
I.J. Information Technology and Computer Science, 2014, 12, 61-66
Published Online November 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.12.08

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

Event-Coverage and Weight based Method for

Test Suite Prioritization

Neha Chaudhary
Research Scholar, GBU, Greater Noida, India

Email: neha.chaudhary@gmail.com

O.P. Sangwan
Guru Jambheshwer University of Science & Technology / Department of CSE, Hisar, 125001, India

Email: sangwan_op@yahoo.co.in

Richa Arora
InterGlobe Technologies, Gurgaon, 122001, India

Email: richaarora.arora3@gmail.com

Abstract — There are many challenges in testing of Graphical

User Interface (GUI) applications due to its event driven nature

and infinite input domain. Testing each and every possible

combination of input require creating number of test cases to

satisfy the adequacy criteria of GUI testing. It is not possible to

test each and every test case within specified time frame.

Therefore it is important to assign higher priority to test cases

which have higher fault revealing capability than other test

cases. Various methods are specified in literature for test suite

prioritization of GUI based software and some of them are

based on interaction coverage and weight of events. Weight

based methods are defined namely fault prone weight based

method, random weight based method and equal weight based

method in which fault prone based method is most effective. In

this paper we have proposed Event-Coverage and Weight based

Method (EC-WBM) which prioritizes GUI test cases according

to their event coverage and weight value. Weight value will be

assigned based on unique event coverage and fault revealing

capability of events. Event coverage based method is used to

evaluate the adequacy of test cases. EC-WBM is evaluated for 2

applications one is Notepad and another is Calculator. Fault

seeding method is used to create number of versions of

application and these faults are evaluated using APFD (Average

percentage of fault detection). APFD for prioritized test cases of

Notepad is 98% and APFD for non-prioritized test cases is 62%.

Index Terms — Event coverage, GUI testing, Test-Suite

Prioritization, Event-Coverage and Weight based Method (EC-

WBM).

I. INTRODUCTION

Graphical User Interface (GUI) is composed of objects

(buttons, menus, trash-can, recycling-bin) using

metaphors familiar in real life. The software user interacts

with the objects by performing events that manipulate the

GUI objects as one would with real objects. Events cause

deterministic changes to the state of software that may be

reflected by a change in the appearance of one or more

GUI object [1,2].

There are few important characteristics of GUI which

include their graphical orientation, event-driven input,

hierarchical structure, the objects they contain, and the

properties (attributes) of those objects [3].

GUI Testing: As specified by Paul testing is known as

a key Quality Assurance (QA) activity in the

development process of software. During testing, test

suits are generated and executed on an Application Under

Test (AUT) [4].

Test-Case Prioritization: It is important to prioritize the

test cases that uncover the most faults as fast as possible

in the testing process. So prioritization of test suite is a

challenging area. The Test-Case prioritization techniques

aim at ordering the test cases from the highest priority of

execution to the lowest priority and the test case

prioritization is defined as given a test suite T, PT is the

set of permutations of T, and f is a function from PT to

real numbers [5]. The technique of prioritization is to find

T’ϵ PT, such that (V T‖)(T‖ ϵPT)(T‖ ≠T’)[F(T’)≥ f(T‖)].

GUI events are classified on the basis of their response

to the system on selection and their classification is as

follows:- Restricted-focus events, Unrestricted-focus

events, Termination events, Menu-open events and

System-interaction events [6,2]. Event-weight assignment

for different types of events is shown in the Table1. The

event type with high weight value (WV) is more

important and may detect more number of faults. Thus,

considering the system-interaction events, that directly

interact with the underlying system codes, more faults

may be detected when these event types are triggered.

Therefore, the WV = 4 for the system-interaction event.

A termination event is an event with medium importance,

since it may have underlying codes to execute when it

closes a window. Finally, a menu-open event or an

unrestricted-focus event does not interact with the

underlying software. Hence, the lowest weights are

assigned to these two event types.

Events are categorized in five categories as specified in

Table 1. Event weight is assigned according to their fault

revealing capability defined in literature survey [6].

Event weight and event coverage will be used to

prioritize test cases in high to low ordering [8]. If two test

cases have same weight value, number of events will be

62 Event-Coverage and Weight based Method for Test Suite Prioritization

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

dominating factor for prioritization. If test cases have

same event coverage and same weight value random tie

breaking will be used.

Table 1. Event weight assignment [7]

Event type WVs

Restricted-focus event 5

System-interaction event 4

Termination event 3

Menu-open event 2

Unrestricted-focus event 1

In this paper we have proposed a technique which

consider weight value of each event & number of unique

event that test case is covering (event coverage) as factors

for test suite prioritization.

This paper is organized as follows: Section II describes

the related work previous work. Section III demonstrates

proposed method for prioritization i.e. ―Event-Coverage

& Weight based Method‖ and also includes experimental

results. Section IV covers threat to validity. Finally,

conclusion and future work are presented in section V.

II. RELATED WORK

This section covers various methods for test case

prioritizations for GUI based software. In our recent work

we proposed multiple factors for test suite prioritization

using fuzzy logic [9].

Renee C. Bryce and Atif M. Memon proposed test

suite prioritization using interaction coverage. Test suite

for GUI based program is prioritized by t-way interaction

coverage and rate of fault detection is compared with

fault detection by other prioritization criteria.

Experimental results shows that test suits with the highest

event interaction coverage benefit the most and test suits

that has less interaction coverage does not benefit using

this prioritization technique [5].

Atif M Memon and Renee C Bryce provided a single

abstract model for GUI and web application testing for

test case prioritization. In this approach test cases are

prioritized by set of count based criteria, set of usage-

based frequency and set of interaction based criteria. The

results shows that prioritization by 2-way (interaction

based criteria) and PV-LtoS (Parameter count based

criteria) has provided better improvement in the rate of

fault detection for GUI based software[10].

Authors Xun Yuan et al. proposed combinatorial

interaction testing. In this paper authors proposed unique

criteria that incorporate context in terms of event

combination strength, sequence length, and it includes all

possible positions for each event. Authors have included

case studies on eight different applications which shows

that when event combination strength is increased,

starting and ending position of events are to be controlled

that will be able to detect large number of undetected

faults. These criteria proved effective and efficient. The

problems of state-based testing domain also exist in this

strategy like if there are infeasible path they will generate

infeasible sequences. To remove these infeasible paths

manual methods are used [11].

Renee C. Bryce et al. included cost of test case in the

prioritization technique based on interaction coverage.

Cost-based combinatorial interaction coverage metric as

2way interaction coverage and cost-based 2way

interaction coverage was proposed by the authors.

According to experimental results the difference in

APFDC between 2way and cost-based 2way for CPM

was less than 3%. APFDC was slightly less effective [12].

Sebastian et al. provide an analysis of fault detection

rates that result from applying several different

prioritization techniques to several programs and

modified versions. This analysis can be used to determine

the prioritization techniques appropriate to other

workloads [13].

Yuen Tak and Man Fai proposed fault-based

prioritization of test cases which directly utilizes the

theoretical knowledge of their fault-detecting ability and

the relationships among the test cases and the faults in the

prescribed fault model, based on which the test cases are

generated [14].

Luay et al. present and evaluate two model-based

selective methods and a dependence-based method of test

prioritization. These models utilize the state-based model

of the system under test. The existing test suite is

executed on the system model and information about this

execution is used to prioritize tests[15].

Sreedevi Sampath et al. formulate three hybrid

combinations based on Rank, Merge, and Choice. They

have suggested that hybrid criteria of others can be

described using Merge and Rank formulations, and

hybrid criteria they have developed most often

outperformed individual criteria[16].

Another method for test suite prioritization is proposed

by Huang Chin is cost-cognizant test case prioritization

which based on the use of historical records. In this paper

authors have used genetic algorithm to determine the

most effective order [17].

III. EVENT-COVERAGE & WEIGHT BASED METHOD (EC-

WBM)

In this paper we have proposed EC-WBM based

approach for test suite prioritization. In this approach test

cases are created using QTP tool for GUI based

application. Different versions of application are created

using manual fault seeding method and fault matrix is

generated with the help of QTP tool. Module component

extractor takes GUI based application as input and

extracts events from the application. Number of events of

application and test case are input for prioritization

algorithm.

Prioritization algorithm is assigning a weight value for

each test case. According to this weight value a new order

of test cases is generated. For the comparison purpose we

have considered random order of test cases and

prioritized order of test cases and their APFD are

compared.

 Event-Coverage and Weight based Method for Test Suite Prioritization 63

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

As shown in Fig.1, we have designed an experimental

set up for test suite prioritization using proposed

approach EC-WBM

Fig. 1. Experimental Design for test suite prioritization

Independent and Dependent Variables: In this study

the independent variables are test suite created by QTP

tool and seeded faults. Dependent variables are average

percentage of fault detection and prioritized sequence.

The method required to implements the approach is

specified in following steps:

Step 1: Generation and Identification of GUI based

application

In our experiment we have selected 2 different

applications Notepad and Calculator that perform basic

arithmetic operations.

Step 2: Generation of test cases using QTP

In this experiment test cases are generated using HP-

QTP version 11 [18]. This is Capture and Replay tool.

We have generated different set of test cases for both

applications. Component extractor is created to extract

events from test log generated by testing tool. This will

take test log file as input and provide list of events as

output.

Further different versions are created for the

application by manual fault seeding method and fault

matrix is created for both applications.

Fig. 2. QTP Log Window

Fault matrix for Calculator is shown in Fig. 3 and for

Notepad is shown in Fig. 4.

Fig. 3. Fault Chart for Calculator

Fig. 4. Fault Chart for Notepad

Step 3: Coverage evaluation of Test Cases

This procedure will take total number of events in the

application as input and unique events list as input and

provide coverage of test case using (1):

64 Event-Coverage and Weight based Method for Test Suite Prioritization

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

CT[i]= n[i]/Tn (1)

Where CT[i] is event coverage of testCase i, n[i] is

number of unique event in testCase i and Tn is total

number of events in Application under test.

Table 2. Unique Event Coverage

Application T1 T2 T3 T4 T5

Notepad 64.2% 60.7% 60.7% 57.1% 50%

Calculator 35% 55% 65% - -

Initial unique event coverage for both applications are

provided in Table 2.

Step 4: Prioritization of Test Cases

After fetching all the uncovered components into a

single excel file implement the prioritization technique to

assign some priority on the basis of Fault-prone weight-

base method. Prioritization is done on the test cases

according to the weight assigned to the components.

In this paper, we have proposed an algorithm that will

prioritize test cases according to weight value of events

and event coverage. Random ordering of test cases has

been used for comparison of proposed method.

According to our approach each event will be assigned

weight value according to fault revealing capability of

that type of event. Then weight of each event will be

summed up and multiplied with the coverage of test case.

Coverage will be computed by counting number of events

in the test case divided by total number of events in the

application. For example, suppose there are two test cases

t1 and t2 for AUT (Application under Test) with 6 events.

Test cases t1 includes events E1, E2 & E3 and t2 includes

E1, E4, E5 & E6. According to weight of events we

assume E1=2, E2=5, E3=4, E4=2, E5=1 and E6= 3.

Weight of t1 will be 7 and priority will be 11* 3/6 =5.5

and weight of t2 will be 8*4/6= 2.67, so t1 will be

assigned higher priority than t2, so rate of fault detection

capability of t1 will be higher than that of t2. For this

work we have developed prioritization algorithm that will

assign priority for each test case.

In our algorithm weight of test case will be calculated

according to following formula:

 
1

/
n

TC j

j

W n i Tn W


  (2)

Where WTC is Weight of test case, Wj is the jth event

weight, n is the number of events in test case and Tn is

the total number of events in AUT.

Algorithm for Test case Prioritization using Event-

Coverage & Weight based Method

Input computeWeight()

n[i]= number of unique events in test case i

Tn= total number of events in Application

WTC [i] = weight value of ith test case

CT[i]= event coverage of testCase i

eventWeight[]=weight array of events in bestTest

1. testcount=1;

2. hightWTC =0;

3. for i1 to totalTestCount

4. hightWTC = WTC [i];

5. CT[i]= n[i]/Tn;

6. WTC [i]= Wi * CT[i];

7. for ji+1 to totalTestCount

8. if(WTC [j]> hightWTC)

9. hightWTC= WTC [j];

10. bestTest=T[j];

11. if j!= totalTestCount;

12. T[j]=T[j+1];

13. end if

14. end if

15. end for

16. end for

17. end computeWeight

18. while(testCount!=0)

19. while(eventCount in test case i != 0)

20. for j1 to number of events in bestTest

21. if eventWeight[eventCount]>0 && event of

testCase[eventCount]=event of bestTest[j]

22. CT[eventCount]=CT[eventCount]-

eventWeight[eventWeight];

23. end for

24. eventCount--;

25. testCount--;

26. end while

27. end while

28. call computeWeight()

The test case with the highest WTC value is selected,

which is T1. The current sequence of non-prioritized test

cases of application Notepad is:

<T1, T2, T3, T4, T5>

Eliminate all the components which are duplicates of

the test cases having high SW, and therefore the sequence

of test case will change with the value of summarized

weight SW for all the four test cases and ordering also

changes and the same will be implemented for all the

iterations and the final prioritized sequence is as follows:

<T2, T3, T1, T5, T4>

Step 5: Evaluation Metric:

After prioritizing test cases, and detecting faults in GUI

software, the fault detection percentage for test cases will

be evaluated using a metric APFD (Average Percentage

of Fault Detection). APFD is defined as [19]:

1 2 1
1

2

mTF TF TF
APFD

nm n

 
   (3)

Step 6: Experimental Results:

In Notepad application, 5 faults are detected by

running the application in the QTP Tool. After

prioritizing the test cases using the Event-Coverage &

Weight based Method approach prioritized sequence that

is obtained from the prioritization approach is:

{T2, T3, T1, T5, T4}

While before the prioritization the sequence of the test

cases was:

 Event-Coverage and Weight based Method for Test Suite Prioritization 65

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

{T1, T2, T3, T4, T5}

Following are the values of n that are total number of

test cases and m is the total number of faults detected in

the notepad application and the value of n = 5 and m = 5

should be almost same for calculating the average

percentage of fault detection, so putting the value in the

APFD equation, the average percentage of faults are

detected for Calculator and notepad are specified in Table

3for prioritized sequence. Table 4 specifies APFD value

for non-prioritized sequence.

Table 3. APFD for Prioritized Sequence (Notepad and Calculator)

GUI

Application

APFD of Prioritized Test Sequence

obtained for GUI Application

Notepad 66%

Calculator 98%

In the given Fig. 5 the APFD for the prioritized

sequence of Calculator application is represented in

which 98% average percentage of fault detection

effectiveness is calculated using the APFD method for

the prioritized sequence of test cases in Calculator.

Fig. 5. APFD for Prioritized Calculator Application

Fig. 6. APFD for Non-Prioritized Calculator Application

Fig.6 depicts APFD for prioritized and non-prioritized

order of test cases for Application Calculator.

Fig. 7. APFD for Prioritized Notepad application

Fig.7 shows that the APFD of prioritized order of test

cases for Application Notepad is comparatively greater

than the APFD of the non-prioritized sequence for the

same.

The Fig.8 depicts APFD for non-prioritized sequence

of GUI application Notepad. Value of APFD for non-

prioritized sequence is 62%.

Fig. 8. APFD for Non-Prioritized Notepad Application

Thus, comparing the APFD for both prioritized and

non-prioritized test cases the Average percentage of fault

detection rate for prioritized sequence is higher than non-

prioritized test sequences for both applications thus the

rate of fault detection is improved after prioritization.

IV. THREATS TO VALIDITY

Threats to validity are factors that may impact ability

to generalized results to other circumstances. The first

threat is the validation of the method fault prone weight

based prioritization. For the validation two different

applications are considered and these two applications are

entirely different in terms of their GUI. These

applications are deliberately chosen for the generalization

of results. But further experiments should be done for

other type of applications. Second threat to validity is the

size of application in terms of number of menu and

number of events. Both standard applications are

considered test case generation in which Notepad

application have 28 events and components. Third threat

to validity is there may be different cost associated with

every test case execution uniform cost of execution is

considered in the thesis for evaluation.

V. CONCLUSION AND FUTURE WORK

From the analysis of APFD computed for two different

applications it is concluded that Notepad application is

showing total 4% improvement and Calculator

application is showing 8% improvement. Experimental

result shows that when prioritization is done using fault

prone weight based method there is significant

improvement for test cases generated using capture replay

tool. In future work we may consider other costs of tests,

including scaffolding costs, test execution time, and the

time that it takes testers to examine test cases.

66 Event-Coverage and Weight based Method for Test Suite Prioritization

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 12, 61-66

REFERENCES

[1] Memon Atif ,‖Automatically Repairing Event Sequence-

Based GUI Test Suites for Regression Testing,‖ ACM

Transaction on Software Engineering and Method, Volume

18, Issue 2, 2008.

[2] Ishan Banerjee , Bao Nguyen, Vahid Garousi, Atif Memon,

― Graphical user interface (GUI) testing: Systematic

mapping and repository‖, in the Journal of Information and

Software Technology, vol. 55, pp. 1679–1694, March 2013.

[3] Memon Atif, Soffa Lou Mary, Martha E. Pollack,

― Coverage Criteria for GUI Testing‖, Proc.of the 8th

European Software Engineering conference held jointly

with 9th ACM SIGSOFT international symposium on

Foundations of Software Engineering, pp. 256-267, 2001.

[4] Gerrard Paul, ‖Testing GUI Applications‖, EuroSTAR,

Edinburgh UK, 1997.

[5] Bryce Renee C., Memon Atif ,‖ Test Suite Prioritization by

Interaction Coverage‖, Domain-Specific Approaches to

Software Test Automation Workshop, Dubrovnik, Croatia,

2007.

[6] Huang Chin-Yu, Chang Jun-Ru and Chang Yung-Hsin,

―Design and analysis of GUI test-case prioritization using

weight-based methods,‖ in the Journal of Systems and

Software vol. 83, pp. 646-659, 2010.

[7] Memon Atif, Lou Soffa Mary, E. Pollock Martha,

―Coverage criteria for GUI testing,‖ in the proceeding of

21st International conference on software engineering,

ACM press, pp 257-266, 1999.

[8] Izzat Alsmadi, Sascha Alda,―Test Cases Reduction and

Selection Optimization in Testing Web Services,‖

published in the International Journal of Information

Engineering and Electronic Business (IJIEEB), Vol.4,

No.5, October 2012

[9] Chaudhary Neha, Sangwan O.P., Singh Yogesh, ―Test

Case Prioritization Using Fuzzy Logic for GUI based

Software‖, International Journal of Advanced Computer

Science and Applications, 2012.

[10] Bryce Renee C., Sampath Sreedevi , Memon Atif,

―Developing a single model and Test Prioritization Station

for Event- Driven Software‖, IEEE Transaction on

Software Engineering, 2010.

[11] Xun Yuan, Myra B. Cohen. And Atif M. Memon, ―GUI

Interaction Testing: Incorporating Event Context‖ in IEEE

Transactions on Software Engineering, vol. 37, no. 4, pp.

559-574, 2011.

[12] Bryce Renee C., Sampath Sreedevi, Pedersen Jan B.,

Manchester Schuyler, ―Test suite prioritization by cost-

based combinatorial interaction coverage‖, Published in

International Journal of System Assurance Engineering

and Management vol 2, Issue 2, pp 126-134, 2011.

[13] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and

Alexey G. Malishevsky, ―Selecting a Cost-Effective Test

Case Prioritization Technique‖, Software Quality Control

12, pp. 185-210, September 2004.

[14] Yuen Tak Yu and Man Fai Lau., ―Fault-based test suite

prioritization for specification-based testing‖, Inf. Softw.

Technol. 54, pp. 179-202, February 2012.

[15] Luay Tahat, Bogdan Korel, Mark Harman and Hasan Ural,

―Regression test suite prioritization using system models‖,

Softw. Test. Verif. Reliab. 22, pp. 481-5067, November

2012.

[16] Sreedevi Sampath, Renee Bryce, and Atif Memon, ―A

Uniform Representation of Hybrid Criteria for Regression

Testing‖, IEEE Trans. Softw. Eng. 39, October 2013.

[17] Huang Chin-Yu, Peng Kuan-Li, and Huang Yu-Chi, ― A

history-based cost-cognizant test case prioritization

technique in regression testing,‖ Elsevier journal of The

Journal of Systems and Software, 2011.

[18] Kaur and Kumari, HP QuickTest Professional version 11.

2010. HP – QTP version 11, Comparative study of

Automated Testing Tools: Test Complete and QuickTest

Pro, Punjab University, 2011.

[19] Rothermel G., Untch R.,H. Chu C., Harrold M. J.,

―Prioritizing test cases for regression testing‖, IEEE

Transactions on Software Engineering, vol. 27 (10), pp.

102-112, 2001.

Authors’ Profiles
Dr. Om Prakash Sangwan received his PhD

in Computer Science & Engineering and

Master of Technology (M.Tech) degree in

Computer Science & Engineering with

distinction in Research Work from Guru

Jambheshwar University of Science &

Technology, Hisar, Haryana. He is also

CISCO Certified Network Associate (CCNA)

and CISCO Certified Academic Instructor (CCAI). His area of

research is Software Engineering focusing on Planning,

Designing, Testing, Metrics and application of Neural Networks,

Fuzzy Logic and Neuro-Fuzzy. He has numbers of publications

in International / National Journals and Conferences. He is

presently (on EOL from Department of Computer Science &

Engineering, School of Information & Communication

Technology, Gautam Buddha University, Greater Noida, Uttar

Pradesh) working as Associate Professor with Department of

Computer Science & Engineering, Guru Jambheshwer

University of Science & Technology, Hisar, Haryana,. Before

joining the current assignment Dr. Sangwan has worked as Dy.

Director with Amity Resource Centre for Information

Technology (ARCIT), and LMC & Head, CISCO Regional

Networking Academy, Amity Institute of Information

Technology, Amity University, Uttar Pradesh. He is also

Member of Computer Science Teacher Association (CSTA),

New York, USA, International Association of Engineers

(IAENG), Hong Kong, IACSIT (International Association of

Computer Science and Information Technology, USA,

professional member Association of Computing Machinery,

USA, IEEE, and Life member, Computer Society of India, India.

He has also published a book on Soft Computing Techniques in

Software Engineering co-authored by Prof. Yogesh Singh,

Hon’ble Vice Chancellor, M.S. University, Baroda, Gujarat.

Neha Chaudhary holds a Masters of

Technology and a Bachelor of Engineering

degree in Computer Science & Engineering.

She is pursuing her Ph.D from Gautam Buddha

University. Her research interest includes Web

Testing, Software Testing, GUI Testing and

metrics development. She has many

publications in international journals and conferences to her

credit.

Mrs. Richa Arora holds a Masters of

Technology in Computer Science &

Engineering and a Bachelor of Technology

degree in Information Technology. She is

currently working as a Technical Writer at

Interglobe Technologies, Gurgaon. She has

done her research on e-learning, where she and

her team created an e-learning portal for online tutorials.

