
I.J. Information Technology and Computer Science, 2014, 04, 56-65
Published Online March 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.04.07

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

A Formal Description of Problem Frames

Souleymane KOUSSOUBE, Roger NOUSSI, Balira O. KONFE

Laboratoire Africain d’Informatique et de Mathématiques Appliquées (LAIMA), Institut Africain d’Informatique (IAI),

BP: 2263 Libreville, Gabon

E-mail:skoussoube@gmail.com, roger_noussi@yahoo.fr, obalira@gmail.com

Abstract—Michael Jackson defines a Problem Frame as

a mean to describe and classify software development

problems. The initial description of problem Frames is

essentially graphical. A weakness of this proposal is the

lack of formal specification allowing efficient reasoning

tools. This paper deals with Problem Frames’ formal

specification with Description Logics. We first propose

a formal terminology of Problem Frames leading to the

specification of a Problem Frames’ TBOX and a

specific problem’s ABOX. The Description Logics

inference tools can then be used to decompose multi

frame problems or to fix a particular problem into a

Problem Frame.

Index Terms—Problem Frame, Description Logics,

Problem Diagram, Problems Matching, Problem

Decomposition

I. Introduction

The concept of Problem Frames (PF) has been

introduced by Michael Jackson [1, 2 and 3] as a mean

for describing and classifying problems. These problem

classes can then be related to appropriate tools or

methods. PF description includes:

 the world in which the problem is located;

 the machine to build and;

 the requirement. It is the condition in the problem

domain that the machine must guarantee.

Let us note that PF describes problems, instead of

their solutions. The description of PF is given in a

graphical way. This has fundamental disadvantages [4];

for example:

 Some misunderstandings can easily occur when we

interpret graphical artifacts;

 It is not easy to verify the completeness and the

correctness of the description.

 It is not easy to identify equivalent structures that

could be used interchangeably.

The first attempt of formal characterization of PF was

done in [5].The semantic of PF is clarified in [6] but the

languages used still have a lack of formality. Other

works [7 and 8] propose a formal description of PF

using ontology. However these proposals don’t define

efficient formal reasoning tools on PF. This paper

deals with a formal specification of PF using

Description Logics (DL). DL formalism allows us to

get advantage of an environment with a clear and

precise syntax and semantics. Furthermore it gives way

to use of DL inference tools to match specific problems

with PF. It also facilitates the use of formal operations

(transformation, decomposition, integration etc.) on PF.

The paper is organized as follows: In section II, we

present the PF framework. The section III is devoted to

a brief presentation of DL with emphasis on their

semantics and inference mechanisms. The section IV

deals with the PF formalization, including the PF

TBOX, the problem diagram ABOX, and the reasoning

tools on PF and particular problems. A problem

decomposition example is given in the section V.

II. Problem Frame Framework

In this section we review some basic elements of the

PF framework.

2.1 Problem Frame

The software development task [9] is to design and

construct an artifact. In PF framework [1 and 2], this

artifact is called the machine, constructed by building a

software. The machine is used to meet a recognized

need, which is called the requirement. Satisfying the

requirement involves transforming the physical world

around. The component of the world in which the

requirement is located and that must be transformed, is

called the problem world. So, the principal components

of a software development problem are: the machine,

the problem world, and the requirement. Their

relationships are shown in the generalized PF diagram

in Fig.1 below.

Fig. 1: General Software engineering Problem

The machine interacts with the problem world at an

interface of shared phenomena a. Typically, these

 A Formal Description of Problem Frames 57

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

phenomena are events, operations or states, controlled

either by the problem world or by the machine. The

requirement is shown by a dashed oval, indicating its

intangible quality. The requirement is not a tangible part

of the problem: it is a predicate or condition on the

problem world that the machine must guarantee.

One of the aims of the PF framework is to identify

basic classes of problem that recur throughout software

development. A problem frame acts as a template for

recognizing a problem in its class. A particular PF

elaborates and specializes the general form of Fig.1 in

the following ways:

 The World is decomposed into domains referred to,

as world domain, in the remainder of this paper.

 Different types of domains are distinguished

according to their role in the problem (B for biddable,

C for causal…).

 Interfaces of phenomena shared between domains are

shown.

 The connections among the domains are more closely

characterized in terms of the types of connecting

phenomena (events, states, operations).

 The phenomena related by the requirements are

similarly characterized according to their types.

 The characteristics of domains interfaces are

classified.

For example, the commanded behavior frame [2] can

be described by a graphical notation as follows:

Fig. 2: The commanded behavior frame

 The world is decomposed into two domains : The

controlled domain and the operator domain.

 The controlled domain is a causal domain while the

operator is a biddable domain.

 The controlled domain and the control machine share

the causal phenomena C1 and C2. The control

machine and the operator share the event E4. The

requierement is a predicate with arguments E4 and

C3. C1, C2 and C3 are states and E4 is an event.

 The phenomenon C1 is controlled by the Control

Machine, C2 by the controlled domain and E4 by the

operator.

2.2 Problem Diagram

Within the PF framework, a problem diagram defines

the ‘shape’ of a specific problem. It captures the

characteristics and interconnections of the components

of the world it is concerned with. A problem diagram

also includes the requirements that constrain the

relationships between these components. In the

graphical notation, a problem diagram uses the same

symbols as the PF.

To focus our review, we present the following

example on a Chemical Reactor Controller described in

[2]:

A computer system is required to control the catalyst

unit and cooling system of a chemical reactor. An

operator issues commands for activating or

deactivating the catalyst unit; in response to such

commands, the system instructs the unit accordingly

and regulates the flow of cooling water. A gearbox is

attached to the system: whenever the oil level in the

gearbox is low, the system should ring a bell and halt

execution.

The problem diagram for the Chemical Reactor

Controller problem is shown in Fig.3. The components

are:

 A double-barred box (Operation Machine): the

machine domain, i.e., the software system to build

with its underlying hardware.

 A box (the Operator domain): the human operator.

Human operators are regarded as biddable in the PF

framework: they may obey stipulated procedures, but

not reliably, and may generate events spontaneously.

 Other boxes (Cooling System, Catalyst, etc.): given

domains representing components of the world.

These domains are causal: i.e., its phenomena are

physical events and states, and are causally related;

a : OP!{OpenCatalyst, CloseCatalyst} e : CA!WaterLevel

b : OM!{OpenCatalystact , CloseCatalystact} f : GB!RequestService

CA!{IsOpensen , IsClosedsen} g : OM!RingBell

c : CA!{Open, Closed} h : AL!BellRinging

d : OM!{IncreaseWateract, DecreaseWateract} i : GB!OilLevel

CS!{IsRisingsen, IsFallingsen}

Fig. 3: The Chemical Reactor Problem Diagram

58 A Formal Description of Problem Frames

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

III. Description Logics and Knowledge-Based

Systems

Description Logics (DL) [10 and 11] are knowledge

representation formalisms used to describe concepts in a

given domain. A knowledge base (KB) described in DL

has two components, the TBOX and the ABOX. The

TBOX introduces the terminology, i.e., the vocabulary

of an application domain, while the ABOX contains

assertions about named individuals in terms of this

vocabulary. The vocabulary consists of concepts,

denoting sets of individuals (identified objects of the

domain), and roles (binary relationships between

individuals). In addition to atomic concepts and roles,

all DL systems allow building complex descriptions of

concepts and roles. Depending on provided operators,

there are several DL languages, the Attributive

Language (AL) being the minimal one. We summarize

here the syntax and the semantics of some DL

languages.

3.1 Syntax and Semantics of DL Languages

Concepts and roles are inductively defined from a set

NC of concepts names (atomic concepts), a set NR of

roles names (atomic roles) and a set of operators.

In the following, unless otherwise stated, A and B are

elements of NC; r and s are components of NR;

C and D are concepts descriptions and n is a positive

integer.

The minimal language AL contains the atomic

concepts, the universal concept, the bottom concept,

atomic negation, intersection, value restriction and

limited existential quantification.

 TrCrDCAAAL ,,,,,,

Extending AL by any subset of the constructors in the

table below, yields a particular AL-language. Each AL-

language is denoted by a string of the form:

 IQCNUAL

Hence, ALCQI is the language obtained from AL by

adding full negation(C), qualified number restriction (Q)

and Inverse of role (I).

In order to define a formal semantics of concepts

descriptions, we consider an interpretation I that

consists of a non-empty set
I (the domain of the

interpretation) and an interpretation function
I , which

assigns to every atomic concept A, a set
IIA and

to every atomic role r a binary relation
IIIr .

For example, we have the following interpretations:

 T is the whole domain, i.e. all the individuals in the

domain.

 Cr is the set of individuals who are related

through r only to individuals satisfying C.

 Tr is the set of individuals related through r with

other individuals of the domain.

 Cnr is the set of individuals who are related

through r to at most n individuals satisfying C.

The following table summarizes the syntax and the

semantics of DL.

3.2 Inference Techniques in Description Logics

At the terminological level, there are four inference

operators:

 Satisfiability: A concept C of a terminology T is

satisfiable if and only if there exists a model I of T

such that IC

 Subsumption: A concept C is subsumed by a

concept D (C⊑D) for a terminology T if and only if
II DC for any model I of T.

 Equivalence: A concept C is equivalent to a concept

D (DC) for a terminology T if and only if
II DC for each model I of T.

 Disjunction: Concepts C and D are disjoined by

report/ratio terminology T if and only if
IC \

ID = { }; for each model I of T.

The 4 types of problems can be brought back to

problems of subsumption or satisfiability. Consequently,

the design of inference engines requires, very often only

one type of algorithm.

At the factual level, there are also four inference

operators:

 Coherence: An ABOX A is coherent with reference

to a TBOX T if and only if there exists a model I of A

and T.

 Checking of authority: To check by inference if an

assertion C(a) is true for any model I of an ABOX A

and a TBOX T.

 Checking of role: To check by inference if an

assertion r(a; b) is true for any model I of an ABOX

A and a TBOX T .

 Recovery problem: For an ABOX A, a concept C of

a terminology T , infer the individuals a such that

C(a)

One can find non standard inference operators in [12].

 A Formal Description of Problem Frames 59

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

Table 1: Syntax and semantic of DL

Syntax Definition Semantic Symbol

 Universal concept II AL

 Bottom concept I
∅ AL

A Atomic negation IIA)(\
IA AL

 П D intersection
III DCDC)(AL

Cr Value restriction

II

II

Cbrba

baCr

),(

)(
AL

Tr or r Limited existential quantification

I

II

rba

bar

),(

)(
 AL

Cr Full existential quantification

II

II

Cbrba

baCr

),(

)(

⊔D union
III DCDC)(U

C
Full negation IIC)(\

IC C

Cnr
At most qualified number restriction

 II

II

Cbnrba

baCnr

),(

)(
 Q

Cnr
At least qualified number restriction

 II

II

Cbnrba

baCnr

),(

)(
 Q

nr At most unqualified number restriction

 nrba

banr

I

II

),(

)(
 N

nr At least unqualified number restriction

 nrba

banr

I

II

),(

)(
 N

r
Inverse role

I

III

rba

abr

),(

),()(
 I

IV. Description Logics Formalism for Problem

Frames

In this section, we propose an approach to obtain a

complete formal specification of PF using Description

Logics. First, we fix the formal terminology of the PF

framework. Using this terminology, we build the formal

specification of a PF and the formal description of a

specific problem diagram. Finally, we introduce the

reasoning tools.

4.1 The Settings

We begin with a UML-like specification of the PF

domain which points out the main concepts with their

relationships.

Fig. 4: UML-Like Representation of the PF domain

In Fig.4, it appears that a PF aggregates a machine

domain, a set of world domains, a set of shared

phenomena and the requirements. From this diagram,

60 A Formal Description of Problem Frames

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

we produce the following PF formal Terminology in the

form of a TBOX. Translation rules of a UML class

diagram into a TBOX can be found in [13]. The

concepts of the PF terminology are given in table 2

below.

Table 2: the concepts of the PF Terminology

1. DOMAIN, PROBLEM, PROBLEMFRAME

2. MACHINE_DOMAIN⊑ DOMAIN П

ObserverSHAREDPHENOMENA

3. WORD_DOMAIN

4. REQUIREMENT ⊑ constraintPHENOMENA

 ⊔ referencePHENOMENA,

5. PHENOMENA ⊑ belongDOMAIN ,

6. SHARED

 controllerDOMAIN

 П 1.controllerDOMAIN

 П

 2 ObserverDOMAIN,

7. CAUSAL_DOMAIN ⊑ WORLD_DOMAIN,

8. BIDDABLE_DOMAIN ⊑ WORLD_DOMAIN,

9. LEXICAL_DOMAIN ⊑ WORLD_DOMAIN,

10. SYMBOLIC_DOMAIN ⊑ WORLD_DOMAIN,

11. EVENT ⊑ PHENOMENA,

12. OPERATION ⊑ PHENOMENA,

13. STATE_INFORMATION ⊑ PHENOMENA

14. CAUSAL_ PHENOMENA ⊑ PHENOMENA

15. PROBLEMFRAME⊑ MACHINE_DOMAIN

 П WORLD_DOMAIN

 П SHAREDPHENOMENA

 П REQUIREMENT

In the Tab.2, statements 1 to 6 specify the main

components of the PF, namely, domain, machine, world,

phenomena, shared phenomena and requirement.

Statement 2 is a terminological axiom specifying that

the machine domain is a domain and is the observer of

some shared phenomena. This axiom is a minimal

constraint that can be refined into a definition.

Statement 3 specifies that the machine domain is not a

component of the world domain. Statement 4 indicates

that a requirement constraints or references a

phenomenon (in a domain). Statement 6 indicates that

shared phenomena are phenomena. They must be

controlled by one domain and observed by at least two

domains. Statements 7 to 13 specify taxonomic

relations between these concepts and others; they also

use the roles (observer, relates, belong…) presented in

the Tab.3 below.

Table 3: the roles of the PF Terminology

Roles Related Concepts

includeDom ProblemFrame, Domain

includeShPhe ProblemFrame, Phenomena

includeReq ProblemFrame, Requirement

Belongs Phenomena, Domain

controller SharedPhenomena, Domain

Observer SharedPhenomena, Domain

Constraint Requirement, Phenomena

Reference Requirement, Phenomena

relates ⊔

Constraint

controller⊑ observer

4.2 The Problem Frame TBOX

In our approach, a PF is specified by a TBOX using

the PF terminology. The TBOX describes the

components of the PF. In this description, a top level

concept represents the described PF. The formal

description in DL language of the commanded behavior

frame (see Fig.2) can be given as follows:

Table 4: the TBox of the Commanded Behavior Frame

CBehaviorFrame CBehaviorFrameDomain П
 CBehaviorFrameSharedPhen П

 CBehaviorFrameRequirement

MACHINE_DOMAIN

П

 CAUSAL_DOMAIN П

 BIDDABLE_DOMAIN

CBehaviorFrameReq (REQUIREMENT П

 (EVENT П

 BIDDABLE_DOMAIN) П

 (CAUSAL_ PHENOMENA П

 CAUSAL_DOMAIN))

includeSharedPhen

 (CAUSAL_ PHENOMENA П

 CAUSAL_DOMAIN П

 MACHINE_DOMAIN) П

 includeSharedPhen
 (CAUSAL_ PHENOMENA П

 MACHINE_DOMAIN П

 CAUSAL_DOMAIN) П

 (EVENT П

 r MACHINE_DOMAIN П

 BIDDABLE_DOMAIN

The top level concept CBehaviorFrame represents

the commanded behavior frame. This concept must

obviously satisfy the terminological axiom given in

item15 of the PF terminology i.e: CBehaviorFrame ⊑

PROBLEMFRAME

CBehaviorFrameDomain, CBehaviorFrameReq and

CBehaviorFrameSharedPhen specify respectively the

domains, the requirements and the shared phenomena of

the commanded behavior frame.

4.3 The Problem Diagram ABOX

We encode the problem diagram is an ABOX which

records assertions of the diagram. The domains,

including the machine, the phenomena, as well as the

requirement are represented as named individuals. A

special individual representing the specific problem is

introduced as an instance of the concept PROBLEM.

The assertions of the ABOX have two forms:

60 A Formal Description of Problem Frames

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

 C(a) where C is a concept of the PF terminology

defined in section 4.1 and a is a named individual,

states that a is an instance of C.

 A Formal Description of Problem Frames 61

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

 r(a,b) where r is a role of the PF terminology and (a,b)

a pair of individuals states that there exists a relation

r between a and b.

The ABOX of the chemical reactor problem is given

in Tab.5a and Tab.5b below. In the given description, a

special individual ChemicalReactorProblem represents

the problem. The Tab.5a introduces the named

individuals and the concepts to which they belong. For

example, item 4 specifies that there is an individual

catalyst which is an instance of the concept

CAUSAL_DOMAIN; item 14 specifies that there is an

individual OpenCatalyst which is an instance of the

concept EVENT. Item 19 specifies that there is an

individual OpenCatalystact which is an instance of the

concept SHAREDPHENOMENA. Item 08 specifies that

there is an individual Control which is a

REQUIREMENT.

Table 5a: The Chemical Reactor ABOX (part1)

1 - PROBLEM (ChemicalReactorProblem)

2 – MACHINE_DOMAIN(OperationMachine)
3 – CAUSAL_DOMAIN(CoolingSystem)

4 – CAUSAL_DOMAIN(Catalyst)

5 – CAUSAL_DOMAIN(Alarm)
6 – CAUSAL_DOMAIN(GearBox)

7 – BIDDABLE_DOMAIN(Operator)

8 - REQUIREMENT(Control)

9 - CAUSAL_PHENOMENA(WaterLevel)
10 - CAUSAL_PHENOMENA(Open)

11 - CAUSAL_PHENOMENA(Closed)

12 - CAUSAL_PHENOMENA(BellRinging)
13 - EVENT (CloseCatalyst)

14 - EVENT (OpenCatalyst)

15 - CAUSAL_PHENOMENA(OilLevel)

16 - SHAREDPHENOMENA(RingBell)

17 - SHAREDPHENOMENA(IncreaseWateract)
18 - SHAREDPHENOMENA(DecreaseWateract)

19 - SHAREDPHENOMENA(OpenCatalystact)

19b - SHAREDPHENOMENA(CloseCatalystact)
20 - SHAREDPHENOMENA(CloseCatalyst)

20b - SHAREDPHENOMENA(OpenCatalyst)

21 - SHAREDPHENOMENA(IsOpensen)
22 - SHAREDPHENOMENA(IsClosesen)

23 - SHAREDPHENOMENA(IsRisingsen)

24 - SHAREDPHENOMENA(IsFallingsen)

Tab.5b specifies relations between the individuals;

for example, item 27 specifies that there is a relation

IncludeDom between the individuals

ChemicalReactorPb and Catalyst. This relation means

that the causal domain Catalyst is a domain of the

chemical reactor problem. Item 35 specifies a relation

IncludeShPhe between the individuals

ChemicalReactorPb and OpenCatalystact. This relation

means that OpenCatalystact is a shared phenomenon in

the chemical reactor problem.

Table 5b: The Chemical Reactor ABOX (part2)

25 - IncludeDom(ChemicalReactorPb,OperationMachine)
26 - IncludeDom(ChemicalReactorPb,CoolingSystem)

27 - IncludeDom(ChemicalReactorPb, Catalyst)

28 - IncludeDom(ChemicalReactorPb, Alarm)
29 - IncludeDom(ChemicalReactorPb, GearBox)

30 - IncludeDom(ChemicalReactorPb, Operator)

31 - IncludeReq(ChemicalReactorPb, Control)

32 - IncludeShPhe(ChemicalReactorPb, RingBell)
33 - IncludeShPhe(ChemicalReactorPb, IncreaseWateract)

34 - IncludeShPhe(ChemicalReactorPb, DecreaseWateract)
35 - IncludeShPhe(ChemicalReactorFrame, OpenCatalystact)

35b - IncludeShPhe(ChemicalReactorFrame, OpenCatalyst)

36 - IncludeShPhe(ChemicalReactorPb, CloseCatalystact)
36b - IncludeShPhe(ChemicalReactorPb, CloseCatalyst)

37 - IncludeShPhe(ChemicalReactorPb, IsOpensen)

38 - IncludeShPhe(ChemicalReactorPb, IsClosesen)
39 - IncludeShPhe(ChemicalReactorPb, IsRisingsen)

39b - IncludeShPhe(ChemicalReactorPb, RequestService)

40 - IncludeShPhe(ChemicalReactorPb, IsFallingsen)

41 - Constraint(Control, WaterLevel)

42 - Constraint(Control, Open)
43 - Constraint(Control, Close)

44 - Constraint(Control, BellRinging)

45 - Reference(Control, OpenCatalyst)
46 - Reference(Control, CloseCatalyst)

47 - Reference(Control, OilLevel)

48 - Belongs(WaterLevel, CoolingSystem)

49 - Belongs(Open, Catalyst)

50 - Belongs(Close, Catalyst
51 - Belongs(OpenCatalyst, Operator)

52 - Belongs(CloseCatalyst, Operator)

53 - Belongs(BellRinging, Alarm)
54 - Belongs(OilLevel, GearBox)

55 - Controler(OpenCatalyst, Operator)

56 - Controler(CloseCatalyst, Operator)

57 - Controler(OpenCatalystact, OperationMachine)

58 - Controler(CloseCatalystact, OperatorMachine)
59 - Controler(IsOpensen, Catalyst)

60 - Controler(IsClosesen, Catalyst)

61 - Controler(IncreaseWateract, OperationMachine)
62 - Controler(DecreaseWateract, OperationMachine)

63 - Controler(IsRisingsen, Cooling_System)

64 - Controler(IsFallingsen, CoolingSystem)
65 - Controler(RingBell, OperationMachine)

66 - Controler(RequestService, GearBox)

67 - Observer(OpenCatalyst, OperationMachine)
68 - Observer(CloseCatalyst, OperationMachine)

69 - Observer(OpenCatalystact, Catalyst)

70 - Observer(CloseCatalystact, Catalyst)
71 - Observer(IsOpensen, OperationMachine)

72 - Observer(IsClosesen, OperationMachine)

73 - Observer(IncreaseWateract, CoolingSystem)
74 - Observer(DecreaseWateract, CoolingSystem)

75 - Observer(IsRisingsen, OperationMachine)

76 - Observer(isFallingsen, OperationMachine)

77 - Observer(RingBell, Alarm)

78 - Observer(RequestService, OperationMachine)

Item 51 specifies a relation Belongs between the

individuals OpenCatalyst, and Operator. This means

that the phenomenon OpenCatalyst belongs to the

domain Operator. Items 55 and 67 mean that

phenomenon OpenCatalyst is controlled by the domain

operator and observed by the domain

OperationMachine. Item 41 specifies that the

requirement (Control) constraints the phenomenon

62 A Formal Description of Problem Frames

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

WaterLevel belonging to the domain CoolingSystem

(item 48). The requirement references the phenomenon

OpenCatalyst in the Operator domain (item 45 and item

51).

4.4 Reasoning with PFs

In the previous section, we proposed tools to

represent PFs and problems diagrams in DL formalism.

This section is devoted to the inference tools. Indeed,

we show how to match a problem diagram and a PF.

To match some problem into a PF template, we need

to check the following elements:

 the PF topology;

 the domains characteristics;

 the shared phenomena and ;

 the requirements.

In our formal framework, we proceed as follows:

Given:

- a PF TBOX with CPF the top level concept

representing the PF;

- a problem ABOX with IPB the individual

representing the problem

Assertion 1: the problem IPB maps the Problem

Frame CPF if CPF(IPB). ie the individual IPB is an

instance of the concept CPF .

This is done by the basic authority checking

operation of the DL engine.

Generally, a problem can map more than one PF.

Given a set of PF concepts {Ci
PF} the previous assertion

is then rewritten as follows:

Assertion 2: the problem IPB maps the Problem

Frame family {Ci
PF} if: Ci

P (IPB), for each i

Fig. 5: Problems and PF matching model

The basic instance checking operation can be used as

part of a composite inference task involving several PF

TBOX as shown in Fig.5 above. This composite

instantiation offers the basis for the problem

decomposition task.

V. Example of Problem Decomposition

In this section, we propose the decomposition of the

chemical reactor problem into the required behavior

frame, the information display frame and the

commanded behavior frame.

Fig. 6: the required behavior Frame

 A Formal Description of Problem Frames 63

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

Table 6: matching the required behavior TBOX with the chemical

reactor ABOX

The required behavior frame TBOX

ReqBehaviorFrame ReqBehaviorDomainП
 ReqBehaviorSharedPhenП

 ReqBehaviorRequirement

ReqBehavior MACHINE_DOMAIN П

 CAUSAL_DOMAIN П

ReqBehavior (REQUIREMENT П

 (CAUSAL_PHENOMENAП

 CAUSAL_DOMAIN))

ReqBehavior (

 CAUSAL_PHENOMENA

 MACHINE_DOMAIN

 CAUSAL_DOMAIN) П

 (
 CAUSAL_PHENOMENA

 MACHINE_DOMAIN

 CAUSAL_DOMAIN

The required behavior instance of the chemical reactor ABOX

1 - PROBLEM (ChemicalReactorProblem)

25 - IncludeDom(ChemicalReactorPb,OperationMachine)
26 - IncludeDom(ChemicalReactorPb,CoolingSystem)

2 – MACHINE_DOMAIN(OperationMachine)

3 – CAUSAL_DOMAIN(CoolingSystem)

31 - IncludeReq(ChemicalReactorPb, Control)

8 - REQUIREMENT(Control)
9 – CAUSAL_PHENOMENA(WaterLevel)

48 - Belongs(WaterLevel, CoolingSystem)

41 - Constraint(Control, WaterLevel)

33 - IncludeShPhe(ChemicalReactorPb, IncreaseWateract)

17 - SHAREDPHENOMENA(IncreaseWateract)
61 - Controler(IncreaseWateract, OperationMachine)

73 - Observer(IncreaseWateract, CoolingSystem)

34 - IncludeShPhe(ChemicalReactorPb, DecreaseWateract)
18 - SHAREDPHENOMENA(DecreaseWateract)

62 - Controler(DecreaseWateract, OperationMachine)

74 - Observer(DecreaseWateract, CoolingSystem)
39 - IncludeShPhe(ChemicalReactorPb, IsRisingsen)

23 - SHAREDPHENOMENA(IsRisingsen)

63 - Controler(IsRisingsen, CoolingSystem)
75 - Observer(IsRisingsen, OperationMachine)

40 - IncludeShPhe(ChemicalReactorPb, IsFallingsen

24 - SHAREDPHENOMENA(IsFallingsen)
64 - Controler(IsFallingsen, CoolingSystem)

76 - Observer(IsFallingsen, OperationMachine)

Fig. 7: the information display Frame

Table 7: matching the information display TBOX with the chemical

reactor ABOX

The information display frame TBOX

I

 informationDispSharedPhenП

 informationDispRequirement

I MACHINE_DOMAIN П

 includeDomCAUSAL_DOMAIN П

I (REQUIREMENT

П

 (CAUSAL_PHENOMENAП

 CAUSAL_DOMAIN)) П

 (REQUIREMENT

 CAUSAL_DOMAIN))

I (

 CAUSAL_PHENOMENA

 MACHINE_DOMAIN

 CAUSAL_DOMAIN) П

 (

 CAUSAL_PHENOMENA

 CAUSAL_DOMAIN

 MACHINE_DOMAIN)

The information display instance of the chemical reactor ABOX

1 - PROBLEM (ChemicalReactorProblem)

25 - IncludeDom(ChemicalReactorPb,OperationMachine)

28 - IncludeDom(ChemicalReactorPb, Alarm)

29 - IncludeDom(ChemicalReactorPb, GearBox)
2 – MACHINE_DOMAIN(OperationMachine)

5 – CAUSAL_DOMAIN(Alarm)

6 – CAUSAL_DOMAIN(GearBox)

31 - IncludeReq(ChemicalReactorPb, Control)

8 - REQUIREMENT(Control)
12 - CAUSAL_PHENOMENA(BellRinging)

44 - Constraint(Control, BellRinging)

53 - Belongs(BellRinging, Alarm)
15 - CAUSAL_PHENOMENA(Oil_level)

54 - Belongs(OilLevel, GearBox

47 - Reference(Control, OilLevel)

32 - IncludeShPhe(ChemicalReactorPb, RingBell)

16 - SHAREDPHENOMENA(RingBell)
65 - Controler(RingBell, OperationMachine)

77 - Observer(RingBell, Alarm)

39b - IncludeShPhe(ChemicalReactorPb, RequestService)

66 - Controler(RequestService, GearBox)

78 - Observer(equestService, OperationMachine)

Table 8: matching the commanded behavior frame TBOX with the

chemical reactor ABOX

The commanded behavior frame TBOX

CBehaviorFrame CBehaviourFrameDomainП

 CBehaviourFrameSharedPhenП

 CBehaviourFrameRequirement

MACHINE_DOMAIN

П

 CAUSAL_DOMAIN П

 BIDDABLE_DOMAIN

64 A Formal Description of Problem Frames

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

(REQUIREMENT П

 (EVENT П

 BIDDABLE_DOMAIN) П

 (CAUSAL_ PHENOMENA П

 CAUSAL_DOMAIN))

 (CAUSAL_ PHENOMENA П

 CAUSAL_DOMAIN П

 MACHINE_DOMAIN) П

 (CAUSAL_ PHENOMENAП

 MACHINE_DOMAIN П

 CAUSAL_DOMAIN) П

 (EVENT П

 MACHINE_DOMAIN П

 BIDDABLE_DOMAIN

The commanded behavior instance of the chemical reactor

ABOX

1 - PROBLEM (ChemicalReactorProblem)

25 - IncludeDom(ChemicalReactorPb,OperationMachine)
27 - IncludeDom(ChemicalReactorPb, Catalyst)

30 - IncludeDom(ChemicalReactorPb, Operator)

2 – MACHINE_DOMAIN(OperationMachine)
4 – CAUSAL_DOMAIN(Catalyst)

7 – BIDDABLE_DOMAIN(Operator)

31 - IncludeReq(ChemicalReactorPb, Control)

8 - REQUIREMENT(Control)

13 - EVENT(CloseCatalyst)
14 - EVENT (OpenCatalyst)

45 - Reference(Control, OpenCatalyst)

46 - Reference(Control, CloseCatalyst)
51 - Belongs(OpenCatalyst, Operator)

52 - Belongs(CloseCatalyst, Operator)

10 - CAUSAL_PHENOMENA(Open)

11 - CAUSAL_PHENOMENA(Closed)

42 - Constraint(Control, Open)

43 - Constraint(Control, Close)
49 - Belongs(Open, Catalyst)

50 - Belongs(Close, Catalyst

35 - IncludeShPhe(ChemicalReactorFrame, OpenCatalystact)

19 - SHAREDPHENOMENA(OpenCatalystact)

57 - Controler(OpenCatalystact, OperationMachine)
69 - Observer(OpenCatalystact, Catalyst)

36 - IncludeShPhe(ChemicalReactorPb, CloseCatalystact)

19b - SHAREDPHENOMENA(CloseCatalystact)
58 - Controler(CloseCatalystact, OperationMachine)

70 - Observer(CloseCatalystact, Catalyst)

35b - IncludeShPhe(ChemicalReactorFrame, OpenCatalyst)
14 - EVENT (OpenCatalyst)

55 - Controler(OpenCatalyst, Operator)

67 - Observer(OpenCatalyst, OperationMachine)
36b - IncludeShPhe(ChemicalReactorPb, CloseCatalyst)

13 - EVENT (CloseCatalyst)

56 - Controler(CloseCatalyst, Operator)

68 - Observer(CloseCatalyst, OperationMachine)

38 - IncludeShPhe(ChemicalReactorPb, IsClosesen)

22 - SHAREDPHENOMENA(IsClosesen)
60 - Controler(IsClosesen, Catalyst)

72 - Observer(IsClosesen, OperationMachine)

37 - IncludeShPhe(ChemicalReactorPb, IsOpensen)
21 - SHAREDPHENOMENA(IsOpensen)

59 - Controler(IsOpensen, Catalyst)

71 - Observer(IsOpensen, OperationMachine)

We use the chemical reactor ABOX presented in

section 4.3, Tab.5a and Tab.5b. For each frame, we

present the frame diagram, the corresponding TBOX

and the items of the chemical reactor ABOX used by

the DL inference engine to check the assertion 1,

CPF(IPB) where IPB = ChemicalReactorPb and CPF is the

concept for each frame.

On the left of each item, the number corresponds to

the position of this item in Chemical reactor ABOX.

The result of the matching operation has three

components according to the TBOX specification. The

first section instantiates the domain. The second one

instantiates the requirement. The third part concerns the

shared phenomena.

Each item of the chemical reactor ABOX appears in

at least one of the three instances of the commanded

behavior, required behavior or the information display

frame. The composition of these three frames, build the

frame of the chemical reactor problem.

VI. Conclusion

In this paper, the main topic is to propose a formal

approach for the specification of PF. Our proposal is the

use of DL. DL brings about a clear syntax, a precise

semantic and powerful inference tools. We have

proposed a terminology for the PF framework. From

this terminology we build a TBOX for PF and a ABOX

for a specific problem description. These two elements

are then used by DL inference tools to fix a problem

into PF. They also give a basis for problem

decomposition.

Currently we are working on the implementation of a

tool which translates textual or tabular representations

of PF and problems diagrams into our DL

representation and which performs the reasoning tasks.

Further works address investigations on more

elaborated tools for problem decomposition. Another

research direction is to investigate software engineering

methods with emphasis on domain engineering [14]

which is a basis for the specification of the world

domain part of a PF.

References

[1] M. JACKSON Software Requirements &

Specifications: a Lexicon of Practice, Principles,

and Prejudices. Addison-Wesley, 1995,

[2] M. JACKSON Problem Frames. Addison-Wesley

2001.

[3] D. JACKSON and M. JACKSON Problem

decomposition for reuse Technical Report

Carnegie Melon University CMU-CS-95-108

[4] -M. PETRE Why looking isn’t always seeing:

readership skills and graphical programming.

Commun.ACM, 38(6):33–44, 1995.

 A Formal Description of Problem Frames 65

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 04, 56-65

[5] D. BJORNER, S. KOUSSOUBE, R. NOUSSI, and

G. SATCHOK Michael Jackson’s problem frames:

Towards methodological principles of selecting

and applying formal software development

techniques and tools. In 1st IEEE International

Conference on Formal Engineering Methods. IEEE

Computer Society Press, 1997

[6] S. JON, G. HALL, L. RAPANOTTI, M.

JACKSON Problem frame semantics for software

development. In Software and Systems Modeling,

Volume 4 Number 2, pages 189-198, May 2005.

[7] H. PANETTO, N. BOUDJILIDA Formalizing

Problem Frames with ontology. Interoperability

for Enterprise Software and Applications:

Proceedings of the Workshops and the Doctorial

Symposium of the Second IFAC/IFIP I-ESA

International Conference: EI2N, WSI, IS-TSPQ

2006

[8] Xio Hong CHEN, Zhi JIN and Lijun Yi An

ontology of Problem frames for guiding Problem

Frames specification Knowledge Science,

Engineering and Management Lecture Notes in

Computer Science Volume 4798, 2007, pp 384-

395

[9] M. JACKSON Problem Frames and Software

Engineering, The Open University, December.

2004

[10] F. BAADER, D. CALVANESE, D.

MCGUINNESS, D. NARDI, P. SCHNEIDER, The

description logic handbook: Theory,

implementation and applications, Cambridge

University Press (ISBN-13: 9780521781763 j

ISBN-10: 0521781760), 2003

[11] I. HORROCKS, U. SATTELER S. TOBIES,

Practical reasoning for expressive description

logics, Logic for Programming and Automated

Reasoning, pp. 161-180, 1999

[12] S. BRANDT; ANNI-YASMIN TURHAN, Using

Non-standard Inferences in Description Logic.

What does it buy me, Proc. of KI-2001 Workshop

on Applications of Description Logics

(KIDLWS.01). Volume 44 of CEUR (http://ceur-

ws.org/)/. 2001

[13] D. BERARDI, D. CALVANESE, G. DE

GIACOMO, Reasoning on UML Class Diagrams

using Description Logic Based Systems Proc. of

the KI.2001 Workshop on Applications of

Description Logics. Volume 44 of CEUR

Electronic Workshop Proceedings, http://ceur-

ws.org/ Vienna, September 18, 2001

[14] D. BJORNER. Domain engineering – technology

management, research and engineering. JAIST

February 2009

Authors’ Profiles

KOUSSOUBE Souleymane

(1962－), male, Institut Africain

d’Informatique Professor, Ph.D.,

his research directions include

ontology, formal methods,

knowledge-based systems,

Business intelligence.

NOUSSI Roger (1960－), male,

Institut Africain d’Informatique

Professor, Ph.D., his research

directions include ontology,

knowledge representation, formal

methods, Domain theory.

KONFE Balira Ousmane (1974

－), Institut Africain

d’Informatique, Professor, Ph.D.,

supervisor for Ph.D. candidate,

his research directions include

Bio-mathematics modeling,

global optimization, parameters

identification technique, intelli-

gence computation and optimal control

How to cite this paper: Souleymane KOUSSOUBE, Roger

NOUSSI, Balira O. KONFE,"A Formal Description of

Problem Frames", International Journal of Information

Technology and Computer Science(IJITCS), vol.6, no.4,

pp.56-65, 2014. DOI: 10.5815/ijitcs.2014.04.07

http://link.springer.com/book/10.1007/978-3-540-76719-0
http://link.springer.com/book/10.1007/978-3-540-76719-0
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

