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Abstract— In this paper, an Improved Firefly Algorithm with 

Chaos (IFCH) is presented for solving definite integral. The 

IFCH satisfies the question of parallel calculating numerical 

integration in engineering and those segmentation points are 

adaptive. Several numerical simulation results show that the 

algorithm offers an efficient way to calculate the numerical 

value of definite integrals, and has a high convergence rate, 

high accuracy and robustness. 

 

Index Terms— Firefly Algorithm, Metaheurstic, Optimization, 

Chaos, Definite Integral 

 

I.  INTRODUCTION 

The definite integral has wide ranging applications in 

operations research, computer science, mathematics, 

physical sciences and engineering. Numerical integration 

is the study of how the numerical value of an integral can 

be found. Which refers to find a square whose area is the 

same as the area under the curve, it is one of the classical 

topics of numerical analysis[1].The basic problem 

considered by numerical integration is to compute an 

approximated solution to a definite integral  ∫  ( )  
 

 
 . 

Situations arise which the analytical method developed 

so far cannot be used to evaluate some definite integrals. 

For example, an integrand may not have an obvious anti-

derivative such as cos2x and 
 

1
linx

 or maybe the 

integrand represented by individual data points, which 

makes finding an anti-derivative impossible. When 

analytical methods fail, we often turn to numerical 

methods [2], which are typically done on calculator or 

computer. 

These methods do not produce exact values of definite 

integrals, but provide approximations that are generally 

accurate. Briefly, some of the more advanced methods 

for which software is widely available are: 

1.1  Midpoint rule  

Suppose f is defined and integrable on [a, b]. The 

midpoint rule approximation to ∫  ( )  
 

 
 using n 

equally spaced subintervals on [a,b] is [3]: 

 ( )   (  )    (  )      (  )      ( ) 

Where x= (b-a)/n , xk=a+kx, and mk is midpoint of 

[xk-1,xk], for k=1,2,…,n. 

1.2  Trapezoid rule  

Another method for estimating ∫  ( )  
 

 
 is trapezoid 

rule [3], suppose f is defined and integrable on [a, b]. The 

trapezoid rule approximation to ∫  ( )  
 

 
 using n 

equally spaced subintervals on [a,b] is : 

 ( )  (
 

 
 (  )  ∑ (  )  

 

 
 (  ))  

   

   

         ( ) 

where x=(b-a)/n and xk=a+kx, for k=0,1,…,n. 

1.3  Simpson's rule  

Suppose f is defined and integrable on [a,b]. The 

Simpson's Rule approximation to ∫  ( )  
 

 
 using n 

equally spaced subintervals on [a,b] is [3]:  

 ( )  , (  )    (  )    (  )    (  )   

   (    )   (  )-
  

 
           ( ) 

Where n is an even integer, x=(b-a)/n, and xk=a+kx, 

for k= 0,1,2,…,n. 

1.4  Newton –Cotes formula 

The Newton-Cotes formulas are the most common 

numerical integration methods [1-4]. They are based on 
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the strategy of replacing a complicated function with an 

approximating function that is easy to integrate. 

  ∫  ( ) ( )  ∫   ( ) ( )
 

 

 

 

         ( ) 

Where 

  ( )
           

         
   

    
                                                                ( ) 

Let            be given distinct nodes in closed 

interval [a, b]. We want to determine constants 

           such that  

∫  ( )     (  )       (  )                        ( ) 
 

 

 

For any polynomial f of degree ≤ n. Strictly speaking, 

In Newton-Cotes Integration we used points that were 

equally spaced. However, there was no need for the 

points to have any special spacing. 

1.5  Clenshaw–Curtis integration 

Newton–Cotes formulas with equally spaced abscissas 

are of practical use only for small point numbers, say n ≤ 

8. For n as low as nine, the coefficients Ai have different 

signs. As n increases, the coefficients Ai become large in 

absolute value, leading to unstable evaluation of the 

integral [1-4]. This problem can be avoided by choosing 

the abscissas in a more sophisticated way. 

If n is even, then the Clenshaw–Curtis formula can be 

written 

∫  ( )    
   

 

 

 
 0   

   

( )( )
  

   

( )( )
    

 
     

(   )(   )
 

  

(   )(   )
1                                         (7) 

Like other formulas of the Newton–Cotes type, 

Clenshaw–Curtis will integrate exactly polynomials of 

order n or less. In practice, it does rather better than other 

rules of the same order, because of the bounded variation 

properties of Chebyshev polynomials. 

1.6  Gaussian quadrature 

In Newton-Cotes Integration we used points that were 

equally spaced. However, there was no need for the 

points to have any special spacing [1-4]. If we wish to 

estimate the integral  ∫  ( )
 

 
 And if we have any set of 

points {x0,x1,... , xn } and n+1 coefficients Ai , then we can 

estimate the integral by the formula. 

∫  ( ) ( )      (  )       (  )      ( ) 
 

 

 

where g(x) is a weight function which is greater than 

zero on the interval [a, b]. The correct choice for x0,…, xn 

turns out to be the zeros of an orthogonal polynomial 

P{n+1} of order n + 1. An important point is that the 

coefficients Ai are positive. Moreover,         

   ∫  ( )  
 

 
 so no coefficient can be larger than the 

summation of Ai .  

1.7  Monte Carlo method 

It means using random numbers in scientific 

computing. More precisely, it means using random 

numbers as a tool to compute something that is not 

random. The idea of estimating an integral by random 

sampling is a natural one in a statistical context [5].  

In Monte Carlo method, points x1, . . . , xn are chosen 

randomly in the integration region and the integral is 

estimated by 

 ̅  
 

 
∑ (  )

 

   

                                                         ( ) 

where V is the volume of the integration region. 

Convergence is certain almost definitely by the central 

limit theorem under very weak conditions on f.  

However, these traditional methods have limitations: 

the rectangle rule method, trapezoidal rule method, 

Simpson's rule method are suitable for the bad smooth 

integrand, but their precisions are low; The Newton-

Cotes method is one of the constructing integrand based 

on the interpolating functions, but the convergence is not 

guaranteed for higher order; The Newton-Cotes method, 

for the Romberg method and Gauss method, their 

convergent speeds are quick and the computational 

precisions are high, but their computations are 

complex[1-5]. 

This paper is organized as follows: after introduction, 

the original firefly algorithm is briefly introduced in 

section 2. Section 3 introduces the meaning of chaos. In 

section 4, the proposed algorithm is described, while the 

results are discussed in section 5. Finally, conclusions are 

presented in section 6. 

 

II.  FIREFLY ALGORITHM 

Firefly algorithm is one of the latest additions to the 

family of swarm intelligence metaheuristics for 

optimization problems. It was proposed by Yang in 2009 

[6] and it has since then been applied in several 

applications because of its few parameters to adjust, easy 

to understand, realize, and compute, it was applied to 

various fields, such as codebook of vector quantization 

[7], in-line spring-mass systems [8]; mixed variable 

structural optimization [9]; nonlinear grayscale image 

enhancement [10], travelling salesman problems [11], 

continuously cast steel slabs [12], promoting products 

online [13], nonconvex economic dispatch problems [14], 

chiller loading for energy conservation [15], stock market 

price forecasting [16], and multiple objectives 

optimization [17]. Although the algorithm has many 

similarities with other swarm based algorithms such as 

Particle Swarm Optimization [18], Artificial Bee Colony 

Optimization  [19]and Ant Colony Optimization [6], the 

FA has proved to be much simpler both in concept and 

implementation and has better performance compared to 

the other techniques. 
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2.1  Flashing behaviour of fireflies 

The FA was based on the flashing patterns and 

behaviour patterns of the fireflies. The fireflies use the 

flashing patterns to communicate with each other. Yang 

did not mimic their behaviour in full detail, but created a 

simplified algorithm based on the following three rules:  

1. All fireflies are unisexual, so that one firefly will be 

attracted to other fireflies regardless of their sex;  

2. Attractiveness is proportional to the firefly’s 

brightness; for any couple of flashing fireflies, the 

less bright one will move towards the brighter one; 

attractiveness is proportional to the brightness 

which decreases with increasing distance between 

fireflies; if there are no brighter fireflies than a 

particular firefly, this individual will move 

randomly in the space;  

3. The brightness of a firefly is somehow related to the 

analytical form of a cost function; for a 

maximization problem, brightness can be 

proportional to the value of the cost function; other 

forms of brightness can be defined in a similar 

matter to the fitness function in genetic algorithms. 

2.2  Attractiveness and light intensity 

In the algorithm, two important factors are involved: 

the variation of light intensity and the formulation of the 

attractiveness. For example, suppose that the 

attractiveness of a firefly is determined by its brightness, 

which in turn is associated with the encoded objective 

function,then the higher of the brightness and, the better 

the location and the more fireflies will be attracted to the 

direction. However, if the brightness is equal, the fireflies 

will move randomly. As light intensity and thus 

attractiveness decreases as the distance from the source 

increases, the variations of light intensity and 

attractiveness should be monotonically decreasing 

functions. 

 

In order to implement FA, there are some definitions:  

 

Definition 1: the variation of light intensity; 

We know, the light intensity varies according to the 

inverse square law 

 ( )  
  
  
⁄                                                              (10) 

Where I(r) is the light intensity at a distance r and Is is 

the intensity at the source. 

When the medium is given,  the light intensity can be 

determined as follows: 

 ( )     
                                                         (11) 

To avoid the singularity at r=0 in (1), the equations can 

be approximated in the following Gaussian form:  

 ( )     
                                                        (12) 

Where γ is light absorption coefficient. 

 

Definition 2: formulation of the attractiveness 

As firefly attractiveness is proportional to the light 

intensity seen by adjacent fireflies, we can now define the 

attractiveness β of a firefly by 

     
                                                                   (  ) 

Where    is the attractiveness at r=0. 

 

Definition 3: formulation of location moving 

  (   )    ( )   .  ( )    ( )/                (14) 

Where   (   )is the position of    after t+1 times 

movements; α is the step parameter which varies between 

[0,1] ；    is a random factor conforming Gaussian 

distribution between[0,1]. 

The basic steps of the FA are summarized as the 

pseudo code shown in Fig. 1 which consists of the three 

rules discussed above. 

 

firefly algorithm 

Begin 

Objective function  ( ),   = ( 1, . . . ,   )  
Generate initial population of    fireflies  𝑖 , 𝑖 = 1, 

2, . . . ,   

Formulate light intensity   so that it is associated 

with  ( ) 

While ( <MaxGeneration) 

 Define absorption coefficient 𝛾 

for 𝑖 = 1 :  ( fireflies) 

for𝑗 = 1 :  ( fireflies) 

if ( 𝑗> 𝑖), 
move firefly 𝑖towards 𝑗 
end if 

Vary attractiveness with distance 𝑟 via     
 
 

Evaluate new solutions and update light intensity 

end for𝑗 
end for𝑖 
Rank the fireflies and find the current best 

end while 

Post-processing the results and visualization 

End 

Fig. 1. Pseudo code of the firefly algorithm 

 

III.  CHAOS  

Generating random sequences with a long period, and 

a good consistency is very important for easily 

simulating complex phenomena, sampling, numerical 

analysis, decision making and especially in heuristic 

optimization [20]. Its quality determines the reduction of 

storage and computation time to achieve the desired 

accuracy [21]. Chaos is a deterministic, random-like 

process found in nonlinear, dynamical system, which is 

non-period, non-converging and bounded. Moreover, it 

depends on its initial condition and parameters [22-24]. 

Applications of chaos in several disciplines including 

operations research, physics, engineering, economics, 

biology, philosophy and computer science[25-27]. 



22 Chaotic Firefly Algorithm for Solving Definite Integral  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 19-24 

Recently chaos is extended to various optimization 

areas because it can more easily escape from local 

minima and improve global convergence in comparison 

with other stochastic optimization algorithms [28-34]. 

Using chaotic sequences in Firefly Algorithm can be 

helpful to improve the reliability of the global optimality, 

and also enhance the quality of the results. 

3.1  Chaotic maps 

At random-based optimization algorithms, the methods 

using chaotic variables instead of random variables are 

called chaotic optimization algorithms (COA) [34]. In 

these algorithms, due to the non-repetition and ergodicity 

of chaos, it can carry out overall searches at higher 

speeds than stochastic searches that depend on 

probabilities [43-48]. To resolve this issue, herein one-

dimensional and non-invertible maps are utilized to 

generate chaotic sets. We will illustrate some of well-

known one-dimensional maps as: 

3.1.1  Logistic map 

The Logistic map is defined by: 

          (     )   (   )                 (15) 

3.1.2  Sine map 

The Sine map is written as the following equation: 

     
 

 
   (   )    (   )                   (16) 

3.1.3  Iterative chaotic map  

The iterative chaotic map with infinite collapses is 

described as: 

        .
  

  
/    (   )                          (17) 

3.1.4  Circle map 

The Circle map is expressed as: 

          (
 

  
)    (    )            (18) 

3.1.5  Chebyshev map 

The family of Chebyshev map is written as the 

following equation: 

        (𝑘   
  (  ))     (    )                 (19) 

3.1.6  Sinusoidal map 

This map can be represented by 

        
     (   )                                           (20) 

3.1.7  Gauss map 

The Gauss map is represented by: 

      {
                           
 

  
                 

                             (21) 

3.1.8  Sinus map 

Sinus map is formulated as follows: 

        (  )
     (   )                                      (22) 

3.1.9  Dyadic map 

Also known as the dyadic map bit shift map, 2x mod 1 

map, Bernoulli map, doubling map or saw tooth map. 

Dyadic map can be formulated by a mod function: 

                                                             (23) 

3.1.10  Singer map 

Singer map can be written as: 

      

 (              
         

        
 )      (24) 

  between 0.9 and 1.08 

3.1.11  Tent map 

This map can be defined by the following equation: 

     {
                              

 (    )               
                          (25) 

 

IV.  THE PROPOSED ALGORITHM (IFCH) FOR SOLVING 

DEFINITE INTEGRAL 

Suppose that segmentation S splits an integral interval 

[a,b] into n-subintervals: 

[x0,x1],[x1,x2],…,[xk-1,xk],[xn-1, xn], where xj< xj+1 for j 

= 1,2,…,n-1; x0 = a, and xn= b, also define xk= xk - xk-1 

for k = 1,2,…,n. Using this notation, the integral f(x) in 

[a,b] can be approximated as[ 36]: 

∫  ( )
 

 
 ∑

 

 
(

 (    )

   .
       

 
/

  (  )

)   
 
                     (26) 

In the proposed chaotic Firefly Algorithm, we used 

chaotic maps to tune the Firefly Algorithm parameters 

and improve the performance [20]. The steps of the 

proposed chaotic firefly algorithm for solving definite 

integral are as follows: 

Step 1 Generate the initial population of fireflies, 

*             + 
Step 2 Compute intensity for each firefly 

member,*             + 
Step 3 Calculate the parameters (     ) using the 

following Sinusoidal map[35]: 

        (    
  (  ))   (    ) 

where   is the iteration number. 

Step 4 Move each firefly xi towards other brighter 

fireflies. The position of each firefly is updated by  

  (   )    ( )     
    .  ( )    ( )/      

Where   computed by the following randomness 

equation as shown below:  

        (    

     ) (
    
       

 

    
      

 
)                   ( ) 

In this equation    represents randomness parameters 

at cycle i.      and      represent maximum and 
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minimum randomness parameters defined in the 

algorithm respectively.     
  and     

  represent 

maximum light intensity, minimum light intensity and 

mean value of light intensity of all fireflies at cycle i 

respectively. 

Step 5 Update the solution set. 

Step 6 Terminate if a termination criterion is fulfilled; 

otherwise go to Step 2 

 

V.  NUMERICAL RESULTS  

Several examples have been given to verify the weight 

of the proposed algorithm. The initial parameters are set 

at n= 40; maximum iteration number = 100;         ; 

        .  

The results of IFCH algorithm are conducted from 30 

independent runs for each integrand. The selected chaotic 

map for all examples is the Sinusoidal map for       

values, and randomized for   values, whose equations is 

shown above. 

All the experiments were performed on a Windows 7 

Ultimate 64-bit operating system; processor Intel Core i5 

760 running at 2.81 GHz; 4 GB of RAM and code was 

implemented in C#. 

The integral values of functions x2e-x,cos2x , sin2x in 

[0,2 ] ; 1/1+x2 in [0,1] ; 1/x in [1,2] and 1/linx in [2,3] are 

selected for experiments. 
 

Table1. The best results of selected functions 

F(x) Monte Carlo Method Midpoint Rule Trapezoidal Rule Simpson’s Rule IFCH Exact Value 

x2e-x 0.646649 0.646659 0.646633 0.646651 0.646647 0.646647 

sin2x 1.1892 1.19047 1.18667 1.1890 1.1892 1.1892 

21

1

x
 0.785396 0.786231 0.783732 0.785395 0.785398 0.785398 

Cos2x 1.9766 2.5017 1.9989 1.9990 1.0174 1.0174 

1

x  

0.6924 0.6912 0.6970 0.6933 0.6931 0.6931 

linx

1

 

1.1187 1.4164 1.1223 1.1185 1.1184 1.1184 

 

 

The results of IFCH algorithm are privileged compared 

with the results of the Monte Carlo method, trapezoidal 

rule, Simpson’s rule and midpoint rule. In comparison 

with exact values, we find that the results of IFCH 

algorithm are very close to the exact values of the 

selected functions under study. If a large number of well-

behaved one-dimensional integrands are to be integrated, 

and the user is willing to do some analytic analysis to 

obtain efficiency, then it is hard to go past the classical 

methods. Usually though, users will choose to use IFCH 

algorithm, to save time and to gain reliability. 

The reason for getting better results than the other 

algorithms considered is that the search power of Firefly 

Algorithm. Adding to this, using chaos helps the 

algorithms to escape from local solutions. 

 

VI.  CONCLUSIONS 

This paper introduced an improved Firefly Algorithm 

by blending with chaos for calculation the numerical 

value of definite integrals. This algorithm has the ability 

to trounce the shortage that the segmentation points are 

uniform in traditional methods. Many simulation 

examples show that the algorithm can converge to the 

best solution, and it has a high convergence rate and high 

accuracy. 
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