to

actual development time and performed analysis of NWMC

with CFS with Mean Relative Error (MRE) and Standard

Deviation (Std.). Finally, the authors found that the accuracy to

estimate the development time with proposed measure is far

better than CFS.

Index Terms － Program Complexity, Development Time,

Understandability, Cognitive Weight, Basic Control Structures,

Cognitive Functional Size, Lines of Code

I. INTRODUCTION

With the growth in technology most of the businesses

are now being controlled by software’s, making the cost,

schedule and quality estimation are critical concerns of

businesses. Thus, the development of software has also

become increasingly sophisticated over the years. With

the intension of finding the most appropriate attributes

such as control flow [1], operator and operand count [2],

information flow [3], data flow [4-5], identifier density

[6], spatial complexity [7-8] and cognitive complexity

[9-11] that measure the development and maintenance

cost associated with developing software. Although, each

of these proposed complexity metrics have their

advantages and disadvantages, most of them are useful

only in a limited environment. Thus, in addition to

proposing new complexity metrics, some computer

scientists and researchers have attempted to identify

metrics that addresses most of the characteristics of a

software programs. However, only a few studies have

been conducted to test the relationship between the

proposed complexity metrics and their applicability in

the real world. To identify the effectiveness and the

practicality of a metric a number of evaluation

frameworks have been proposed in the past [12-15].

The complexity measures based on cognitive

informatics is in development phase. Cognitive

complexity measures represent the human effort needed

to perform a task or difficulty in understanding the

software code. In cognitive informatics, it is found that

the functional complexity of software in design and

comprehension is dependent on three fundamental

factors: internal processing, input and output [16-17].

NWMC is the new measure for measuring software

complexity presented in this paper. It is a measure of the

cognitive and psychological complexity of software as a

human intelligence artefact. Cognitive complexity takes

into account both internal structures of software and I/Os

it processes.

The main aim of this paper is to measure the cognitive

complexity with NWMC, analyzing the development

time of programs and the measure the understandability

of a program. To accomplish this work, the authors

compared the proposed cognitive complexity (NWMC)

and Cognitive Functional Size (CFS). The development

time of NWMC and CFS is analyzed with actual

development time and calculate their MRE and Standard

Deviation. At last, understandability of a program is also

measured, that can help to reduce difficulty which is

tackled at the maintenance phase.

The rest of the paper is organized as follows: Section 2

deals with CFS presented by Shao et al., the basic control

structure of a program and their corresponding weight is

also shown in this section. Section 3 present a new

complexity measure based on cognitive informatics and

finding development time and Understandability of

54 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

programs. The comparison of proposed measure with

CFS and LOC has been done in Section 4. Section 5

deals with conclusion and the future works of this

research paper.

II. CFS OF SHAO AND WANG

Over the years the term software complexity has been

defined in several ways by a number of authors and

researchers. The IEEE definition of software complexity

is “the degree to which a system or component has a

design or implementation that is difficult to understand

and verify [18]”. Basili defined software complexity as

“a measure of the resources expended by a system while

interacting with a piece of software to perform a given

task. If the interacting system is a computer, then

complexity is defined by the execution time and storage

required to perform the computation. If the interacting

system is a programmer, then complexity is defined by

the difficulty of performing tasks such as coding,

debugging, testing or modifying the software [19].

The cognitive weight of software is defined “as the

extent of difficulty or relative time and effort for

comprehending given software modelled by a number of

Basic Control Structures (BCS) [9].” A BCS is the basic

building block of any software regardless of the

underline technology. According to C.A.R. Hoare et al.,

there are five types of BCSs: sequential, branch, iteration,

recursion and parallel [20]. In 2002, Y. Wang proposed

two more BCSs: function call and interrupt [17]. Each

BCS has been allocated with a unique cognitive weight

[9]. The cognitive weights for BCS are as under:

Table 1. Basic Control Structures and their weights

Category BCS Weight

Sequence Sequence (SEQ) 1

Branch
If-Then-Else (ITE) 2

Case 3

Iteration

For-do 3

Repeat-until 3

While-do 3

Embedded
Function Call (FC) 2

Recursion (REC) 3

Concurrency
Parallel (PAR) 4

Interrupt (INT) 4

Calculation of cognitive weight of a block changes

depending on the existence of layers. If the BSCs are not

nested and is in same layer, i.e., if there are no nested ‘if’

conditions, ‘for’ or ‘while’ loops, the cognitive weight is

calculated by taking the sum of all the BSCs within that

block. However, in the case of existence of nesting, the

cognitive weight is calculated by multiplying the

cognitive weight of the inner BSCs with cognitive weight

of outer BCSs. Hence, for a component with q linear

blocks which consist of m layers of nesting BCSs with

each layer having n linear BCSs, the total cognitive

weight (Wc) is defined as [9]:

)],,([
1 1 1

ikj
q

j

m

k

n

i
CC wW

 (1)

If the q blocks do not contain any embedded BCSs,

then the above equation can be simplified as follows [9]:

),(
1 1

kj
q

j

m

k
CW

 (2)

The CFS of software with Ni inputs, No outputs and a

single method is defined as [9]:

Sf = Ni/o * Wc

)],,([*
1 1 1

ikj
q

j

m

k

n

i
Coi wNN

 (3)

where, CWU is the unit of cognitive weight of

software.

If the software consists of nc methods, then CFS of the

cth method is defined as [9]:

)()(
1

c
n

c
c

c
ff SS

 [CWU] (4)

Thus, for a component-based software system with p

components, CFS is defined as [9]:

)(
1

ˆ p
np

p
ff SS

),(

11

cp
n

f

cn

c

p

p

S

 (5)

III. NEW WEIGHTED METHOD COMPLEXITY (NWMC)

3.1 Definition

By considering the above theories of CFS presented by

Shao et al [9], the authors had incorporated additional

parameters in proposed cognitive weight measurement

for measuring the complexity of program. In fact,

cognitive weights correspond to the number of executed

instructions and using this complexity number the

authors make a relation to calculate the development

time of the program, and compare the calculated time

with the experimental developmental time which was

observed when five users are trying to develop the code

and mean of the five is consider as the actual

development time. MRE is calculated for the both the

proposed technique and CFS. Standard Deviation is also

calculated of all 20 programs. At last, the

understandability of a program is measured empirically

with the help of NWMC that can be used to decrease the

difficulty level and increase the quality, because UA is

the quality indicator.

The NWMC metric may be defined as:

NWMC= Nparameters* Wc (6)

 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach 55

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

where,

Nparameters= (Ni + No + Nlp + Nfp) (7)

where,

Ni: individual number of inputs of the main program

and other program which is called from the main

program and some other program.

No: individual number of outputs of the main program

and other program which is called from the main

program and some other program.

Nlp: number of local parameters other than Ni used in a

main program and other program which is called from

the main program and some other program

Nfp: number of formal parameters during function call

and recursive call from the main program and other

program which is called from the main program and

some other program

Wc: calculated from equation (1).

After calculating the complexity, the authors measure

the development time which is observed from

experiments with five different students in the institute

lab. The time has taken by the students to develop the

program was calculated and the average of all five

students development time is considered as actual

development time. The proposed work is incorporated

with a new formula i.e.

Development Time =

a + b * (Cognitive Complexity number) (8)

where the value of a and b are calculated with the help

of regression. The same formula is also applied to

calculate the development time with the help of CFS.

The value of a, b for NWMC are given below:

a=0.9793

b=0.0964

and the value of a, b for CFS are:

a=0.0004

b=0.7454

Development time is calculated with these constant

putting into the Development Time formula for NWMC

and CFS. Then compare the result with actual time refer

Table 3, 4 and Fig. 5, 6, 7.

Understandability is a quality factor that is very

important to understand the code before test and maintain.

It finds the relationship between the NWMC and

difficulty i.e. level of understandability. The authors

proposed an empirical formula to calculate the

Understandability (UA) of a program.

(UA) = (NWMC a) * b (9)

where a and b are constant that are derived empirically.

a = 0.48

b = 0.62

By using the above formula the understandability can

be measured through proposed approach. Ultimate goal

of this formula is to increase the quality of software, i.e.

higher the UA means more difficulty to test and maintain

than smaller number. So, the developer has a chance to

reduce it at the early phase of the software life cycle if

they have some knowledge about this factor. More detail

discussion is given in the next section.

3.2 Example for Illustration

A program to sort an array using selection sort is

shown in Fig. 1. An algorithm contains 3 program bodies:

one main program (P1), another program P2 (called from

P1), and another program P3 (directly called from P2 and

indirect call to P1). CFS and NWMC of Fig. 1 is

calculated as follows:

Calculation of CFS

The cognitive weights for the three programs (P1, P2,

and P3) are as follows:

It is seen from Fig. 1. For program P3, there are three

internal structures: a sequential, iteration and a branch

BCS. The cognitive weights for these three BCSs are

determined as under:

BCS31.1 (sequence): W1 = 1,

BCS31.2 (Iteration): W2 = 3 * 2 = 6

Total cognitive weight for program P3 is: 1 + 6 = 7.

For program P2, there are two internal structures:

iteration BCS and embedded component. The cognitive

weight for Program P2 is determined as under:

BCS31 (iteration): W1 = 3 + 7 = 10

For program P1, there are four internal structures: a

sequence, two iterations and a function call BCS.

The cognitive weights and CFS for program P1 is

calculated as under:

BCS1 (sequence): W1 = 1,

BCS2 (iteration): W2 = 3,

BCS3 (function call): W3 = 2 +10 = 12,

BCS4 (iteration): W4 = 3,

Total cognitive weight for program P1 is=

1 + 3 + 12 + 3 = 19.

CFS = (Ni + No) * 19 = (2 + 1) * 19

 = 3 * 19 = 57 [CWU]

The above result of CFS shows that when both the

internal architectural complexity and I/O turnover are

considered, this program’s complexity is equivalent to 57

CWU.

Calculation of NWMC

For Program P3, Nlp = 3, NFP = 3,

Nparameters = 3 + 3 = 6

NWMC (P3) = 6 * Wc = 6 * 7 = 42 [CWU]

For Program P2, Nlp = 3, NFP = 2,

Nparameters = 3 + 2 = 5

NWMC (P2) = 5 * Wc = 5 * 45 = 225 [CWU]

For Program P1, Ni = 2, No = 1, Nlp = 4

Nparameters = 7

NWMC (P1) = 7 * (1 + 3 + 227 + 3)

 = 7 * 234 = 1872 [CWU]

The above result of NWMC shows that when both the

internal architectural complexity and Nparameters turnover

are considered, this program’s complexity is equivalent

to 1872 CWU.

It is observed from above solved example that NWMC

gives better prediction for the program’s complexity as

compared to CFS. Because the CFS considered only

input, output and BCS, but internal complexity is more

than this. So, in proposed metric different internal

parameters are considered. That’s why the value of both

measures are different. Now the development time of this

example is calculated by the constant a, b.

56 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

Development time of Fig. 1 with NWMC:

DT=0.9793 + (0.0964*1872) = 181 Minutes

Development time of Fig. 1 with CFS:

DT=0.0004 + (0.7454*57) = 42 Minutes

The development time of Fig. 1 with NWMC and CFS

is shown above, it is clearly indicated that the difference

is around 5 times greater than CFS. So to understand the

problem, design, code, and test the program, the 42

minutes are very less for the beginners who do not have

any knowledge about problem, but they have

programming skills. So to develop the code like Fig. 1

takes three hours approximately. But the 42 minutes are

very less to develop such complex code, since the

NWMC predict the development time better than CFS.

The UA factor of Fig. 1 is calculated as follows:

UA = (1872 0.48) * 0.62 = 23 minutes

So, according to the observation 23 minutes has been

required to understand the code.

Table 2. Analysis of theNWMC, CFS and LOC

Program No. CFS NWMC LOC

1 33 44 15

2 24 24 16

3 8 28 23

4 18 88 24

5 75 200 31

6 65 169 33

7 50 200 34

8 32 120 35

9 57 413 36

10 76 190 37

11 34 205 40

12 40 140 44

13 66 420 46

14 280 520 60

15 44 728 60

16 136 708 61

17 369 697 65

18 174 5859 66

19 99 704 71

20 312 4664 159

Fig. 2 Analysis of NWMC and CFS for 20 Programs

Fig. 1. A Program to sort an array using selection sort

Fig. 3. Analysis of CFS with LOC for 20 Programs

===================================
// Program P1 (main Program)

#include<stdio.h>

#include<conio.h>
int smallest(int arr[], int k, int n)

void selection_sort(int arr[], int n);
 void main()

{

 int arr[10], i, n, j, k;
 clrscr();

 printf(“\n Enter the number of elements in the array”);
 scanf(“%d”, &n); //BCS1

 printf(“\n Enter the elements of the array”);

 for(i=0; i<n; i++) //BCS2
 {

 printf(“\n arr[%d]=”, i);
 scanf(“%d”, &arr[i]);

 }

 selection_sort(arr, n); //BCS3
 printf(“Sorted Array is:\n”);

 for(i=0; i<n; i++) // BCS4
 printf(“%d\t”, arr[i]);

 getch();

 }=======================================
// Program P3 (called from Program P2)

 int smallest(int arr[], int k, int n)
 {

 int pos = k, small = arr[k], i; //BCS31.1

 for(i=k+1; i<n;i++) //BCS31.2
 {

 if (arr[i] < small)
 {

 small = arr[i];

 pos = i;
 }

 }
 return pos;

 }===================================

 //Program P2 (called from P1)
 void selection_sort(int arr[], int n)

 {
 int k, pos, temp;

 for (k=0;k<n;k++) //BCS 31

 {
 pos = smallest (arr, k, n);

 temp = arr[k];
 arr [k] = arr [pos];

 arr [pos] = temp;

 }}

 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach 57

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

Table 3. Average development time of 20 programs in Minutes

Program No. U 1 U 2 U 3 U 4 U 5 Avg. Time (Min)

1 7 9 6 5 4 6.2

2 4 5 4 3 2 3.6

3 5 6 3 4 3 4.2

4 14 16 9 12 8 11.8

5 25 28 22 21 23 23.8

6 23 25 22 19 23 22.4

7 25 26 22 19 21 22.6

8 22 24 19 18 17 20

9 42 44 32 33 30 36.2

10 19 25 17 14 15 18

11 28 31 25 20 21 25

12 26 28 22 21 18 23

13 61 56 43 41 38 47.8

14 80 92 64 66 58 72

15 124 136 84 79 63 97.2

16 119 122 88 77 58 92.8

17 108 112 76 75 80 90.2

18 448 489 386 342 358 404.6

19 117 126 85 82 72 96.4

20 480 435 423 380 358 415.2

Fig. 4. Analysis of NWMC with LOC for 20 Programs

Fig. 5. A plot of actual and calculated development time

Fig. 6. MRE of CFS and NWMC with Actual time

Fig. 7. Correlation of CFS and NWMC with actual time

Table 4. Comparison of development time of CFS and NWMC with

actual time

S. No CFS NWMC AE UA
MRE of

CFS

MRE of

NWMC

1 25 5 6 3.8 -297 15.8

2 18 3 4 2.9 -397 8.5

3 6 4 4 3.1 -42 12.4

4 13 9 12 5.3 -13.7 19.8

5 56 20 24 7.9 -135 14.9

6 48 17 22 7.3 -116 22.9

7 37 20 23 7.9 -64.9 10.4

8 24 13 20 6.2 -19.3 37.3

9 42 41 36 11.2 -17.4 -12.7

10 57 19 18 7.7 -215 -7.2

11 25 21 25 8 -1.4 17

12 30 15 23 6.7 -29.6 35.4

13 49 41 48 11.3 -2.9 13.2

14 209 51 72 12.5 -190 29

15 33 71 97 14.7 66.3 26.8

16 101 69 93 14.4 -9.2 25.9

17 275 68 90 14.4 -205 24.4

18 130 407 405 39.9 67.9 -0.5

19 74 69 96 14.4 23.4 28.6

20 233 451 415 35.8 44 -8.5

Mean
(abs)

74.25 70.7 76.65 --- 77.69 15.67

Std.
Dev.

77.62 214.95 118.45 --- 125.74 24.23

58 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

IV. COMPARATIVE STUDY OF NWMC AND CFS

This section presents the analysis of NWMC, CFS,

lines of codes (LOC) of 20 programs and also focus on

measuring the development time of 20 programs and

correlates with actual development time and find the

MRE and Standard Deviation of all programs. An

attempt has also been made to calculate the UA of a

program with the help of proposed measure by using an

empirical formula. The actual development time is

observed from five student of the institute and their mean

is considered as actual time because the experience of

five students is different with programming language.

Each program is analysed in terms of unit known as lines

of code (LOC), CFS and NWMC (with the unit of

cognitive weight or CWU) as shown in Table 2 and

illustrated in Fig. 2, Fig. 3 and Fig. 4.

The LOC of software, or program length, can be used

as a predictor of program characteristics such as effort

and difficulty of maintenance. However, it characterizes

only one specific aspect of size, namely the static length,

because it takes no account of functionality. The CFS

and NWMC is concerned with functional and cognitive

complexity.

Following observations made from Table 2, Table 3,

Table 4, Fig. 2, Fig. 3 and Fig. 4, Fig. 5, Fig. 6, Fig. 7

which are as follows:

 From Fig. 2, it is observed that for each program

NWMC gives better cognitive weight measurement for

complexity value calculation than CFS. Because CFS

has only takes input, output and weight of BCS in

account, but the internal data elements are also part of

complexity that are excluded by the CFS, but the

proposed metric consider these factors.

 Certain interesting observation made from Table 2, Fig.

3 and Fig. 4. From Table 2 it is observed that, the

trends for LOC, CFS and NWMC follow basically the

same pattern. As the LOC increases, so does the

corresponding CFS and NWMC. It is noteworthy that

there are four points for which the CFS and NWMC

grows-up sharply (see bold italic mentioned for CFS,

NWMC and LOC in Table 2). This indicates that these

four programs have higher code cognitive complexity,

using fewer lines of code to implement more complex

program. As indicated in Fig. 3 and Fig. 4, LOC is not

a good measure for predicting program complexity. As

mentioned in Table 2, there are two cases with similar

LOC first case is around 60/61 LOC (painted with

Gray) but one has CFS = 44 CWU below, NWMC

=728 CWU above, while other is CFS= 136 CWU

above, NWMC = 708 CWU below and in the second

case is around 65/66 LOC (painted with Dark Yellow)

but one has CFS = 369 CWU above, NWMC =697

CWU below, while other is CFS= 174 CWU below,

NWMC = 5859 CWU above. Hence the proposed

metric shows the accurate complexity of programs

than others measures.

 Table 3 shows the development time of 20 programs

with time taken by five different students of our

institute. The development time of all five students is

mostly different from others, this is due to their

programming skills. Some students are very

experienced and some are less experienced. The

average time of all five students are calculated in the

last column that is considered as the actual time in

minutes that is required to develop the given program.

The unit of the measuring developing time is in

Minutes.

 The Table 4 describes the development time of 20

programs which is calculated with the help of NWMC

and CFS and a comparison is also done with the actual

time which is measured from 5 PG students. The

development time of all 20 programs are calculated

with the regression, the authors found the two constant

a, b and the cognitive weight of individual. The value

of a, and b are shown in the section 3.1 for both of

measures. The MRE of both the techniques NWMC

and CFS are calculated that is shown in the last two

column of the Table 4. The MRE of the NWMC is very

close to 0, means that the difference between the

actual development time and the calculated time in

very less, but MRE of CFS shown very large value in

both the sides (in +ve side and –ve side) means the

calculation is not much accurate. The result of this

table shows that the development time is measured by

the NWMC is very close to the actual development

time than the CFS, this can be observed from mean of

MRE (indicated in yellow colour) of both measures,

CFS overestimate the development time that’s why the

mean of MRE is greater than proposed measure. The

standard deviation of both the measure is shown in the

last row of the Table 4, CFS also does not do well with

standard deviation the average standard deviation is

125.74 with the smallest error being 2.9. But the

standard deviation of proposed measure has 24.23 with

0.5 smallest error (indicated in green colour) and the

small value is desirable. So the proposed measure the

development time better than CFS. UA is also

calculated that is very important factor to test and

maintain the software. The UA is helpful when the

code is need to understand, because the maintaining

the code is difficult than developing. Clock Time

required to understand the code, but how much, this is

question is solved by the understandability factor

shown in Table 4. By using the Table 4 the Fig. 5 and

Fig. 6 are generated.

 Fig. 7 represents the Pearson and Spearman's rho

Correlation of NWMC and CFS with actual time of 20

Programs. (** Correlation is significant at the 0.01

level (2-tailed).). It can be seen that NWMC has a

better correlation with actual time than CFS. These

firmly believe that NWMC is better cognitive

complexity metric that can be used in the real world.

Therefore, the NWMC and cognitive weights provide

an objective, logical, and comparative measure for

quantitatively analyzing and predicting program

complexity and development time and understandability

of software in software engineering.

 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach 59

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

V. CONCLUSION AND FUTURE WORK

A complexity measure based on cognitive weight and

a formula to calculate the development time and

understandability of programs is proposed. It is found

that cognitive weight complexity measure is the most

suitable measure, when it is compared with other similar

measures. Software complexity measures serve both as

an analyzer and a predictor in quantitative software

engineering. This paper has developed the New

Weighted Method Complexity (NWMC) on the basis of

cognitive weights, permitting determination of program

complexity from cognitive aspects. Cognitive weights for

basic control structures (BCSs) have been introduced to

measure the complexity of logical structures of program.

A large set of case studies has been carried out to analyze

the relationship between NWMC with CFS and LOC of a

program. The NWMC has been shown to be a

fundamental measure of program complexity based on

the cognitive weight. The development time of a

program is calculated with the help of cognitive

complexity that is measured by NWMC and CFS. The

result shows that the proposed technique has better

capability to measure the complexity and development

time of a program than the CFS.

This work has produced four substantial findings:

(a) The NWMC of software in design and

comprehension is dependent on five factors: internal

processing structures, as well as the number of inputs,

number of local parameters, number of formal

parameters used during call and number of outputs.

(b) The NWMC is more robust than the CFS and LOC

measure and independent of language/implementation.

(c) The development time help to better estimate the

cost and the deadline required for releasing the software

and ensuring that the risk has been reduced.

(d) Understandability factor help to maintain and test

the software, and can also be used at early stage of the

software life cycle to reduce the complexity that increase

the Understandability ratio.

The future work includes on some fundamental issues:

(1) Programs used for the study were very small as

compared to large system. The same work will be

carried out with large system along with some other

cognitive measures to see the effect on program

complexity.

(2) The proposed measure needs further verification with

some software engineering measurement (as for

example, Weyuker Properties, Briand’s Property) for

analyzing the nature of the metric.

(3) Furthermore, the time required to find and fix the

bugs can be observed with the help of UA factor.

REFERENCES

[1] T.J. McCabe, “A complexity measure”, IEEE

Transactions on Software Engineering, Vol. 2, No.4,

December 1976, pp.308-320.

[2] M.H. Halstead, “Elements of Software Science”, Elsevier

North- Holland, New York, 1997.

[3] S. Henry, and D. Kafura, “Software structure metrics

based on information flow”, IEEE Transaction on

Software Engineering, SE-7, Sept. 1981, pp.510-518.

[4] E. I. Oviedo, “Control flow, data flow and program

complexity”, Proc. COMPSAC, Chicago, 1980, pp. 146-

152.

[5] K.C. Tai, “A program complexity metric based on data

flow information in control graphs”, Proceedings of the 7th

international conference on software engineering (ICSE

84), NJ, USA, 1984, ISBN: 0-8186-0528-6.

[6] W. Harrison, “An Entropy-based Measure of Software

Complexity”, IEEE Transactions on Software Engineering,

Vol. 18, No. 11, 1992, pp. 1025-1029.

[7] J.K. Chhabra and V. GUPta, “Evaluation of Object-

Oriented Spatial Complexity Measures”, ACM SIGSOFT

Software Engineering Notes, Vol. 34, No. 3, May 2009, pp.

1-5.

[8] C. R. Douce, P. J. Layzell, and J. Buckley, “Spatial

measures of software complexity”, Proc. 11th Annual

Workshop of Psychology of Programming Interest GroUP,

University of Leeds, UK, Jan. 1999, pp. 36-45.

[9] J. Shao and Y. Wang, “A new measure of software

complexity based on cognitive weights”, Canadian

Journal of Electrical and Computer Engineering, Vol.28,

No.2, April 2003, pp. 1-6.

[10] D.S. Kushwaha and A.K. Misra, “A modified cognitive

information complexity measure of software”, ACM

SIGSOFT Software Engineering Notes, Vol. 31, No.1,

January 2006, pp.1-4.

[11] S. Misra, “Complexity measure based on cognitive

weights”, International Journal of Theoretical and

Applied Computer Sciences,Vol.1, No. 1, 2006, pp.1-10.

[12] Briand, L.C., S. Morasca, and V.R. Basili, “Property based

Software Engineering Measurement,” IEEE Transactions

on Software Engineering, vol. 22, 1996, pp. 68-86.

[13] Lakshmanian, K.B., S. Jayaprakash, P.K. Sinha,

“Properties of Control-Flow Complexity Measures,” IEEE

Transaction on Software Engineering, vol. 17, 1991, pp.

1289-1295.

[14] Tian, J., and M.V. Zelkowitz, “A Formal Program

Complexity Model and its Application,” J. Systems

Software, vol. 17, 1992, pp. 253-266.

[15] E. J. Weyuker, “Evaluating Software Complexity

Measure.” IEEE Transaction on Software Engineering,

vol. 14, 1988, pp. 1357-1365.

[16] Y. Wang, “On cognitive informatics: Keynote lecture,” in

Proc. 1st IEEE Int. Conf. Cognitive Informatics (ICCI’02),

Calgary, Alta., Aug. 2002, pp. 34–42.

[17] Y. Wang, “Component-based software measurement,”

chap. 14 in Business Compo-nent-Based Software

Engineering, ed. F. Barbier, Boston: Kluwer Academic

Publish-ers, 2002, pp. 247–262.

[18] E. Da-wei, “The software complexity model and metrics

for object-oriented”, School of Computer Engineering,

Jimei University, Xiamen, China, April 2007, pp. 464-469.

[19] J. K. Kearney, “Software complexity measurement”,

Communications of the ACM, Vol. 29, No. 11, November

1986, pp. 1044-1050.

[20] C.A.R. Hoare, “Laws of programming”, Communications

of the ACM, Vol. 30, No. 8, Aug. 1987, pp. 672–686.

Authors’ Profiles
Mr Amit Kumar Jakhar: PhD. student in the

Department of Computer Science & Engineering, at

Birla Institute of Technology, Mesra, Ranchi,

Jharkhand, India. His research area is software

60 Measuring Complexity, Development Time and Understandability of a Program: A Cognitive Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 53-60

engineering.

Mr Kumar Rajnish: Assistant Professor in the

Department of Computer Science &

Engineering, at Birla Institute of Technology,

Mesra, Ranchi, Jharkhand, India. He received

his PhD in Engineering from BIT Mesra,

Ranchi, Jharkhand, India. His Research area is

Object-Oriented Metrics, Object-Oriented Software

Engineering, Software Quality Metrics, Programming

Languages, and Software Estimation.

How to cite this paper: Amit Kumar Jakhar, Kumar

Rajnish,"Measuring Complexity, Development Time and

Understandability of a Program: A Cognitive Approach",

International Journal of Information Technology and Computer

Science(IJITCS), vol.6, no.12, pp.53-60, 2014. DOI:

10.5815/ijitcs.2014.12.07

