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Abstract—Michael Jackson defines a Problem Frame as 

a mean to describe and classify software development 

problems. The initial description of problem Frames is 

essentially graphical. A weakness of this proposal is the 

lack of formal specification allowing efficient reasoning 

tools. This paper deals with Problem Frames’ formal 

specification with Description Logics. We first propose 

a formal terminology of Problem Frames leading to the 

specification of a Problem Frames’ TBOX and a 

specific problem’s ABOX. The Description Logics 

inference tools can then be used to decompose multi 

frame problems or to fix a particular problem into a 

Problem Frame.  

 

Index Terms—Problem Frame, Description Logics, 

Problem Diagram, Problems Matching, Problem 

Decomposition 

 

I. Introduction 

The concept of Problem Frames (PF) has been 

introduced by Michael Jackson [1, 2 and 3] as a mean 

for describing and classifying problems. These problem 

classes can then be related to appropriate tools or 

methods. PF description includes: 

 the world in which the problem is located; 

 the machine to build and; 

 the requirement. It is the condition in the problem 

domain that the machine must guarantee.  

Let us note that PF describes problems, instead of 

their solutions. The description of PF is given in a 

graphical way. This has fundamental disadvantages [4]; 

for example: 

 Some misunderstandings can easily occur when we 

interpret graphical artifacts; 

 It is not easy to verify the completeness and the 

correctness of the description. 

 It is not easy to identify equivalent structures that 

could be used interchangeably. 

The first attempt of formal characterization of PF was 

done in [5].The semantic of PF is clarified in [6] but the 

languages used still have a lack of formality. Other 

works [7 and 8] propose a formal description of PF 

using ontology. However these proposals don’t define 

efficient formal reasoning tools on PF. This paper 

deals with a formal specification of PF using 

Description Logics (DL). DL formalism allows us to 

get advantage of an environment with a clear and 

precise syntax and semantics. Furthermore it gives way 

to use of DL inference tools to match specific problems 

with PF. It also facilitates the use of formal operations 

(transformation, decomposition, integration etc.) on PF. 

The paper is organized as follows: In section II, we 

present the PF framework. The section III is devoted to 

a brief presentation of DL with emphasis on their 

semantics and inference mechanisms. The section IV 

deals with the PF formalization, including the PF 

TBOX, the problem diagram ABOX, and the reasoning 

tools on PF and particular problems.  A problem 

decomposition example is given in the section V. 

 

II. Problem Frame Framework 

In this section we review some basic elements of the 

PF framework. 

 

2.1 Problem Frame 

The software development task [9] is to design and 

construct an artifact. In PF framework [1 and 2], this 

artifact is called the machine, constructed by building a 

software. The machine is used to meet a recognized 

need, which is called the requirement. Satisfying the 

requirement involves transforming the physical world 

around. The component of the world in which the 

requirement is located and that must be transformed, is 

called the problem world. So, the principal components 

of a software development problem are: the machine, 

the problem world, and the requirement. Their 

relationships are shown in the generalized PF diagram 

in Fig.1 below. 

 

Fig. 1: General Software engineering Problem 

 

The machine interacts with the problem world at an 

interface of shared phenomena a. Typically, these 
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phenomena are events, operations or states, controlled 

either by the problem world or by the machine. The 

requirement is shown by a dashed oval, indicating its 

intangible quality. The requirement is not a tangible part 

of the problem: it is a predicate or condition on the 

problem world that the machine must guarantee.  

One of the aims of the PF framework is to identify 

basic classes of problem that recur throughout software 

development. A problem frame acts as a template for 

recognizing a problem in its class. A particular PF 

elaborates and specializes the general form of Fig.1 in 

the following ways:  

 The World is decomposed into domains referred to, 

as world domain, in the remainder of this paper. 

 Different types of domains are distinguished 

according to their role in the problem (B for biddable, 

C for causal…). 

 Interfaces of phenomena shared between domains are 

shown. 

 The connections among the domains are more closely 

characterized in terms of the types of connecting 

phenomena (events, states, operations). 

 The phenomena related by the requirements are 

similarly characterized according to their types. 

 The characteristics of domains interfaces are 

classified. 

For example, the commanded behavior frame [2] can 

be described by a graphical notation as follows: 

 

Fig. 2: The commanded behavior frame 

 

 The world is decomposed into two domains  : The 

controlled domain and the operator domain. 

 The controlled domain is a causal domain while the 

operator is a biddable domain. 

 The controlled domain and the control machine share 

the causal phenomena C1 and C2. The control 

machine and the operator share the event E4. The 

requierement is a predicate with arguments E4 and 

C3. C1, C2 and C3 are states and E4 is an event.  

 The phenomenon C1 is controlled by the Control 

Machine, C2 by the controlled domain and E4 by the 

operator. 

 

 

2.2 Problem Diagram 

Within the PF framework, a problem diagram defines 

the ‘shape’ of a specific problem. It captures the 

characteristics and interconnections of the components 

of the world it is concerned with. A problem diagram 

also includes the requirements that constrain the 

relationships between these components. In the 

graphical notation, a problem diagram uses the same 

symbols as the PF. 

To focus our review, we present the following 

example on a Chemical Reactor Controller described in 

[2]: 

A computer system is required to control the catalyst 

unit and cooling system of a chemical reactor. An 

operator issues commands for activating or 

deactivating the catalyst unit; in response to such 

commands, the system instructs the unit accordingly 

and regulates the flow of cooling water. A gearbox is 

attached to the system: whenever the oil level in the 

gearbox is low, the system should ring a bell and halt 

execution. 

The problem diagram for the Chemical Reactor 

Controller problem is shown in Fig.3. The components 

are: 

 A double-barred box (Operation Machine): the 

machine domain, i.e., the software system to build 

with its underlying hardware. 

 A box (the Operator domain): the human operator. 

Human operators are regarded as biddable in the PF 

framework: they may obey stipulated procedures, but 

not reliably, and may generate events spontaneously. 

 Other boxes (Cooling System, Catalyst, etc.): given 

domains representing components of the world. 

These domains are causal: i.e., its phenomena are 

physical events and states, and are causally related; 

 

a : OP!{OpenCatalyst, CloseCatalyst}   e : CA!WaterLevel 

b : OM!{OpenCatalystact , CloseCatalystact}    f : GB!RequestService 

CA!{IsOpensen , IsClosedsen}     g : OM!RingBell 

c : CA!{Open, Closed}     h : AL!BellRinging 

d : OM!{IncreaseWateract, DecreaseWateract}  i : GB!OilLevel 

CS!{IsRisingsen, IsFallingsen} 

Fig. 3: The Chemical Reactor Problem Diagram 
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III. Description Logics and Knowledge-Based 

Systems 

Description Logics (DL) [10 and 11] are knowledge 

representation formalisms used to describe concepts in a 

given domain. A knowledge base (KB) described in DL 

has two components, the TBOX and the ABOX. The 

TBOX introduces the terminology, i.e., the vocabulary 

of an application domain, while the ABOX contains 

assertions about named individuals in terms of this 

vocabulary. The vocabulary consists of concepts, 

denoting sets of individuals (identified objects of the 

domain), and roles (binary relationships between 

individuals). In addition to atomic concepts and roles, 

all DL systems allow building complex descriptions of 

concepts and roles. Depending on provided operators, 

there are several DL languages, the Attributive 

Language (AL) being the minimal one. We summarize 

here the syntax and the semantics of some DL 

languages. 

 

3.1 Syntax and Semantics of DL Languages 

Concepts and roles are inductively defined from a set 

NC of concepts names (atomic concepts), a set NR of 

roles names (atomic roles) and a set of operators. 

In the following, unless otherwise stated, A and B are 

elements of NC; r and s are components of NR; 

C and D are concepts descriptions and n is a positive 

integer. 

The minimal language AL contains the atomic 

concepts, the universal concept, the bottom concept, 

atomic negation, intersection, value restriction and 

limited existential quantification. 

 TrCrDCAAAL  ,,,,,,   

Extending AL by any subset of the constructors in the 

table below, yields a particular AL-language. Each AL-

language is denoted by a string of the form: 

      IQCNUAL   

Hence, ALCQI is the language obtained from AL by 

adding full negation(C), qualified number restriction (Q) 

and Inverse of role (I). 

In order to define a formal semantics of concepts 

descriptions, we consider an interpretation I that 

consists of a non-empty set 
I (the domain of the 

interpretation) and an interpretation function
I  , which 

assigns to every atomic concept A, a set 
IIA  and 

to every atomic role r a binary relation
IIIr  . 

For example, we have the following interpretations: 

 T is the whole domain, i.e. all the individuals in the 

domain. 

 Cr  is the set of individuals who are related 

through r only to individuals satisfying C.  

 Tr  is the set of individuals related through r with 

other individuals of the domain. 

 Cnr  is the set of individuals who are related 

through r to   at most n individuals satisfying C. 

The following table summarizes the syntax and the 

semantics of DL. 

 

3.2 Inference Techniques in Description Logics 

At the terminological level, there are four inference 

operators: 

 Satisfiability: A concept C of a terminology T is 

satisfiable if and only if there exists a model I of T 

such that  IC  

 Subsumption: A concept C is subsumed by a 

concept D (C⊑D) for a terminology T if and only if 
II DC  for any model I of T. 

 Equivalence: A concept C is equivalent to a concept 

D ( DC  ) for a terminology T if and only if
II DC  for each model I of T. 

 Disjunction: Concepts C and D are disjoined by 

report/ratio terminology T if and only if 
IC \

ID = { }; for each model I of T. 

 

The 4 types of problems can be brought back to 

problems of subsumption or satisfiability. Consequently, 

the design of inference engines requires, very often only 

one type of algorithm. 

At the factual level, there are also four inference 

operators: 

 Coherence: An ABOX A is coherent with reference 

to a TBOX T if and only if there exists a model I of A 

and T. 

 Checking of authority: To check by inference if an 

assertion C(a) is true for any model I of an ABOX A 

and a TBOX T. 

 Checking of role: To check by inference if an 

assertion r(a; b) is true for any model I of an ABOX 

A and a TBOX T . 

 Recovery problem: For an ABOX A, a concept C of 

a terminology T , infer the individuals a such that  

C(a) 

One can find non standard inference operators in [12]. 
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Table 1: Syntax and semantic of DL 

Syntax Definition Semantic Symbol 

  Universal concept II   AL 

  Bottom concept  I
∅ AL 

A  Atomic negation IIA  )( \
IA  AL 

 П D intersection 
III DCDC  )(  AL 

Cr   Value restriction 


II

II

Cbrba

baCr





),(

)(  
AL 

Tr  or r  Limited existential quantification 


I

II

rba

bar





),(

)(
 AL 

Cr   Full existential quantification 


II

II

Cbrba

baCr





),(

)(
   

⊔D union 
III DCDC  )(  U 

C  
Full negation IIC  )( \

IC  C 

Cnr   
At most qualified number restriction 

 

 II

II

Cbnrba

baCnr





),(

)(
 Q 

Cnr   
At least qualified number restriction 

 

 II

II

Cbnrba

baCnr





),(

)(
 Q 

nr  At most unqualified number restriction 

 

 nrba

banr

I

II





),(

)(
 N 

nr  At least unqualified number restriction 

 

 nrba

banr

I

II





),(

)(
 N 

r  
Inverse role 


I

III

rba

abr





),(

),()(
 I 

 

IV. Description Logics Formalism for Problem 

Frames 

In this section, we propose an approach to obtain a 

complete formal specification of PF using Description 

Logics. First, we fix the formal terminology of the PF 

framework. Using this terminology, we build the formal 

specification of a PF and the formal description of a 

specific problem diagram. Finally, we introduce the 

reasoning tools. 

 

4.1 The Settings 

We begin with a UML-like specification of the PF 

domain which points out the main concepts with their 

relationships. 

 

Fig. 4: UML-Like Representation of the PF domain 

 

In Fig.4, it appears that a PF aggregates a machine 

domain, a set of world domains, a set of shared 

phenomena and the requirements. From this diagram, 



60 A Formal Description of Problem Frames  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 04, 56-65 

we produce the following PF formal Terminology in the 

form of a TBOX. Translation rules of a UML class 

diagram into a TBOX can be found in [13]. The 

concepts of the PF terminology are given in table 2 

below. 

 
Table 2: the concepts of the PF Terminology 

1. DOMAIN, PROBLEM, PROBLEMFRAME 

2. MACHINE_DOMAIN⊑ DOMAIN П 

ObserverSHAREDPHENOMENA 

3.  WORD_DOMAIN  

4. REQUIREMENT ⊑ constraintPHENOMENA  

                      ⊔ referencePHENOMENA, 

5. PHENOMENA ⊑ belongDOMAIN , 

6. SHARED  

                     controllerDOMAIN 

                     П  1.controllerDOMAIN 

                     П 

 2 ObserverDOMAIN,   

7. CAUSAL_DOMAIN ⊑ WORLD_DOMAIN, 

8. BIDDABLE_DOMAIN ⊑ WORLD_DOMAIN, 

9. LEXICAL_DOMAIN ⊑ WORLD_DOMAIN, 

10. SYMBOLIC_DOMAIN ⊑ WORLD_DOMAIN, 

11. EVENT ⊑  PHENOMENA, 

12. OPERATION ⊑ PHENOMENA, 

13. STATE_INFORMATION  ⊑  PHENOMENA 

14. CAUSAL_ PHENOMENA ⊑  PHENOMENA 

15. PROBLEMFRAME⊑ MACHINE_DOMAIN 

                П WORLD_DOMAIN 

                П  SHAREDPHENOMENA 

                П  REQUIREMENT  

 

In the Tab.2, statements 1 to 6 specify the main 

components of the PF, namely, domain, machine, world, 

phenomena, shared phenomena and requirement. 

Statement 2 is a terminological axiom specifying that 

the machine domain is a domain and is the observer of 

some shared phenomena. This axiom is a minimal 

constraint that can be refined into a definition. 

Statement 3 specifies that the machine domain is not a 

component of the world domain. Statement 4 indicates 

that a requirement constraints or references a 

phenomenon (in a domain). Statement 6 indicates that 

shared phenomena are phenomena. They must be 

controlled by one domain and observed by at least two 

domains. Statements 7 to 13 specify taxonomic 

relations between these concepts and others; they also 

use the roles (observer, relates, belong…) presented in 

the Tab.3 below. 

 
Table 3: the roles of the PF Terminology 

Roles Related Concepts 

includeDom ProblemFrame, Domain 

includeShPhe ProblemFrame, Phenomena 

includeReq ProblemFrame, Requirement 

Belongs Phenomena, Domain 

controller SharedPhenomena, Domain 

Observer SharedPhenomena, Domain 

Constraint Requirement, Phenomena 

Reference Requirement, Phenomena 

relates ⊔ 

Constraint 
 

controller⊑ observer  

4.2 The Problem Frame TBOX 

In our approach, a PF is specified by a TBOX using 

the PF terminology. The TBOX describes the 

components of the PF. In this description, a top level 

concept represents the described PF. The formal 

description in DL language of the commanded behavior 

frame (see Fig.2) can be given as follows: 

 
Table 4: the TBox of the Commanded Behavior Frame  

CBehaviorFrame CBehaviorFrameDomain П 
  CBehaviorFrameSharedPhen П 

  CBehaviorFrameRequirement 

 

MACHINE_DOMAIN 

П 

  CAUSAL_DOMAIN  П 

 BIDDABLE_DOMAIN 

 

CBehaviorFrameReq (REQUIREMENT П 

   (EVENT П 

  BIDDABLE_DOMAIN ) П 

  ( CAUSAL_ PHENOMENA П 

  CAUSAL_DOMAIN)) 
 

includeSharedPhen 

  ( CAUSAL_ PHENOMENA П 

  CAUSAL_DOMAIN  П 

  MACHINE_DOMAIN) П 

  includeSharedPhen 
  (CAUSAL_ PHENOMENA П  

  MACHINE_DOMAIN  П 

   CAUSAL_DOMAIN) П 

   

  (EVENT П  

  r MACHINE_DOMAIN П 

  BIDDABLE_DOMAIN 

 

 

The top level concept CBehaviorFrame represents 

the commanded behavior frame. This concept must 

obviously satisfy the terminological axiom given in 

item15 of the PF terminology i.e: CBehaviorFrame ⊑ 

PROBLEMFRAME 

CBehaviorFrameDomain, CBehaviorFrameReq and 

CBehaviorFrameSharedPhen specify respectively the 

domains, the requirements and the shared phenomena of 

the commanded behavior frame. 

 

4.3 The Problem Diagram ABOX 

We encode the problem diagram is an ABOX which 

records assertions of the diagram. The domains, 

including the machine, the phenomena, as well as the 

requirement are represented as named individuals. A 

special individual representing the specific problem is 

introduced as an instance of the concept PROBLEM. 

The assertions of the ABOX have two forms:  
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 C(a) where C is a concept of the PF terminology 

defined in section 4.1 and a is a named individual, 

states that a is an instance of C. 
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 r(a,b) where r is a role of the PF terminology and (a,b) 

a pair of individuals states that there exists a relation 

r between a and b. 

The ABOX of the chemical reactor problem is given 

in Tab.5a and Tab.5b below. In the given description, a 

special individual ChemicalReactorProblem represents 

the problem. The Tab.5a introduces the named 

individuals and the concepts to which they belong. For 

example, item 4 specifies that there is an individual 

catalyst which is an instance of the concept 

CAUSAL_DOMAIN; item 14 specifies that there is an 

individual OpenCatalyst which is an instance of the 

concept EVENT. Item 19 specifies that there is an 

individual OpenCatalystact which is an instance of the 

concept SHAREDPHENOMENA. Item 08 specifies that 

there is an individual Control which is a 

REQUIREMENT. 

 
Table 5a: The Chemical Reactor ABOX (part1) 

1 - PROBLEM (ChemicalReactorProblem) 

 

2 – MACHINE_DOMAIN(OperationMachine) 
3 – CAUSAL_DOMAIN(CoolingSystem) 

4 – CAUSAL_DOMAIN(Catalyst) 

5 – CAUSAL_DOMAIN(Alarm) 
6 – CAUSAL_DOMAIN(GearBox) 

7 – BIDDABLE_DOMAIN(Operator) 

 
8 - REQUIREMENT(Control) 

 

9 - CAUSAL_PHENOMENA(WaterLevel)  
10 - CAUSAL_PHENOMENA(Open)  

11 - CAUSAL_PHENOMENA(Closed)  

12 - CAUSAL_PHENOMENA(BellRinging) 
13 - EVENT (CloseCatalyst ) 

14 - EVENT (OpenCatalyst)  

15 - CAUSAL_PHENOMENA(OilLevel)  
 

16 - SHAREDPHENOMENA(RingBell) 

17 - SHAREDPHENOMENA(IncreaseWateract) 
18 - SHAREDPHENOMENA(DecreaseWateract) 

19 - SHAREDPHENOMENA(OpenCatalystact) 

19b - SHAREDPHENOMENA(CloseCatalystact) 
20 - SHAREDPHENOMENA(CloseCatalyst) 

20b - SHAREDPHENOMENA(OpenCatalyst) 

21 - SHAREDPHENOMENA(IsOpensen) 
22 - SHAREDPHENOMENA(IsClosesen) 

23 - SHAREDPHENOMENA(IsRisingsen) 

24 - SHAREDPHENOMENA(IsFallingsen) 

 

Tab.5b specifies relations between the individuals; 

for example, item 27 specifies that there is a relation 

IncludeDom between the individuals 

ChemicalReactorPb and Catalyst. This relation means 

that the causal domain Catalyst is a domain of the 

chemical reactor problem. Item 35 specifies a relation 

IncludeShPhe between the individuals 

ChemicalReactorPb and OpenCatalystact. This relation 

means that OpenCatalystact is a shared phenomenon in 

the chemical reactor problem. 

 

 

Table 5b: The Chemical Reactor ABOX (part2) 

25 - IncludeDom(ChemicalReactorPb,OperationMachine) 
26 - IncludeDom(ChemicalReactorPb,CoolingSystem) 

27 - IncludeDom(ChemicalReactorPb, Catalyst) 

28 - IncludeDom(ChemicalReactorPb, Alarm) 
29 - IncludeDom(ChemicalReactorPb, GearBox)  

30 - IncludeDom(ChemicalReactorPb, Operator) 

 
31 - IncludeReq(ChemicalReactorPb, Control) 

 

32 - IncludeShPhe(ChemicalReactorPb, RingBell) 
33 - IncludeShPhe(ChemicalReactorPb, IncreaseWateract) 

34 - IncludeShPhe(ChemicalReactorPb, DecreaseWateract) 
35 - IncludeShPhe(ChemicalReactorFrame, OpenCatalystact) 

35b - IncludeShPhe(ChemicalReactorFrame, OpenCatalyst) 

36 - IncludeShPhe(ChemicalReactorPb, CloseCatalystact) 
36b - IncludeShPhe(ChemicalReactorPb, CloseCatalyst) 

37 - IncludeShPhe(ChemicalReactorPb, IsOpensen) 

38 - IncludeShPhe(ChemicalReactorPb, IsClosesen) 
39 - IncludeShPhe(ChemicalReactorPb, IsRisingsen) 

39b - IncludeShPhe(ChemicalReactorPb, RequestService) 

40 - IncludeShPhe(ChemicalReactorPb, IsFallingsen ) 

 

41 - Constraint(Control, WaterLevel) 

42 - Constraint(Control, Open)  
43 - Constraint(Control, Close) 

44 - Constraint(Control, BellRinging) 

45 - Reference(Control, OpenCatalyst) 
46 - Reference(Control, CloseCatalyst) 

47 - Reference(Control, OilLevel) 

 
48 - Belongs(WaterLevel, CoolingSystem) 

49 - Belongs(Open, Catalyst) 

50 - Belongs(Close, Catalyst 
51 - Belongs(OpenCatalyst, Operator) 

52 - Belongs(CloseCatalyst, Operator) 

53 - Belongs(BellRinging, Alarm) 
54 - Belongs(OilLevel, GearBox) 

 

55 - Controler(OpenCatalyst, Operator) 

56 - Controler(CloseCatalyst, Operator) 

57 - Controler(OpenCatalystact, OperationMachine)  

58 - Controler(CloseCatalystact, OperatorMachine) 
59 - Controler(IsOpensen, Catalyst) 

60 - Controler(IsClosesen, Catalyst) 

61 - Controler(IncreaseWateract, OperationMachine) 
62 - Controler(DecreaseWateract, OperationMachine) 

63 - Controler(IsRisingsen, Cooling_System) 

64 - Controler(IsFallingsen, CoolingSystem) 
65 - Controler(RingBell, OperationMachine) 

66 - Controler(RequestService, GearBox) 

67 - Observer(OpenCatalyst, OperationMachine) 
68 - Observer(CloseCatalyst, OperationMachine) 

69 - Observer(OpenCatalystact, Catalyst) 

70 - Observer(CloseCatalystact, Catalyst) 
71 - Observer(IsOpensen, OperationMachine) 

72 - Observer(IsClosesen, OperationMachine) 

73 - Observer(IncreaseWateract, CoolingSystem) 
74 - Observer(DecreaseWateract, CoolingSystem) 

75 - Observer(IsRisingsen, OperationMachine) 

76 - Observer(isFallingsen, OperationMachine) 

77 - Observer(RingBell, Alarm) 

78 - Observer(RequestService, OperationMachine) 

 

Item 51 specifies a relation Belongs between the 

individuals OpenCatalyst, and Operator. This means 

that the phenomenon OpenCatalyst belongs to the 

domain Operator. Items 55 and 67 mean that 

phenomenon OpenCatalyst is controlled by the domain 

operator and observed by the domain 

OperationMachine. Item 41 specifies that the 

requirement (Control) constraints the phenomenon 
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WaterLevel belonging to the domain CoolingSystem 

(item 48). The requirement references the phenomenon 

OpenCatalyst in the Operator domain (item 45 and item 

51). 

 

4.4 Reasoning with PFs 

In the previous section, we proposed tools to 

represent PFs and problems diagrams in DL formalism. 

This section is devoted to the inference tools. Indeed, 

we show how to match a problem diagram and a PF.  

To match some problem into a PF template, we need 

to check the following elements: 

 the PF topology; 

 the domains characteristics; 

 the shared phenomena and ;  

 the requirements. 

In our formal framework, we proceed as follows: 

Given: 

- a PF TBOX with CPF the top level concept 

representing the PF; 

- a problem ABOX with IPB the individual 

representing the  problem 

 

Assertion 1: the problem IPB maps the Problem 

Frame CPF if CPF(IPB). ie the individual IPB is an 

instance of the concept CPF . 

This is done by the basic authority checking 

operation of the DL engine.  

Generally, a problem can map more than one PF. 

Given a set of PF concepts {Ci
PF} the previous assertion 

is then rewritten as follows: 

Assertion 2: the problem IPB maps the Problem 

Frame family {Ci
PF} if: Ci

P (IPB), for each i 

 

 

Fig. 5: Problems and PF matching model 

 

The basic instance checking operation can be used as 

part of a composite inference task involving several PF 

TBOX as shown in Fig.5 above. This composite 

instantiation offers the basis for the problem 

decomposition task. 

 

V. Example of Problem Decomposition 

In this section, we propose the decomposition of the 

chemical reactor problem into the required behavior 

frame, the information display frame and the 

commanded behavior frame.  

 

Fig. 6: the required behavior Frame 
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Table 6: matching the required behavior TBOX with the chemical 

reactor ABOX 

The required behavior frame TBOX 

ReqBehaviorFrame ReqBehaviorDomainП 
  ReqBehaviorSharedPhenП 

  ReqBehaviorRequirement 

 

ReqBehavior MACHINE_DOMAIN П 

  CAUSAL_DOMAIN  П 

ReqBehavior (REQUIREMENT П 
 

 (CAUSAL_PHENOMENAП 

  CAUSAL_DOMAIN)) 
 

ReqBehavior ( 

  CAUSAL_PHENOMENA 

 MACHINE_DOMAIN 

  CAUSAL_DOMAIN) П 

  ( 
  CAUSAL_PHENOMENA 

  MACHINE_DOMAIN 

  CAUSAL_DOMAIN 

The required behavior instance of the chemical reactor ABOX 

1 - PROBLEM (ChemicalReactorProblem) 
 

25 - IncludeDom(ChemicalReactorPb,OperationMachine) 
26 - IncludeDom(ChemicalReactorPb,CoolingSystem) 

2 – MACHINE_DOMAIN(OperationMachine) 

3 – CAUSAL_DOMAIN(CoolingSystem) 
 

31 - IncludeReq(ChemicalReactorPb, Control) 

8 - REQUIREMENT(Control) 
9 – CAUSAL_PHENOMENA(WaterLevel) 

48 - Belongs(WaterLevel, CoolingSystem) 

41 - Constraint(Control, WaterLevel) 
 

33 - IncludeShPhe(ChemicalReactorPb, IncreaseWateract) 

17 - SHAREDPHENOMENA(IncreaseWateract) 
61 - Controler(IncreaseWateract, OperationMachine) 

73 - Observer(IncreaseWateract, CoolingSystem) 

34 - IncludeShPhe(ChemicalReactorPb, DecreaseWateract) 
18 - SHAREDPHENOMENA(DecreaseWateract) 

62 - Controler(DecreaseWateract, OperationMachine) 

74 - Observer(DecreaseWateract, CoolingSystem) 
39 - IncludeShPhe(ChemicalReactorPb, IsRisingsen) 

23 - SHAREDPHENOMENA(IsRisingsen) 

63 - Controler(IsRisingsen, CoolingSystem) 
75 - Observer(IsRisingsen, OperationMachine) 

40 - IncludeShPhe(ChemicalReactorPb, IsFallingsen 

24 - SHAREDPHENOMENA(IsFallingsen) 
64 - Controler(IsFallingsen, CoolingSystem) 

76 - Observer(IsFallingsen, OperationMachine) 

 

 

Fig. 7: the information display Frame 

 

 

Table 7: matching the information display TBOX with the chemical 

reactor ABOX 

The information display frame TBOX 

I  

  informationDispSharedPhenП 

  informationDispRequirement 
 

I MACHINE_DOMAIN П 

  includeDomCAUSAL_DOMAIN  П 
 

I (REQUIREMENT 

П 

  (CAUSAL_PHENOMENAП 

  CAUSAL_DOMAIN)) П 

  (REQUIREMENT 
   

  CAUSAL_DOMAIN)) 

 

I ( 

  CAUSAL_PHENOMENA 

  MACHINE_DOMAIN 

  CAUSAL_DOMAIN) П 

  ( 

  CAUSAL_PHENOMENA 

   CAUSAL_DOMAIN  

   MACHINE_DOMAIN) 

The information display instance of the chemical reactor ABOX 

1 - PROBLEM (ChemicalReactorProblem) 

 
25 - IncludeDom(ChemicalReactorPb,OperationMachine) 

28 - IncludeDom(ChemicalReactorPb, Alarm) 

29 - IncludeDom(ChemicalReactorPb, GearBox)  
2 – MACHINE_DOMAIN(OperationMachine) 

5 – CAUSAL_DOMAIN(Alarm) 

6 – CAUSAL_DOMAIN(GearBox) 

 

31 - IncludeReq(ChemicalReactorPb, Control) 

8 - REQUIREMENT(Control) 
12 - CAUSAL_PHENOMENA(BellRinging) 

44 - Constraint(Control, BellRinging) 

53 - Belongs(BellRinging, Alarm) 
15 - CAUSAL_PHENOMENA(Oil_level)  

54 - Belongs(OilLevel, GearBox 

47 - Reference(Control, OilLevel) 
 

32 - IncludeShPhe(ChemicalReactorPb, RingBell) 

16 - SHAREDPHENOMENA(RingBell) 
65 - Controler(RingBell, OperationMachine) 

77 - Observer(RingBell, Alarm) 

 
39b - IncludeShPhe(ChemicalReactorPb, RequestService) 

66 - Controler(RequestService, GearBox) 

78 - Observer(equestService, OperationMachine) 

 

Table 8: matching the commanded behavior frame TBOX with the 

chemical reactor ABOX 

The commanded behavior frame TBOX 

CBehaviorFrame CBehaviourFrameDomainП 

  CBehaviourFrameSharedPhenП 

  CBehaviourFrameRequirement 

MACHINE_DOMAIN 

П 

  CAUSAL_DOMAIN  П 

  BIDDABLE_DOMAIN 
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(REQUIREMENT П 

   (EVENT П 

  BIDDABLE_DOMAIN ) П 

  ( CAUSAL_ PHENOMENA П 

  CAUSAL_DOMAIN)) 

 

   ( CAUSAL_ PHENOMENA П 

  CAUSAL_DOMAIN  П 

  MACHINE_DOMAIN) П 

   

  (CAUSAL_ PHENOMENAП  

  MACHINE_DOMAIN  П 

   CAUSAL_DOMAIN) П 

    
   (EVENT  П  

   MACHINE_DOMAIN П 

  BIDDABLE_DOMAIN 

The commanded behavior instance of the chemical reactor 

ABOX 

1 - PROBLEM (ChemicalReactorProblem) 

 

25 - IncludeDom(ChemicalReactorPb,OperationMachine) 
27 - IncludeDom(ChemicalReactorPb, Catalyst) 

30 - IncludeDom(ChemicalReactorPb, Operator) 

2 – MACHINE_DOMAIN(OperationMachine) 
4 – CAUSAL_DOMAIN(Catalyst) 

7 – BIDDABLE_DOMAIN(Operator) 

 
31 - IncludeReq(ChemicalReactorPb, Control) 

8 - REQUIREMENT(Control) 

13 - EVENT(CloseCatalyst ) 
14 - EVENT (OpenCatalyst)  

45 - Reference(Control, OpenCatalyst) 

46 - Reference(Control, CloseCatalyst) 
51 - Belongs(OpenCatalyst, Operator) 

52 - Belongs(CloseCatalyst, Operator) 

10 - CAUSAL_PHENOMENA(Open)  

11 - CAUSAL_PHENOMENA(Closed)  

42 - Constraint(Control, Open)  

43 - Constraint(Control, Close) 
49 - Belongs(Open, Catalyst) 

50 - Belongs(Close, Catalyst 

 
35 - IncludeShPhe(ChemicalReactorFrame, OpenCatalystact) 

19 - SHAREDPHENOMENA(OpenCatalystact) 

57 - Controler(OpenCatalystact, OperationMachine) 
69 - Observer(OpenCatalystact, Catalyst) 

36 - IncludeShPhe(ChemicalReactorPb, CloseCatalystact) 

19b - SHAREDPHENOMENA(CloseCatalystact) 
58 - Controler(CloseCatalystact, OperationMachine) 

70 - Observer(CloseCatalystact, Catalyst) 

35b - IncludeShPhe(ChemicalReactorFrame, OpenCatalyst) 
14 - EVENT (OpenCatalyst) 

55 - Controler(OpenCatalyst, Operator) 

67 - Observer(OpenCatalyst, OperationMachine) 
36b - IncludeShPhe(ChemicalReactorPb, CloseCatalyst) 

13 - EVENT (CloseCatalyst ) 

56 - Controler(CloseCatalyst, Operator) 

68 - Observer(CloseCatalyst, OperationMachine) 

38 - IncludeShPhe(ChemicalReactorPb, IsClosesen) 

22 - SHAREDPHENOMENA(IsClosesen) 
60 - Controler(IsClosesen, Catalyst) 

72 - Observer(IsClosesen, OperationMachine) 

37 - IncludeShPhe(ChemicalReactorPb, IsOpensen) 
21 - SHAREDPHENOMENA(IsOpensen) 

59 - Controler(IsOpensen, Catalyst) 

71 - Observer(IsOpensen, OperationMachine) 

 

We use the chemical reactor ABOX presented in 

section 4.3, Tab.5a and Tab.5b. For each frame, we 

present the frame diagram, the corresponding TBOX 

and the items of the chemical reactor ABOX used by 

the DL inference engine to check the assertion 1, 

CPF(IPB) where IPB = ChemicalReactorPb and CPF is the 

concept for each frame. 

On the left of each item, the number corresponds to 

the position of this item in Chemical reactor ABOX. 

The result of the matching operation has three 

components according to the TBOX specification. The 

first section instantiates the domain. The second one 

instantiates the requirement. The third part concerns the 

shared phenomena.  

Each item of the chemical reactor ABOX appears in 

at least one of the three instances of the commanded 

behavior, required behavior or the information display 

frame. The composition of these three frames, build the 

frame of the chemical reactor problem. 

 

VI. Conclusion 

In this paper, the main topic is to propose a formal 

approach for the specification of PF. Our proposal is the 

use of DL. DL brings about a clear syntax, a precise 

semantic and powerful inference tools. We have 

proposed a terminology for the PF framework. From 

this terminology we build a TBOX for PF and a ABOX 

for a specific problem description. These two elements 

are then used by DL inference tools to fix a problem 

into PF. They also give a basis for problem 

decomposition. 

Currently we are working on the implementation of a 

tool which translates textual or tabular representations 

of PF and problems diagrams into our DL 

representation and which performs the reasoning tasks. 

Further works address investigations on more 

elaborated tools for problem decomposition. Another 

research direction is to investigate software engineering 

methods with emphasis on domain engineering [14] 

which is a basis for the specification of the world 

domain part of a PF.  
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