
I.J. Information Technology and Computer Science, 2014, 04, 1-18
Published Online March 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.04.01

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Service Based Cooperation Patterns to Support

Flexible Inter-Organizational Workflows

Saida Boukhedouma

University of Science and Technologies Houari Boumediene, Algiers, Algeria

E-mail: sboukhedouma@usthb.dz

Mourad Oussalah

University of Nantes, France

E-mail: mourad.oussalah@univ-nantes.fr

Zaia Alimazighi

University of Science and Technologies Houari Boumediene, Algiers, Algeria

E-mail: zalimazighi@usthb.dz

Dalila Tamzalit

University of Nantes, France

E-mail: dalila.tamzalit@univ-nantes.fr

Abstract— Service Oriented Architecture (SOA) is a

paradigm that provides important advantages like

interoperability, reusability and flexibility, particularly

beneficial for B2B applications. In the current paper, we

consider specific architectures of inter-organizational

workflows (IOWF) fairly widespread in the B2B area

and implementing different cooperation schemas. Our

aim is to propose new generic IOWF-architectures by

using the SOA paradigm in order to obtain IOWF

models flexible enough to ease their adaptation,

evolution and reuse. For that, we introduce the concept

of Service-Based Cooperation Pattern (SBCP) that

supports the definition of IOWF models based on

services. A SBCP is defined by three main dimensions:

the distribution of services, the control of execution and

the structure of interaction between services. Also, we

define a concept of composite cooperation pattern based

on the combination of elementary patterns. We illustrate

our approach by a general description of our

cooperation framework called “S-IOFLOW” that

supports the implementation of IOWF models obeying

to the described SBCP. Three main points characterize

our approach: (i) the use of a pattern-based approach; (ii)

the definition of composite patterns by reusing

elementary ones and (iii) the support of several

cooperation schemas with different types of control.

Index Terms — IOWF, SOA, Service Based

Cooperation Pattern (SBCP), Flexibility, Composite

Pattern

I. Introduction

Since the year 2000, many works deal with the

combination of business oriented technologies such as

workflow [1] and web services [2] supported by SOA

[3], to build collaborative and distributed business

applications which are suitable for ad-hoc cooperation

[4] or structured cooperation [5][6]. Ad-hoc

cooperation means that the schema of the business

process is defined on the fly at runtime and process

instances don’t necessarily follow the same process

model. Ad-hoc cooperation is appropriate for occasional

and non durable B2B relationships. However, in many

situations, business partners need to agree together in

order to build structured and durable cooperation to

reach a common business goal according to a “winner-

winner” policy. In structured cooperation, the steps of

the business process and interactions in the system are

well defined resulting in an IOWF model clearly

defined and followed by all process instances.

In our research work, we are interested in structured

cooperation supported by the concept of inter-

organizational workflow (IOWF). In [7], [8], generic

architectures of IOWF have been defined to support this

kind of cooperation. These architectures are the

capacity sharing, the “Chained execution”, the

“Subcontracting”, the “Case transfer”, the “Extended

case transfer “and the “Loosely coupled WF”; we

consider them as basis of cooperation models between

businesses because they express different cooperation

schemas. However in their initial form, these

architectures were subject to criticisms because of their

rigidity and the difficulty to adapt to changes [9].

mailto:sboukhedouma@usthb.dz
mailto:mourad.oussalah@univ-nantes.fr
mailto:zalimazighi@usthb.dz
mailto:dalila.tamzalit@univ-nantes.fr

2 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Furthermore, because the environment of businesses

is naturally dynamic and unstable, business processes

are continually or occasionally subject to changes. Then,

the final objective of our research is to deal with

flexibility of IOWF models by providing mechanisms

that support their adaptation, evolution and reuse.

However, before we get to deal with flexibility, we

define new IOWF-architectures that support process

models flexible enough in order to ease their adaptation,

evolution and reuse. So, the current paper focuses on

the description of these new IOWF-architectures using

the SOA paradigm.

The use of SOA approach for WF interconnection is

not new and is motivated by the fact that services are

loosely coupled components, easily invoked, business

oriented and platform independent and SOA paradigm

supports integration, reuse and composition of services.

Then, our contribution in this paper is to define and to

implement Service-Based Cooperation Patterns(SBCP)

corresponding to the basic architectures defined in [7]

[8]. We state that the basic architectures considered can

be implemented through global orchestration of

services in case of centralized or hierarchized control or

distributed local orchestrations of services in case of

decentralized control, respecting the constraints of each

IOWF-architecture.

Three main points characterize our contribution: (i)

by considering several IOWF-architectures, we ensure

that we cover a wide range of existing business

processes (ii) By using a pattern-based approach, we

ease the maintainability and the extensibility of the

cooperation framework and (iii) by reusing existing

IOWF models, we can build more complex ones

obeying to composite cooperation patterns.

The rest of the paper is structured as follows: Section

2 presents some related works and explains the

motivations of our research. Section 3 synthesizes the

necessary background to understand the paper. Section

4 lays the basis of our approach for WF interconnection

using services; here, we introduce the concept of SBCP.

Section 5 describes the set of SBCP proposed. Section 6

gives some implementation details of our cooperation

framework. Section 7 talks about generalized and

composite cooperation patterns. Section 8 provides a

comparison of some WF cooperation approaches

proposed in the literature. Finally, Section 9 concludes

the paper and talks about other works.

II. Related Works and Motivations

With the emergence of SOA and web services

standards, many research works deal with orchestration

and choreography of web services [10], [11], especially

based on BPEL4WS [12]. Other research works such as

[13], [14] show the interest of combining BPM, WF and

SOA for reusing services to build dynamic business

processes. This had a great impact in promoting B2B

relationships since several approaches and platforms

have been developed to support the B2B cooperation. In

structured cooperation, we can cite some approaches

like CoopFlow [9], CrossFlow [15], CrossWork [16],

Pyros [17], e-Flow [18] and DISCOBOLE [19]. A

comparison of approaches is provided in Section 8 of

this paper.

Also, flexibility is an important propriety to be

satisfied by business processes and their systems

allowing them to support changes. Even if some

approaches like CoopFlow, Pyros and e-Flow provide

internal adaptation of workflows without

compromising the coherence of the global process, a

large number of the proposed solutions are not flexible

enough because they are closely coupled with the

platforms. More recently, a certain number of

approaches for flexible WF cooperation have been

proposed [20], [21], [22]. In [20], the author describes a

methodological framework for service-based dynamic

cooperation using aspect-programming and context

adaptation. The author of [21] describes a framework

for dynamic composition of services with asynchronous

communication and mechanisms of adaptation for

service-based business processes. The author of [22]

uses web services and model driven engineering for the

construction of extensible business oriented applications.

Moreover, WF flexibility is perceived at two

complementary levels: (1) at the system level, the

flexibility defines the ability of a WFMS (WF

management system) to face unexpected and erroneous

situations [23], [24], [25]. (2) at the level of process

models that defines the ability of a process model to be

adaptable, evolvable and reusable; many research works

have been proposed describing different techniques

such as adaptation patterns [26], [27], [28], rule-based

adaptation patterns [29], [30] and constraint-based

modeling [31] to support flexibility of process models.

For example, in [28], the authors identify the most

important process change patterns and change features

for PAIS (process aware information systems). In [32],

a framework was described using adaptation patterns

and aspect–programming in order to support process

adaptation for BPEL engines.

The concept of pattern was initially used in software

engineering as the abstraction from a concrete form

which keeps recurring in specific context. In the WF

area, this concept has been usually used for business

process modeling [33], business process improvement

or changes [28], [32] or exception handling [34]. More

recently, the concept of pattern is used in model

transformation; for example in [35], the author proposes

transformation patterns to move from choreographies to

orchestration of services. Also, workflow patterns are

used for verification of service composition like in [36],

[37].

This paper deals with WF cooperation and uses a

pattern-based approach to define generic IOWF-

architectures using the SOA paradigm, by introducing

the concept of Service-Based Cooperation Pattern

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 3

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

(SBCP). The idea of using services to build

collaborative business applications is not new; the

motivations behind this come from three main points:

the first point is the relevance of service orientation for

the information system since the concept of service

(mainly web services) provides credible answers to

constraints and problems such as the lack of flexibility

and the reluctance to openness. The second point is the

benefits of service orientation for the information

system because a service-based approach provides a

certain degree of flexibility to the information system

by easing the participation in new business

opportunities and meeting new market demands. The

third point is the benefits of service orientation for

cooperation that is realized by service composition; then

businesses provide their services with a certain degree

of abstraction allowing them the preservation of

autonomy and confidentiality which are, in addition to

flexibility, important properties to be satisfied in WF

cooperation.

Regarding the choice of the basic IOWF-

architectures, we have considered those proposed in

[7][8] because they define different cooperation

schemas with different types of execution control and

then cover a wide range of existing business processes.

Consequently, our approach of WF cooperation (and

adaptation) can be applied to a large number of existing

IOWF processes.

Also, for conceptual aspects of our solution, we adopt

a pattern-based approach to define the different schemas

of WF cooperation allowing the enumeration of

structurally well defined process schemas for WF

interconnection. From the implementation perspective,

the pattern-based approach allows modular and reusable

implementation of the proposed patterns to build more

complex ones called composite cooperation patterns.

III. Basic Definitions and Concepts

In this section, we introduce the necessary definitions

and concepts to ease the understanding of the paper.

3.1 IOWF Definition and Architectures

An IOWF can be defined as a manager of activities

involving two or more workflows autonomous, possibly

heterogeneous and interoperable in order to achieve a

common business goal [38].

In [7][8], generic architectures of IOWF have been

defined in order to support structured cooperation which

must obey, depending on the partners needs, to a

schema clearly defined. These architectures are the

“Capacity sharing”, the “Chained execution”, the

“Subcontracting”, the “Case transfer”, the “Extended

case transfer” and the “Loosely coupled WF”

characterized by two main dimensions: the partitioning

of the process and the control of execution.

Regarding the first dimension, two types of

partitioning are distinguished: process schema

partitioning and instance partitioning. Process schema

partitioning means that the IOWF process model is

implemented as fragments at the partner’s sites.

Instance-partitioning means that the execution of a

process instance is distributed, in a disjoint manner,

among the partner’s sites.

Since IOWF are distributed systems, the control of

instance execution can be centralized, decentralized,

hierarchized or mixed. The control is centralized if the

execution of process instances is delegated to one

system that also manages all interactions between the

systems of partners like in the capacity sharing. The

control is decentralized if the execution of instances is

distributed among the systems of all partners and each

system manages itself its interactions with the other

systems, this is appropriate for “Chained execution”,

“Loosely coupled” and “(extended) Case transfer”

architectures. The control can be a mixture of

centralized and decentralized ones if each system

manages the part of WF implemented locally but the

management of interactions is delegated to one system;

this can be applied to “(extended) Case transfer”. We

say that a control is hierarchized if each system

manages its own WF and there is one principal system

that controls interactions with one or more secondary

systems, like in the “Subcontracting”. More details of

these architectures are given in Section 5 of the paper.

Fig. 1: Meta-model of IOWF process definition

4 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

3.2 IOWF Meta-Model

Fig. 1 below shows a meta-model that exhibits the

main concepts of IOWF process definition; we can see

that an IOWF process model is defined by a set of WFs

(fragments of the global IOWF) and a cooperation

pattern. Each WF is attached to a partner, manipulates

data and is submitted to a condition of invocation. A

given cooperation pattern is attached to a specific

IOWF-architecture; it links two or more workflows and

is defined around three main dimensions: the

partitioning of the process, the control of execution and

the structure of interaction.

This last dimension is defined by a set of interaction

points between WF fragments and is as important as the

two first ones because the structure of interaction differs

from a given architecture to another, so we consider it

as a third characteristic of an IOWF-architecture that

should be taken into account. Intuitively a cooperation

pattern defines the manner in which WF fragments are

distributed among the partner’s sites, how the execution

of instances is managed and how WF fragments interact

together.

3.3 Flexibility of IOWF Models

Through the concepts exhibited on the meta-model of

Fig. 1, we can see that an IOWF model covers four

main axes: process (concepts of IOWF, WF, condition

and cooperation pattern), organization (concept of

partner), data and interaction (concepts of message,

interaction structure and interaction point).

Consequently, we can affirm that the constraints of

flexibility in IOWF models are not limited to one axis,

but cover the four axes. Also, we perceive the flexibility

of process models through three main perspectives:

adaptability, evolutivity and reusability.

The adaptability of an IOWF process model defines

its capacity to easily support changes while maintaining

the coherence of the process after changes, the overall

functionality and the cooperation (the set of partners).

Hence, an IOWF model is adaptable if one or more of

the entities (WF, condition, data, interaction points)

composing it can be modified without affecting the

global functionality of the process and the cooperation.

The evolutivity (called evolutive adaptability) of an

IOWF process model is its capacity to accept expansion

of its global functionality and/or expansion of

cooperation inducing additional business partners and

so additional WF fragments where maintaining the

coherence of the process.

The reusability of a model defines its capacity to be

easily integrated with another model in order to build

more complex models. Then, an IOWF model is

reusable if it can be manipulated as a separate entity to

be integrated to other models in order to build more

complex IOWF processes covering more functionalities

and services.

In the following section, we explain the basis of our

approach mainly the generic schemas of structuring a

WF process into services and the concept of SBCP.

IV. Basis of Our Approach

The main idea of our approach is to encapsulate each

WF fragment into a single service or a set of services

while preserving the interaction points in the basic

IOWF-architecture so as interactions between WF

fragments turn into invocations of services. The main

question is: how to structure an IOWF process into

services?

4.1 Structuring of an IOWF into Services

In order to structure an IOWF schema into services,

we consider interaction points between the workflows

involved in cooperation as markers allowing the cutting

of a process schema into sub-processes to be

encapsulated into services.

Fig. 2: Interaction Schemas of IOWF

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 5

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

According to the interaction points: we can envisage

two configurations: (i) the interaction points frame the

whole WF invoked; (ii) the interaction points are

located at several points of the WF invoked. Fig. 2

shows two generic schemas of interaction in IOWF

implying two partners, partner 1 and partner 2 which

implement WF1 and WF2, respectively. In the schema

(a) on the left, the interaction points frame entirely WF2;

this corresponds to the “Chained execution” and the

“Subcontracting”. In the schema (b) the interaction

points frame partially WF2; this is suitable for

“Capacity sharing”, “(extended) Case transfer” and

“Loosely coupled” architectures. The dashed arrows

indicate an optional reply. Depending on the type of

IOWF-architecture, the question is to decide which

parts of the WF process should be encapsulated within

services in order to invoke them from outside.

Specifically, it is to encapsulate a WF process or a sub-

process into a service.

Fig. 3: Generic schemas of encapsulation into services

Fig. 4: Meta-model of a SBCP Definition

Starting with the generic schemas of Fig. 2, the parts

of WF that should be encapsulated in services are those

that require external invocation as schematized in Fig.

3.The schema (a) shows the transformation of the

schema (a) of Fig. 2, where the invoked WF (WF2) is

entirely encapsulated into a single service. The schema

(b) corresponds to the transformation of the schema (b)

of Fig. 2 where WF2 is invoked at various interaction

points and therefore requires its cutting into several

services. Let’s notice that on Fig. 3, services are not

6 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

necessarily atomic; each service can be composed by

several services but seems to be atomic from outside.

Furthermore, depending on the IOWF-architecture, the

operations of invocation are interpreted differently.

Indeed, for “capacity sharing”, it is to invoke services

from a global process, for a “chained execution”,

invocation consists to forward the instance partially

performed by a partner to another one in order to

complete its execution; for a “subcontracting”, the

invocation consists to delegate part (one activity or

more) of a principal WF to a secondary WF. For a

“(extended) case transfer”, the cooperation is to transfer

process instances from one partner’ site to another to

complete their execution and for a “loosely coupled

WF”, the cooperation consists of asynchronous data

exchanges.

4.2 Service Based Cooperation Pattern (SBCP)

In our approach, we define a new concept called

SBCP based on SOA where we replace the concept of

WF by the concept of service. A SBCP allows the

characterization of a specific IOWF-architecture using

SOA. Then, our approach for WF interconnection

focuses on three main questions: (i) How to structure

the WF process into services? (ii) How to control the

execution of instances? (iii) How to define interactions

between services provided by different partners? These

three questions exhibit three main dimensions that we

use to define the concept of SBCP (see Fig. 4). Here,

we define a SBCP in a generic manner for all IOWF-

architectures; in Section 5, we exhibit the specificities

of each cooperation pattern.

Regarding the first dimension which is the

distribution of services, we consider that each service

encapsulates part or all of the WF process and is

implemented at the partner site that provides it. This

dimension corresponds to the dimension Process

partitioning defined for the initial IOWF-architectures.

From the perspective of a given partner, a service can

be implemented locally or provided by an external

partner; it can be an interactional service if it ensures

interaction among services of different partners.

The second dimension which is the control of

execution is expressed through the concept of

orchestration function that abstracts the structure of the

process in terms of control flow between services

composing the IOWF process. Hence, in case of

centralized control, there is one global orchestration

function implemented at the site of one partner. By

contrast, in case of decentralized control, there is a set

of local orchestration functions implemented at the

partner’s sites in order to control the execution of the

fragments implemented locally. In case of hierarchized

control, there is one global orchestration function that

controls the invocation of internal and external services

and a set of local orchestration functions that control the

execution of secondary WFs implied in the cooperation.

The third dimension defines the interactions between

services of several partners implied in the IOWF

process. This dimension is expressed via interactional

activities (invoke/receive for asynchronous

communication and invoke/receive/reply for

synchronous communication).

4.3 Orchestration Function and Control Flow

Like shown on the meta-model of Fig. 4, the concept

of orchestration function describes the control flow

between services composing the IOWF using basic

control flow operators. On Fig. 5, we introduce these

basic operators and we express them using a general

notation independently from any language or platform.

Fig. 5: Basic Control Flow Operators

Remark. To describe multi-choice – respectively

multi-parallel - (more than two edges), we can

decompose on several simple choices – respectively

several simple parallel blocs. For example, Alt (S1, S2,

S3) is expressed as Alt (Alt (S1, S2), S3) or Alt (S1, Alt

(S2, S3)).

Because of specific constraints of each IOWF-

architecture considered, we define for each one a

corresponding SBCP by refining the generic meta-

model of Fig.4 in order to consider specific

characteristics, according to the three dimensions

identified.

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 7

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

V. The Proposed Cooperation Patterns

In this section, we specify the six SBCP that we

propose to meet the basic IOWF-architectures

considered. For each SBCP, we give some descriptive

details, a generic schema, a meta-model and a set of

specification rules.

5.1 The Capacity Sharing Pattern - SBCP1

SBCP1 meets the “Capacity sharing” architecture

where the partners share the execution of a global WF

model. This pattern is implemented as a set of services

orchestrated using a global orchestration function

implemented at one location inducing a centralized

control of execution.

The orchestrator of services plays the role of the

central WFMS (see Fig. 6); it decides the order of

invocation of services. Each partner is responsible of

performing the set of services attached to him. SBCP1

is described through the meta-model of Fig. 6. The

specification rules set in the description (at the bottom

of Fig. 6) express the set of actions to perform in order

to obtain an IOWF obeying to SBCP1. An example of

an orchestration function for this pattern can be Seq(Seq

(Seq(S1, S2), Par (S3,S4), S5)) that is interpreted as the

invocation of service S1, followed by S2, followed by

simultaneous invocations of S3 and S4 and finally

synchronized to invoke S5. The interaction pattern for

SBCP1 obeys to a synchronous mode between the

orchestrator and the set of services provided. In BPEL,

the synchronous interaction pattern is realized using an

invoke activity from the BPEL process and a receive

activity from the service to accept the input data of the

request and a reply activity from the service in order to

return results and to enable the progress of the client

process.

5.2 The Chained Execution Pattern - SBCP2

In the “Chained execution” architecture, each partner

implements its own WF process. Workflows implied in

cooperation are executed in sequence. The results of

execution of WFi are input data of WFi+1.To obtain

SBCP2 suitable to the “Chained execution” architecture,

we propose to entirely encapsulate the WF of each

partner within a service that means service Si

encapsulates WFi provided by partner i. Process

instances are executed according to the sequence of

services implemented (see Fig. 7). Thus, the first

service (S1) in the sequence is triggered by an external

event (the occurrence of a new instance); for the other

services, each of which is triggered by the service that

precedes it in the sequence. In a general way, a service

Si+1 is invoked by service Si that precedes it once Si

terminates its execution. We can say that this

architecture is implemented as choreography of

services with decentralized control. Also, a reply to the

service invoker (for notification) can be facultative.

SBCP2 pattern is described through the meta-model

shown on Fig. 7.

Fig. 6: Description of the “Capacity Sharing” Pattern - SBCP1

At internal level, services Si can be implemented as

composite services since they respectively encapsulate

the WF of each partner; it means that each internal

activity of WFi is implemented as a local service Sij.

Then, we propose to implement a local orchestration

function at each partner where maintaining a

decentralized control of execution in the IOWF. The

local orchestrator of partner i receives input data from

another orchestrator, invokes its local service (Si) with

this input data and then invokes service Si+1 of the next

partner by sending results (output) of its local service;

this scenario is implemented at each partner implied in

the IOWF. For this architecture, the interaction between

services obeys to a “one-way” interaction pattern

(considered as an asynchronous interaction in a single

direction) if no reply is necessary or a “synchronous”

interaction pattern if we consider a reply for notification.

In a one-a-way interaction, the client sends a message to

the service and does not wait for a response. In BPEL,

this interaction pattern is implemented using an invoke

activity from the client (WFi) and a receive activity at

the service (WFi+1) that becomes in turn a client when

Pattern-Reference: SBCP1
Name: “Capacity Sharing” Pattern

Cooperation: Share the execution of a global business process
implemented at one location.

Control: Centralized

Structure: A global orchestration of services provided by different
partners

Type of interaction: Synchronous interaction between the client
(the orchestrator) and the business services.

Use in practice: used in dynamic cooperation with techniques of

service orchestration.

Generic Schema of the “Capacity Sharing” Pattern

Meta-model of the “Capacity Sharing” Pattern

Specification Rules

R1.1: Encapsulate each WF into services.
R1.2: Specify the global orchestration function (the control flow

between services).

8 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

it invokes the next service (WFi+2). Fig. 8 illustrates

the concept of orchestration function for an IOWF

model obeying to SBCP2.

Fig. 7: Description of the “Chained Execution” Pattern – SBCP2

The process schema implies two partners, partner 1

and partner 2 implementing their WFs as services S1

and S2 respectively. Partner 1 provides his WF

composed by internal services S11, S12, S13, S14 and

partner 2 provides his WF composed by internal

services S21 and S22. For more readability and less

complexity of the orchestration function, we can

structure the WF fragments into blocks Bij of sequential,

parallel or alternative services. In a hierarchical way, a

block is expressed using other blocks. Sout1

corresponds to an activity “invoke” of external service

S2 and Sin2 corresponds to an activity “receive”.

5.3 The Subcontracting Pattern – SBCP3

In the “Subcontracting” architecture, there is one

main workflow attached to the main partner which

subcontracts some activities not implemented locally to

one or more secondary workflows implemented by

other partners involved in the cooperation.

In order to obtain an IOWF obeying to SBCP3, we

propose to entirely encapsulate each secondary WF

involved in cooperation within a service. On Fig. 9 for

example, partner 1 hosts the main WF and partner 2

provides his secondary WF as a global service S2 which

can be composite but from the perspective of the main

partner, it is abstracted to a single entity; thus, Partner 1

invokes the service of partner 2 for subcontracting. To

obtain an IOWF entirely based on services, the whole

WF can be implemented as an orchestration of local

services encapsulating activities of the main WF and

external services provided by secondary partners. In the

subcontracting architecture, the interaction between

services is synchronous and the control of execution is

hierarchized because the main WF manages the control

of the whole process and controls invocation of external

services. SBCP3 is described by the meta-model of Fig.

9.

To illustrate the concept of global orchestration

function for SBCP3, we give a simple example of

IOWF obeying to the “Subcontracting” pattern (see Fig.

10). The process schema describes an IOWF implying

two partners, partner 1 and partner 2. Partner1 provides

the main WF composed by internal services S11, S12,

S13, S14 and an invocation of S2 which is the external

service provided by partner 2.

Fig. 8: Illustration of orchestration functions in SBCP2

Pattern-Reference: SBCP2
Name: “Chained Execution” Pattern

Cooperation: Sequential execution of services implemented by a set
of partners.

Control: Decentralized

Structure: A set of services orchestrated by a set of local
orchestration functions

Type of interaction: Synchronous or One-a-way
Use in practice: Fairly common in processes of the supply-chain

management

Example: An IOWF process implying three partners in a production

line: a supplier of raw materials, a producer of semi-finished products

and a producer of finished products.

Generic Schema of the “Chained Execution” Pattern

Meta-model of the “Chained Execution” Pattern

Specification Rules

R2.1: Encapsulate each WF into a service.
R2.2: Insert an activity “invoke” at the end of each WF (except the

last one in the sequence) in order to transmit data to the following
WF in the sequence.

R2.3: An activity “receive” is automatically inserted at the beginning

of each WF in order to capture data sent from the precedent WF.

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 9

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Fig. 9: Description of the “Subcontracting” pattern – SBCP3

5.4 The (Extended) Case Transfer Pattern -

SBCP4 (SBCP5)

The "Case transfer" (respectively, the “Extended case

transfer”) architecture defines a form of cooperation

fairly widespread in B2B, especially between partners

engaged in the same profession and aiming to satisfy

promptly many potential customers. In the “Case

transfer” architecture, business partners share the same

WF model implemented at each partner and hosted by a

local WFMS. Their cooperation consists of transferring

process instances (cases) from one location (partner) to

another in order to achieve their execution. For example,

one can envisage an IOWF involving a set of partners in

a process of production; a customer’s order may arrive

at partner x but it is not completely performed by the

WF of this partner; the order may be transferred to other

partners involved in the IOWF process. The transfer can

occur for example, for load balancing among partners or

because of the lack of skills at partner x to perform part

of the process.

Fig. 10: Illustration of orchestration function in SBCP3

For the extended case transfer, the difference is that

some activities can be implemented differently from one

partner to another, while respecting the overall structure

of the process and the global functionality covered. This

pattern is provided for partners who want to preserve

their expertise for some activities in the process that

remain invisible from the other partners; this guarantees

a certain degree of autonomy and confidentiality.

Before describing the patterns SBCP4 (resp. SBCP5)

suitable to the “Case-transfer” (resp. the extended case

transfer) architecture, we should introduce some basic

definitions mainly the notions of transfer point and

transfer policy and explain how to structure the process

into services according to transfer points in the IOWF

model.

5.4.1 Transfer Point and Transfer Policy

A Transfer point is a state of the process where a

case transfer can eventually occur; it can be each state

of the process that guarantees coherent execution of

instances when a transfer is done.

In fact, a transfer point should verify the following

conditions: (i) it must be before the beginning or after

the end of an activity. (ii) It should not interrupt the

execution of an activity. (iii) It should not be between a

routing operator Split and the corresponding operator

Join that means: whether a parallel or an alternative

branch is started in the process, the transfer of a process

instance may take place only after synchronization

(Join).

A Transfer policy is conjointly defined by all

partners at build time. It defines the set of transfer

points and expresses a set of rules governing the

transfer of process instances from one location to

Pattern-Reference: SBCP3
Name: “Subcontracting” Pattern

Cooperation: Externalization of services to other partners

Structure: A set of internal and external services orchestrated by a
global orchestration function implemented at the main partner and a

set of local orchestration functions, each of which implemented at
the corresponding secondary partner.

Control: Hierarchized

Type of interaction: Synchronous
Use in practice: Fairly common between business partners with

complementary skills and competencies.
Examples: Processes of pharmaceutical production, automotive

processes, manufacturing and assembly of integrated circuits.

Generic Schema of the “Subcontracting” Pattern

Meta-model of the “Subcontracting” Pattern

Specification Rules

R3.1: Encapsulate each secondary WF into a service.

R3.2: Insert an activity “invoke” into the main WF in order to
invoke the service encapsulating the secondary WF.

R3.3: An activity “receive” is automatically inserted at the

beginning of the secondary process to be invoked, in order to
receive the input data sent from the main workflow.

R3.4: An activity “reply” is automatically inserted at the end of the
secondary WF in order to return results to the main WF.

R3.5: Insert an activity “receive” into the main workflow after the

corresponding activity “invoke” in order to receive results from the

secondary WF.

10 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

another. A transfer rule is associated to a transfer point

and can be defined by a pair (condition, action) that

means: if the condition is verified, an action of transfer

is performed otherwise the instance continues its

execution at its current location. An action specifies the

location to where the instance will be transferred. Thus

depending on the transfer policy, this location can be

deterministic or not.

In order to structure an IOWF process obeying to the

“Case transfer” architecture into services, our approach

is to split each WF into sub-processes at the transfer

points and to encapsulate each sub-process into a

service (see Fig.11). A sub-process is part of a global

WF process that can be composed by a single activity, a

single block of activities delimited by a Split operator

and the corresponding Join operator or a sequence of

several activities and/or blocks. A service in this case

does not encapsulate the overall WF process but only a

sub-process. A service can be run locally (if the transfer

is not necessary) or relied on the other partner (if the

transfer is necessary). At each moment, any process

instance is at one location, hence the use of the "XOR"

operator in the process model. A case transfer may be

done in both directions from partner 1 to partner 2 or

vice versa. The transfer points and the direction of

transfers are fixed in the transfer policy. More details

and examples of this approach are described in our

previous works [39], [40].

Fig. 11: Illustration of Transfer points and structuring of a WF process into services

An orchestration function for this architecture uses

Seq and Exl operators because the process model turns

into a sequence of a certain number of exclusive choices,

depending on the number of transfer points in the

process. According to a generic schema of Fig. 12, the

expression of the orchestration function is Seq (…Seq

(Seq (S11, Exl (S21, S22), …, Exl (Sn1, Sn2)).

5.4.2 Managing transfers

For each partner, the control of execution of process

instances is done locally by the local engine. Regarding

the transfer of cases, we can envisage two modes of

control: decentralized or centralized control [39], [40].

In the first mode, workflows implemented at each

partner interact directly between them for transfer of

instances; this mode is typically appropriate in case of a

simple transfer policy (deterministic rules) and is

realized by injecting exclusive choices in the IOWF

model at the transfer points, in order to decide for

transfer or not according to transfer conditions. In the

second mode, an additional component (a coordinator)

is needed in order to manage all transfers to be done

between the systems of the partners implied in the

IOWF process. So, workflows don’t interact directly

with each other but they must do this through the

coordinator. This second mode is appropriate in case of

complex transfer policies (non deterministic rules), this

can usually occur for load balancing in the system.

5.5 The Loosely coupled WF  Pattern – SBCP6

The “Loosely coupled” IOWF is defined by a set of

WFs which are distributed among the partner’s sites and

that interact together using a public protocol based on

asynchronous message exchanges. WF processes

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 11

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

operate essentially independently, but have to interact at

given points to exchange data and to ensure a coherent

execution of the overall process. An interaction point is

attached to a message and then to an interaction activity

(invoke or receive) in the process. Fig.13 and Fig.14

bellow schematize the transformation of generic WF

schemas into services, using the rules set in the bottom

of Fig.15.

Fig. 12: Description of the “Case Transfer” Pattern- SBCP4 (SBCP5)

Fig. 13: Transformation of a schema containing sequential blocs

Fig. 15: Description of the “Loosely Coupled” pattern – SBCP5

Pattern-Reference: SBCP6

Name: “Loosely coupled” Pattern
Cooperation: Exchange data according to a public protocol for the

execution of process instances
Structure: At each location, a set of internal/interactional services

orchestrated locally by an orchestration function.

Control: Decentralized
Type of interaction: Asynchronous

Use in practice: Fairly common between business partners who
need to exchange data in order to perform a global WF.

Example: Processes of production, e-commerce processes

implying customers, producers, suppliers, banks...

Generic Schema of the “Loosely coupled” Pattern

Meta-model of the “Loosely coupled” Pattern

Specification Rules

R6.1: isolate each interaction activity and encapsulate it into an

interactional service “invoke” or “receive”.
For the cutting of the process into sub-processes, we define the

rules R2 and R3.
R6.2: in a sequential branch (see Fig. 13)

A sub-process in a WF process is delimited: by (i) two interaction

activities or (ii) by the start-point and the first interaction activity
or (iii) by the last interaction activity and the end-point.

R6.3: in an alternative (or parallel) bloc (see Fig. 14)
Two possibilities are envisaged:

(1) If the bloc doesn’t contain any interaction activity, it is

considered as a single activity.
(2) If the bloc contains at least one interaction activity:

- Insert fictive interaction points at the OP-Split and the
corresponding OP-Join in the process and cut the process at

these two points.

- Apply the rule R1 on each edge containing interaction
activities.

R6.4: Encapsulate each sub-process within an internal service.

Pattern-Reference: SBCP4 (resp. SBCP5)
Name: “Case Transfer” Pattern (resp. “Extended Case Transfer”)

Cooperation: share the execution of process instances according to

the same WF model by transferring them among partners,
conformably to a set of transfer rules.

Structure: a set of internal and external services orchestrated by the
same orchestration function implemented at each location

Control: decentralized / mixed

Type of interaction: Synchronous or One-a-Way
Use in practice: fairly common between business partners exercising

the same activity with complementary skills, competencies and
resources

Example: Processes of the supply chain management with several

businesses having the same profile.

Generic schema of the Generic schema of the

“Case Transfer” Pattern “Extended Case Transfer” Pattern

Meta-model of the “Case Transfer” Pattern

Specification Rules

R4.1: Cut the WF process into sub-processes according to the
following definition (see Fig. 11):

A sub-process in a WF process is delimited: by (i) two transfer

points or (ii) by the start-point and the first transfer point or (iii) by
the last transfer point and the end-point.

R4.2: Encapsulate each sub-process into a service.

R4.3: Transform the WF process into invocation of local and
external services according to the transfer condition attached to each

transfer point.

Transfer rules are injected into the IOWF process model and are

specified using exclusive activities of invocation in the WF process,

according to the schema:
If (condition) invoke external service

 Else invoke local service

12 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Fig. 14: Transformation of a schema containing parallel or alternative blocks

To obtain an IOWF model obeying to SBCP6, we

propose first to isolate the interaction activities in the

WF process of each partner in order to encapsulate them

into interactional services. After that, we structure the

WF process of each partner into a set of sub-processes

to be encapsulated in local services.

The cutting of a WF process into interactional

activities and sub-processes is done conformably to the

rules set out in the description of the “Loosely coupled”

pattern (see Fig.15) and schematized in Fig.13 and

Fig.14.

In order to show the feasibility of our approach and

to do our tests, we have implemented the proposed

cooperation patterns in a framework of cooperation

called “S-IOFLOW”. In the next section, we show the

general architecture of our framework, its environment

of development and the main functionalities that it

provides. The process models are stored in repositories

of distinct machines which play the roles of client or

server depending on the different architectures

considered.

VI. The Framework “S-IOFLOW”

“S-IOFLOW” is our cooperation framework that

provides a set of wizards for the WF designers in order

to build IOWF models obeying to a given SBCP among

those considered in our work. Each wizard presents a

set of steps to be followed by WF designers in order to

realize a specific architecture starting with a set of WF

fragments (based on web services) implemented at

partner’s sites.

For the development of our framework, we have

considered process models specified with BPEL and

interpreted by the WF engine OPEN ESB 2.2, we also

used a plug-in SOA Netbeans. We have developed our

framework using the Java language and the IDE

Netbeans, the application server used is GlassFish

server version 2. To implement the cooperation patterns

(interconnection of WFs), we have used the API jdom2

that eases the modification of the code BPEL specifying

the WF processes. For the development of the web

services to do our tests, we have used the EJB

(Enterprise Java Beans). Our framework of cooperation

is as modular as possible since we implement separate

classes for each cooperation pattern. Furthermore for

design, we adopt the MVC (Model-View Controller)

pattern that allows the separation between data and their

processing. Fig. 16 describes the functional architecture

of our framework according to the MVC pattern. Each

wizard of the framework displays a set of interfaces to

the user; when a user event occurs, the selected view

calls the appropriate controller to do the composition by

affecting the selected models (i.e BPEL files), then the

models notify the concerned views for changes. This

allows synchronization between the models and the

views that display them. Also, each partner stores in his

local servers the BPEL files specifying his business

processes and the web services that he provides to the

other partners. The cooperation framework is deployed

on a common infrastructure where a copy of each BPEL

file selected for cooperation is created. All changes are

done via the appropriate wizard, on the created copies;

once the designer validates the composition, these

changes are reflected on the original BPEL files at the

partner’s sites. Also, to check the execution of the

composite process obtained, we use test applications.

Before validation, a step of updating data flow in the

composite process is done in a semi-automatic way via

interfaces provided by the wizards. In Table 1 below,

we give some implementation details of the cooperation

wizards implemented. Since the architecture of

deployment is a client/server, we specify for each

cooperation pattern the clients and the servers.

The main classes of our framework are BpelFile and

ListBpelFile classes which inherit from the class

“observable” and all views of the models (detail,

graphical, code) inherit from the interface “observer”

which is notified by the class “observable” for all

changes done on the models. The controller contains a

set of classes implementing the set of cooperation

patterns described in Section 5; these classes are named

“CapacitySharing”, “ChainedExecution”,

“Subcontracting”, “CaseTransfer” and

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 13

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

“LooselyCoupled” that inherit from an interface named“Composition”.

Fig. 16: Functional architecture of the framework according to the MVC pattern

VII. Generalized and Composite Patterns

For all patterns described in the previous sections, we

have considered cooperation between two partners but it

is possible, using our framework, to build IOWF

models involving three or more partners, this is what we

call generalized cooperation patterns. Typically, it is to

build a cooperation between two partners and then to

consider the resulting process with the third one to build

another cooperation and so on until all processes

implied in cooperation are taken into account. For

example, for a “Chained execution” (SBCP2), it is to

select the first process and the second one to build an

IOWF implying the two processes and then to select the

resulting process with the third one in the sequence. For

a “(extended) Case transfer” (SBCP4, SBCP5), it is to

duplicate the same process at each location and to select

at each time two processes to define the set of transfer

points and transfer rules between them. For a “Loosely

coupling” (SBCP6), it is to select at each time, two

processes that should interact with each other from the

set of processes and define the interaction points

between them. For the “Subcontracting” (SBCP3), it is

to select the main process and the secondary processes

one by one to define the cooperation; let’s notice that

for this architecture, a secondary partner can also

subcontract part of his process to another partner; this is

what we call “multilevel subcontracting”.

Furthermore, our approach allows the construction of

more complex IOWF models by reusing existing

models that obey to one of the SBCP implemented. The

more complex models are obtained by combining two

or more SBCP. For example, one can build an IOWF

process model P1 obeying to SBCP2 and should

subcontract part of the process P1 to another partner

providing a process P2 as a composite service. Then, by

combining the two models, we obtain a process model P

obeying to SBCP2 and SBCP3. The predominant

pattern is the pattern that initiates the execution of the

composite process and the secondary pattern is the

second one. By combining the patterns in pairs and by

considering the notions of predominant pattern and

secondary pattern, we obtain a set of twenty composite

cooperation patterns. Table 2 below describes examples

of composite cooperation patterns; a composite pattern

is referenced as “CmpSBCPij” where i is to the number

of the predominant pattern (SBCPi) and j is the number

of the secondary pattern (SBCPj); that means

CmpSBCPij is obtained by the combination of SBCPi

and SBCPj. Let’s notice that we have implemented

some of these patterns such as CmpSBCP23,

CmpSBCP32, CmpSBCP24 and CmpSBCP42.

14 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

Table 1: Description of the Wizards

Table 2: Examples of Composite Patterns

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 15

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

VIII. Comparison of Approaches

In Table 3 below, we present a comparison of our

framework with some approaches proposed in the

literature. For each approach, we give some descriptive

details and we define three criteria for comparison: the

cooperation type supported, IOWF-architectures

supported and aspects of flexibility provided by each

approach. The cooperation type can be planed or

dynamic; planed cooperation means that partners agree

together to cooperate and we don’t need to discover

them and to select them in the registry of publication

which is necessary in a dynamic cooperation, because

partners are not known a priori. Many approaches are

suitable for dynamic cooperation that usually

correspond to occasional and non-durable cooperation;

other approaches are suitable to planed cooperation

(which is our concern) that corresponds to well defined

and durable cooperation which is more realistic in the

B2B area, for the realization of big projects. The second

criteria concern IOWF-architectures supported (on

Table 1, Type1, Type2, Type3, Type4, Type5, Type6

refer respectively to Capacity sharing, Chained

execution, Subcontracting, Case transfer, Extended case

transfer and Loosely coupled), we can see that all the

proposed approaches support only a sub-set of the

architectures implemented in our framework “S-

IOFLOW”. Regarding the third criteria, we can see that

the approaches suitable to dynamic cooperation provide

flexible mechanisms in the phase of selection of

partners; also, some of them allow internal adaptation of

services. The approaches suitable to planed cooperation

are rigid and are based on predefined protocols. Our

framework “S-IOFLOW” provides three aspects of

flexibility: (i) the selection of the IOWF-architecture to

build; (ii) the definition of composite cooperation

patterns by reusing elementary ones to build more

complex IOWF models, (iii) our framework is extended

with adaptation and evolution modules for structural

and functional adaptation of IOWF models; some

adaptation and evolution patterns are described in [41],

[42].

Table 3: Comparison of Approaches

16 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

IX. Conclusion and Other Works

The current paper deals with WF cooperation. Our

contribution consists in the definition and the

implementation of a set of cooperation patterns based

on services (called SBCP) in order to meet specific

IOWF- architectures defined in the literature [7][8]; the

goal is to obtain IOWF models flexible enough thanks

to the SOA characteristics. These basic architectures

define different cooperation schemas obeying to

different modes of execution control: centralized,

decentralized or hierarchized. For the development of

our solution, we have adopted a pattern-based approach

to define and implement the different patterns of WF

cooperation. The pattern-based approach guarantees

modular and reusable implementation; by reusing the

elementary patterns implemented, we can particularly

build generalized and composite cooperation patterns

which is in our opinion, an interesting point in our

contribution. Because of the length of the paper, we

gave only an example of composite cooperation patterns.

The proposed patterns have been implemented in a

framework of cooperation called “S-IOFLOW” which

is as modular as possible since we implement separate

classes for each cooperation pattern. Furthermore, for

the development of our framework, we adopt the MVC

pattern that eases the maintainability and the

extensibility of the framework and allows the separation

between data and their processing.

Regarding the second issue of our research that

concerns the adaptability and evolutivity of process

models obeying to the SBCP defined, we have

classified our adaptation patterns in three categories

according to the three dimensions (services, control

flow and interaction) defining a SBCP. We have

implemented adaptation modules that can be interfaced

with “S-IOFLOW” and composed by a set of

adaptation/evolution patterns applied to BPEL process

models resulting from cooperation.

Acknowledgments

We would like to thank our students Bouchekir

Redouane,and Hermez Dalil for their participation in

the design and implementation of the cooperation

framework.

References

[1] Van Der Aalst W. Workflow Management: Models,

Methods and Systems. The MIT Press. Cambridge,

Massachusetts, London, 2002.

[2] Alonso G, Casati F, Kuno H. Web services:

concepts, architectures and applications. Springer

Verlag, Germany, 2004.

[3] Papazoglou] M. P, Van Den Heuvel W. J. Service

Oriented Architectures: approaches, technologies

and research issues. The VLDB Journal, vol.16, pp

389-415, 2007

[4] Voorhoeve M, Van Der Aalst W. Ad-hoc

Workflow: Problems and Solutions. In R. Wagner,

editor, Database and Expert Systems Applications,

8th. International Workshop, DEXA’97

Proceedings, 36–40, Toulouse, France, September

1997.

[5] Kiepuszewski A.H.M, ter Hofstede, Bussler C. On

Structured Workow Modelling. In B. Wangler and

L. Bergman, editors, Proceedings of the 12th

International Conference on Advanced Information

Systems Engineering (CAiSE'2000),

2000, .LNCS(1789), 431-445, Springer-Verlag,

[6] Eder J, Gruber W, A meta model for structured

workflows supporting workflow transformations.

Proceedings of the 6th East European Conference

on Advances in Databases and Information

Systems (ADBIS 2002), 326–339, Bratislava,

Slovakia, 2002.

[7] Van Der Aalst W. Process oriented architectures

for electronic commerce and interogranizational

WF. Journal of Information systems, 1999, 24 (9).

[8] Van Der Aalst W. Loosely Coupled

Interorganizational Workflows : modeling and

analyzing WFs crossing organizational boundaries.

Journal of Information and Management, March

2000, 37(2) , 67-75.

[9] Chebbi I. CoopFlow : an approach for ascendant

cooperation of workflows in virtual enterprises.

Phd Thesis, National Institute of Telecom, France,

2007.

[10] Peltz C. Web Services Orchestration and

Choreography. IEEE Computer, 2003, 36 (10), 46-

52.

[11] Amirereza T. Web Service Composition Based

Interorganizational Workflows. Sudwestdeutscher

Verlag fur Hochschulschriften edition, 2009

[12] Jordan D, Evdemon J. Web services business

process execution language V.2.0. W3C. 2006.

[13] Leymann F, Roller D, Schmidt M.T. Web Services

and Business Process Management. IBM Systems

Journal 2002, 41(2).

[14] Gorton S, Montangero C, Reiff-Marganiec S,

Semini L, StPowla: SOA, Policies and Workflows.

ICSOC workshops, 2009, LNCS (4907), 351-362.

[15] Grefen P, Aberer K, Hoffer Y, Ludwig H.

CrossFlow: Cross-organizational workflow

management for service outsourcing in dynamic

virtual enterprises. IEEE Data Engineering

Bulletin, 2001, 24(1), 52–57.

[16] Mehandjiev N. I, Stalker K, Fessl , Weichhart G.

Interoperability contributions of CrossWork. In

invited short paper to Proceedings of INTEROP-

 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows 17

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

ESA’05 Conference, Geneva, February 2005.

Springer-Verlag.

[17] Belhajjame K, Vargas-Solar G, Collet C. Pyros -

an environment for building and orchestrating

open services. In Proceedings of the IEEE

International Conference on Services Computing,

USA, 2005, 155–164.

[18] Casati F. and Shan M., Dynamic and adaptive

composition of e-services. Information Systems,

2001, 26(3), 143–163.

[19] Baïna K, Benali K, Godart C, DISCOBOLE: A

service architecture for interconnecting workflow

processes. Computers in Industry , 2006, 57(8-9):

768-777.

[20] Boukadi K. Interenterprise cooperation at demand:

a flexible approach based on adaptable services.

Phd Thesis, ENSM, Saint-Etienne. France, 2009.

[21] Heorhi R. Service Composition in Dynamic

Environments: From Theory to Practice, Phd thesis,

University of Trento, december 2012.

[22] Pedraza Ferreira G. R. FOCAS : an extensible

framework for the construction of process oriented

applications. Phd Thesis, University of Grenoble 1,

France, 2009.

[23] Sadiq S.W., Orlowska M.E. On capturing

Exceptions in workflow process models. In

proceedings of ER’2001.

[24] Meng J, Su S.Y.W, Lam H, Helal A, Xian J, Liu X,

Yang S. DynaFlow: a dynamic inter-organisational

workflow management system. Int. J. Business

Process Integration and Management, 2006, 1(2),

101–115.

[25] LÉVESQUE E. Adaptation of collaborative

processes by coordination of changes and instance

migration. Phd Thesis, University of Quebec,

Montréal, 2011.

[26] He Q, Yan Y, Jin H. Adaptation of web service

composition based on WF patterns. In proceedings

of Service Oriented Computing- ICSOC, 2008.

[27] Döhring M, Zimmermann B, Karg L. Flexible

Workows at design- and Runtime using BPMN2

Adaptation Patterns. In proceedings of BIS’2011-

Springer, 2011.

[28] Weber B, Reichert M, Rinderle-Ma S. Change

patterns and change support features- Enhancing

flexibility in PAIS. Journal of Data & Knowledge

Engineering 2008,(66), 438-466.

[29] Muller R, Greiner U, Rahm E. AGENT-WORK: a

workflow system supporting rule-based workflow

adaptation. In journal of Data and Knowledge

Engineering , 2004, 51(2), 223-256.

[30] Döhring M, ZimmermaSnn B, Godehardt E.

Extended workflow flexibility using rule-based

adapatation patterns with eventing semantics. In

proc. of INFORMATIK’10, 2010, 216-226.

[31] Pesic M, Schonenberg MH, Sidorova N, Van der

Aalst W. Constraint-based workflow models:

Change made easy. In Proceedings of the OTM

Conference CoopIS’2007. 2007. In LNCS(4803),

77–94, Springer-Verlag, Berlin,

[32] Tragatschnig S, Zdun U. Runtime Process

Adaptation for BPEL Process Execution Engines.

15th IEEE International EDOC Workshops, 2011.

[33] Van Der Aalst W, ter Hofstede W.M.P,

Kiepuszewski A.H.M, Barros, B.A.P. Workflow

Patterns. DAPD, 2003, 14(1), 5-51.

[34] Russell N, Van Der Aalst W, ter Hofstede W.M.P.

Exception handling patterns in process-aware

information systems. In: CAiSE'06 (Luxembourg),

2006, 288-302.

[35] Khadka R. Model-Driven Development of Service

Compositions: Transformation from Service

Choreography to Service Orchestrations, Master

thesis, University of Netherlands, 2010.

[36] AIT-CHEIK-BIHI W. Model oriented approach

for verification and performance evaluation of

services interoperability and interactions. Phd

Thesis, University of Belford-Montbeliard, 2012.

[37] W. Fdhila : Optimized decentralization and

synchronization of Inter-organizational business

processes. Phd Thesis, University Henri Poincaré –

Nancy 1, 2011.

[38] Bernauer M, Kappel G, Kramler G,

Retschitzegger W. Specification of

Interorganizational Workflows — A Comparison

of Approaches, 7th World Multiconference on

Systemics, Cybernetics, and Informatics, Orlando,

Florida, July 2003, 30-36

[39] Boukhedouma S, Alimazighi Z, Oussalah M,

Tamzalit D. SOA based approach for

interconnecting workflows: application to case

transfer. In proceesings of INFORSID 2011, 43-58.

[40] Boukhedouma S, Alimazighi Z, Oussalah M,

Tamzalit D. Interconnecting workflows using

services: an approach for case transfer with

centralized control. In proceedings of

ICISTM’2012, S. Dua et al. (Eds.): CCIS 285,

pp.396–401, Springer-Verlag Berlin Heidelberg,

2012.

[41] Boukhedouma S, Alimazighi Z, Oussalah M,

Tamzalit D. Adaptability of service-based

workflow models : the chained execution

architecture. In proceedings of BIS’2012,

Lithuania. W. Abramowicz et al. (Eds.) LNBIP

117, Springer-Verlag.

[42] Boukhedouma S, Oussalah M, Alimazighi Z,

Tamzalit D. Flexible loosely coupled workflows

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Benali:Khalid.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Godart:Claude.html
http://www.informatik.uni-trier.de/~ley/db/journals/cii/cii57.html#BainaBG06
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6036125
http://dret.net/biblio/authors#MartinBernauer
http://dret.net/biblio/authors#GertiKappel
http://dret.net/biblio/authors#GerhardKramler
http://dret.net/biblio/authors#WernerRetschitzegger
http://dret.net/biblio/authors#WernerRetschitzegger
http://dret.net/biblio/reference/sci2003
http://dret.net/biblio/reference/sci2003
http://dret.net/biblio/reference/sci2003
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/db/conf/inforsid/inforsid2011.html#BoukhedoumaAOT11
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/o/Oussalah:Mourad_Chabane.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html
http://www.informatik.uni-trier.de/~ley/pers/hd/t/Tamzalit:Dalila.html

18 Service Based Cooperation Patterns to Support Flexible Inter-Organizational Workflows

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 1-18

using SOA. In proceedings of AICCSA’2013, Fes,

Maroc.

[43] Lazcano A, Alonso G, Schuldt H, Schuler C. The

Wise approach to electronic commerce.

International Journal of Computer Systems Science

& Engineering, special issue on Flexible Workflow

Technology Driving the Networked Economy,

2000, 15(5).

[44] Perrin O, Godart C. A model to support

collaborative work in virtual enterprises. Data

Knowledge Engineering, 2004, 50(1), 63–86.

[45] ACE-FLOW. Project homepage,

http://www.ifi.unizh.ch/dbtg/projects/aceflow/inde

x.html,1999.

[46] haari S. Interconnecting interentreprise processes :

a service-oriented approach. Phd Thesis, EDIIS,

Lyon, France, 2008.

[47] Esper A. Integration of SOA and object

approaches for modeling a coherent orchestration

of services. Phd Thesis, INSA, Lyon, France, 2010.

Authors’ Profiles

Saida Boukhedouma is a Teacher/Researcher at

USTHB University, member of the ISI team in the LSI

laboratory. Actually, her works are directed towards the

flexibility of inter-organizational business processes

using the SOA paradigm which is the main focus of her

PHD thesis.

Mourad Chabane Oussalah is a full Professor of

Computer Science at the University of Nantes and the

head of the software architecture modeling team. His

research concerns software architecture, object

architecture and their evolution.

Zaia Alimazighi is a full Professor of Computer

Science at USTHB University, team leader at the LSI

laboratory and dean of the Electrical and Computer

Science faculty. Her current research concentrates on

cooperative Information Systems modeling, inter-

organizational business process modeling.

Dalila Tamzalit is an Assistant Professor at the

University of Nantes in France. Her main research

interest concerns software evolution foundations and

methodologies. These last years, she focuses on

Software Architecture Evolution.

How to cite this paper: Saida Boukhedouma, Mourad

Oussalah, Zaia Alimazighi, Dalila Tamzalit,"Service Based

Cooperation Patterns to Support Flexible Inter-Organizational

Workflows", International Journal of Information Technology

and Computer Science(IJITCS), vol.6, no.4, pp.1-18, 2014.

DOI: 10.5815/ijitcs.2014.04.01

