
I.J. Information Technology and Computer Science, 2014, 06, 61-67 
Published Online May 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijitcs.2014.06.09 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

Impact of Collaborative ALM on Software 

Project Management 
 

Engr. Tahmoor Shoukat 
University of Engineering and Technology, Taxila, Pakistan 

Email: tahmoor.shoukat@gmail.com 

 

Muhammad Nadeem Majeed 
University of Engineering and Technology, Taxila, Pakistan 

Email: nadeem.majeed@uettaxila.edu.pk 

 

 

 
Abstract — To produce a release of software, ALM is a key for 

streaming the team’s ability. ALM consists of the core 

disciplines of requirements definition and its management, asset 

management, development, build creation, testing, and release 

that are all planned by project management and orchestrated by 

using some form of process [1]. The assets and their 

relationships are stored by the development team repository. 

Detailed reports and charts provide visibility into team’s 

progress. In this paper we will describe how the ALM involves 

software development activities and assets coordination for the 

production and management of software applications 

throughout their entire life cycle. 

 

Index Terms — Application Lifecycle Management (ALM), 

Service-oriented architectures (SOAs), Software Development 

Life Cycle (SDLC), Configuration Management (CM) 

 

I. INTRODUCTION 

ALM describe management methods for development 

of software and IT infrastructure by process automation 

from one end to another, and integration of information 

from different steps. Accuracy and regularity is attained 

along with automation opportunities are introduced 

through integration. 

ALM solutions defined by Forrester [2] as: 

“Integrated tool sets that support and unite the 

following life-cycle activities: requirements management, 

design and modeling, development, software 

configuration management (SCM), and testing.” 

The three core pillars of ALM are: 

1) Artifacts relationship and their complete traceability: 

This is usually a manual process, where increase in 

effort required with the increase in size of projects, 

the number of artifact interdependencies and the 

varying size and scope.  Traceability is necessity for 

the compliance of new requirements. 

2) High-level processes automation: Paper-based 

approvals are commonly used in the development 

organizations to manage the handoffs between 

functional domains. ALM increases the worth of 

handoffs through automation and maintaining the 

centralized repository for all related documents.  

3) Visibility can be increased with reporting: Usually 

managers have limited visibility of development 

projects to track progress. Limited visibility and lack 

of reporting hinders the possibilities for process 

improvement. ALM provide the deep-dive analysis 

of all activities with integration and automation 

provides the status in real-time. 

Automation, traceability and tracking accurate progress 

usually difficult to achieve because contrasting tools do 

not provide adequate integration. For makers, ALM 

solution has been a junction to build modeling tools, 

visualization tools, compilers, IDE’s, source code and 

configuration management tools. 

Main advantage of ALM solution is that, all the 

stakeholders of project share the updated information. 

Here project managers, developers, testers, architects, 

system administrators, business sponsors and users are 

considered as stakeholders. Activities typically supported 

by ALM solution are requirements elicitation, modeling 

for solutions, visual designs, development, quality control, 

maintenance and issue tracking. All the artifacts resulted 

from these activities are linked together through ALM 

tools. 

The remainder of this paper is organized as follows: 

Section 2 describes the impact on People, process, 

information and tools. Section 3 describes the knowledge 

areas for effective ALM and SPM. Section 4 highlights 

the business issues and Section 5 explains success 

indicators. Conclusion added in the final section. 

 

II. PEOPLE, PROCESS, INFORMATION, AND TOOLS THAT 

DRIVE THE LIFE CYCLE 

In real world, peoples from the various teams are 

distributed around the world and they must co-ordinate 

and collaborate to develop the applications in limited 

time, while in some cases stick to government regulations. 

To streamline the team’s performance and efficiency 

without obstructing the progress is major challenge at any 

point of the software development.  Products must be 

exposed to market to receive the changing response and 

products must be constantly updated to retain the interest 

and fresh look. That’s why the demand has dramatically 



62 Impact of Collaborative ALM on Software Project Management 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

increased and life span of software applications has 

shortened. Software development teams must produce the 

competitive and meaningful products at un-parallel rate.  

In this kind of environment, teams can no longer work 

in silos where one team throws a solution “over the wall” 

and the next team to test and deploy after integration. 

Also the disciplines of software development are not 

treated as silos where one team member only handles 

requirements while another develops the source code or 

only test the software. Business demands software that 

meets the user needs. Operational teams should know 

how to manage applications and handle problems. 

Business analyst is more involved in development 

process so that the developers understand the 

stakeholder’s needs with more detailed insight of 

business processes, design and assets reuse to implement 

and test the system. Business analysts are also closely 

aligned to testers to ensure the high quality of software 

applications driven by customers. 

As a result, teams take a much different approach to 

software development using agile development, mock-

ups, faced iterations with potentially shippable 

increments and constant review meetings and interaction 

session with stakeholders.  Development teams should be 

aware of and responds to customer feedback. In addition, 

teams have no longer relaxation of 18 to 24 month 

development cycles where each detail is keenly planned 

and designed [3]. Waterfall approaches to software 

development have given the way to short iterative agile 

approaches. Feedback loops in agile are necessary for 

producing software that could meet the users 

requirements. 

ALM not only brings these disciplines and teams 

together; it also clears the ambiguity of their progress and 

inspects the working of teams. Now a day it’s difficult for 

software development teams to function without it. 

 

 

Fig. 1. The coordination of people, process, information and tools in 
ALM [1] 

 

Coordination and contributions between team members 

lies at the heart of ALM. This involves people, process, 

information and tools with transparency aspects and 

shared responsibility for success. Fig1 provides a 

simplified view that involves a series of contributions 

between team members; what one team member produces, 

another team member consumes. Understanding the 

relationship helps to manage their efforts, rationalize the 

ability to produce software and produce a healthy 

software development environment. 

The term Application Lifecycle Management comes to 

define the market demands for a suite of integrating tools 

that help teams to manage the assets in software project. 

ALM can also be defined with the set of roles associated 

with specialized set of tools. With this definition, analysts, 

architects, testers, build engineers, deployment resources 

and project managers were all considered as key 

members and this approach is successful at broadening 

the definition of software development team [4].  A by-

product of this role-based approach led to silos of 

capability.  

Key business challenges are: 

 Reduce the cost of development 

 Increase the productivity of Staff 

 Decrease time of product to reach market 

 Improve Product Quality 

 

A.  Awareness Barriers 

There is no doubt that the biggest challenge in software 

development is awareness. Each area managing their 

assets with their own set of tools and repositories. So it’s 

quite difficult for the teams to collaborate and merge their 

effort for the common cause. So the information about 

the project, the teams and the outcome is crucial to 

manage the solution through complete life cycle. 

1) Project awareness: If the project teams are 

distributed around the globe, it’s extremely difficult 

to collect and manage project metrics. Management 

and multiple releases and immediate tool selection 

helps to fix a high priority defect in production 

system. Tracking the work of team individuals who 

are distributed around the globe and collaborating on 

the multiple releases at a time is critical for project 

success. 

2) Team awareness: Individual team members should 

learn to effectively switch the context as they needs 

to move from one project to another. They should be 

aware about culture, policies and practices of the 

team they are going to join. They should also know 

how project is configured, how to report changes 

and how whole team is progressing.  

3) Build awareness: In general, build present the 

functional features irrespective of internal details. 

Testers are ready with test scripts and test cases 

when build is ready if they know what is planned for 

coming build [7]. Also the whole team should know 

about the changes that are implemented in the build 

and what defects are handled. That will help them to 

catch the ripples produced as a result of some defect 

fix and also help the test team to target their effort 



 Impact of Collaborative ALM on Software Project Management 63 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

and apply meaning full test cases. When build face 

major problem, the team troubleshoot the context 

and efficiently fix the problem. 

B.  Organizational barriers 

Organizational boundaries prevent the teams to 

collaborate as free as they need to be successful. Because 

of those boundaries visibility of cross-team and their 

interaction is limited. Different organizational cultures, 

embedded politics and management support affect the 

progress. Teams should overcome those barriers to 

produce successful products. 

C.  Functional Barriers 

Software development involves different roles. As a 

result, multiple tools are used for each discipline. 

Different tools and vendor choices are done to facilitate 

the needs for each discipline. Role of Managers is quite 

critical because they are responsible for integrating 

multiple teams using different tools provided by multiple 

vendors.  

D.  Geographical Barriers 

Multiple challenges rose when teams are distributed 

around the globe. In order to complete their work all team 

members coordinate and collaborate efficiently and they 

should have access to each other’s work. High speed 

networks are necessarily in all locations for their 

communication [5]. Even those barriers are conquered, 

team members must gain respect for other’s cultures and 

develop understanding how and when they communicate 

to each other. 

E.  Technology Barriers 

New architectures like SOAs demand new skill set and 

new approach to software development. Also 

organizations faced the challenge to retraining workforce 

which can be pricey and time consuming. With the 

offshore development and outsourcing, new coding 

practices and techniques are evolved. Mangers need to set 

up the coding practices and analysis of source code to 

ensure the source code consistency. As enterprises looks 

to develop enterprise architecture so the need to be 

consistent in all business units is crucial. If multiple 

teams implement the same solution in different ways is 

not only time wasting but this inefficient way also 

confuse the stakeholder as well. Users who got multiple 

approaches recognize the enterprise as disorganized. Such 

practices can lead to a loss of business.  

 

III. EFFECTIVE ALM AND SPM 

ALM coordinates the flow of people, processes and 

information in an iterative cycle of software delivery 

activities [6]. The coordination is made possible by 

applying the business management capabilities which are 

also addressed in the PMI’s knowledge areas: 

 Planning and change management  

 Requirements definition management  

 Architecture management  

 Software configuration management 

 Build and deployment management 

 Quality management 

 

IV. KEY BUSINESS ISSUES 

Generally numbers of common issues are faced by our 

technical and business decision makers. 

 

 

Fig. 2. Business issues addressed by organizations [8] 

 

Four common challenges faced by every organization 

are: 

1) Limited visibility of status: If organization not able 

to enforce the accountability, responsibility, check 

points and sign-offs, then this would be the totally 

project management issue. If organization not able 

to involve the stakeholder, not able to provide 

precise estimation and not able to bend the timeline 

of project then these are the signs of management 

issues.  

2) Effective communication between teams: Merging 

the work across organizations and provide effective 

medium for communication is extremely critical.  

3) Matching business needs with risk: Change in 

requirements, unrealistic estimates, ambiguous 

business objectives and rapidly developing 

technology contain this issue. 

4) Unpredictable delivery times and quality: 

Maintaining functional requirements, requirements 

for quality of service, schedule and budget is a major 

challenge. Bugs found at the last moment during 

testing in production occurred too frequently.  

 

V. SUCCESS INDICATORS 

In Collaborative Application Lifecycle Management 

(CALM), Assets are produced by certain roles in life 

cycle. To succeed in this orchestration of people and 

assets, CALM relies on the following key points to 

effectively develop software: 



64 Impact of Collaborative ALM on Software Project Management  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

 Collaboration 

 Distribution 

 Traceability 

 Automation 

 Continuous improvement 

A.  Collaboration 

CALM focuses on the management of entire team and 

their handoffs working across domains. These points of 

integration make development process efficient and if 

they are missing they create problems between team 

members. Using CALM, it is not satisfactory if a team 

member works in isolation, because CALM demands 

collaboration in order to complete their own tasks. 

Decisions are made that will help the whole team to 

progress, and also letting all team members aware of 

what other team members are doing. In Soccer, all team 

members collaborate to move the ball forward and stop 

the opposition to score. If each team member plays alone 

irrespective of other players on the field, their success 

chances are very limited. To increase their chances of 

winning, they should collaborate according to the 

situation on the field.  

Similarly development of software is a team sport. 

Being successful does not mean that you can act alone, 

the best team members are collaborators. Like a 

successful soccer team, collaborators work each other and 

respond according to the situation of the project. The 

agilists were the first ones who discover the need of 

collaboration and now everyone realize the need. 

Software product is the result of many conversations. 

Teams must be able to coordinate in many ways 

described below: 

 Team awareness enables team members to know 

who is available online so that they can interact. 

 Instant messaging enables the team members to 

interact each other instantly irrespective of their 

geographic position. A good example is a developer 

who communicate with tester over a bug to produce 

it again. 

 When team members subscribe to RSS feeds, they 

are notified about the events occurred within the 

repository. User can also subscribe for the feeds on 

single artifacts to get notifications whenever some 

changes has been made.  

 Ratings enables the team members to rate the quality 

of work, thus enabling the community to judge the 

value. Poor quality assets can be improved, while 

good quality assets are utilized often with 

confidence, thus improving the quality of overall 

assets. 

 Tagging provides the option to tag resources and 

find them instantly without relying on the search. 

User can tag things to their work thus making it 

easier to locate when required. 

An ALM solution provides support to the user 

irrespective of what they are and where they are. It must 

provide support for collaboration that results the creation 

of assets. 

 

 

B.  Distribution 

To support the decisions for agile business and 

flexibility, enterprise ALM platform are required to 

integrate roles, teams, workflows and repositories. 

Now a days in software development, teams are 

distributed geographically. No matter team members are 

in same country or different countries, are working in 

home or a third party outsourced, development teams are 

hardly at same place. An ALM solution will be effective 

by providing the high-speed connection to all members. 

High security standards on the assets are also introduced 

with the rise of outsourcing work. Visibility to the assets 

must be controlled with in the repositories.  

With team’s distribution, systems are also distributed 

that manage the assets throughout the enterprise. An 

ALM solution must connect the team irrespective of 

where they are located and where their assets are stored. 

C.  Traceability 

Tagging other resources both internal and external to 

the assets provides traceability. Now a days in software 

development, linking the related resources becomes an 

essential need in completing tasks. For example, while 

writing the test case, tester must review the requirements 

that the test must validate. Requirement link added with 

the test case, streamlines the ability to complete the test 

case writing. 

Traceability also enables to traverse the linkage 

between the resources. For example, traceability in 

artifacts enables the architect to check how many test 

cases are applied to validate the specific requirement. 

Another example is to check how many bugs exist for 

meeting the specific requirement.  

Traceability also enables the team to provide details 

answers to a regulatory audit. By having the traceable 

repositories, a team can respond to auditor’s questions 

relating the number of changes done into a release and 

how changes are validated. Traceability helps to complete 

our work by providing the ability to access resources in 

context of work. Also helps to understand the 

dependencies and relationships between resources. 

D.  Automation 

Fundamentally ALM involves management of cycle. 

However, it is interesting to note that there are interim 

cycles within cycle for a software project. Some tasks are 

creative in nature and require attention to resolve. Other 

tasks, however are repetitive and not creative. Those 

noncreative tasks can be disposed with automation. 

Testing is the major example and automation makes it 

much easier. 

To streamline the lifecycle, many other forms of 

automation can be utilized. For example, build creation 

brings value to team members by automating the 

processes of build system, applying validators (baselines) 

to source control systems, conducting and running build 

verification tests, and staging and packaging the 

distribution store for test team. Thanks to automation, 

kicking off the build now involve the full process. 

“Scanning” such as static analysis of source code can 

also be done with automation. Developers usually 



 Impact of Collaborative ALM on Software Project Management 65 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

perform static analysis before delivering their changes or 

it can be added during the build process before the 

compilation. Source code quality and consistency in code 

can be improved by this type of analysis. Security scan is 

also performed with a predefined criteria. This scan 

works in same manner as virus scanning on home PC. 

The definitions are created by vendors and organizations 

use the scanning tools perform the job by keeping the 

definitions up to date. The scanning tools produce the 

results in the form of threat identification and then threats 

can be treated before releasing the application to 

production. Security scans test the application with the 

predefined definitions and set of tactics usually used by 

hackers. Organizations can identify the threats by using 

this type of automation. Compliance scan also works in 

same manner where test are performed with certain 

regulations. The scan highlights the noncompliance and 

team respond to those violations. 

Noncreative and repetitive tasks should be performed 

with the automated processes of ALM solution in a 

traceable and meaningful manner. 

E.  Continuous Improvement 

If software development team seeks the effectiveness 

of ALM then this team must seek areas of improvement. 

Continuous planning, integration and testing are the key 

areas for consideration [11]. 

1) Planning and feedback: Planning for project is a 

continuous activity that involves evaluating the 

current system, identifying the weak areas and 

making corrections. Project planning includes 

following dimensions: 

 Cadence 

 Transparency 

 Application health 

 Retrospectives 

2) Integration: Continuous integration occurred at 

various levels, between the developers, team build 

and solution level build. Usually developers code 

and test their changes before committing the 

changes to team repository so the integration starts 

with the developers. In some cases, build scripts and 

build environment that are used by developers are 

different from the team environment. Which causes 

problems for the developers when they commit their 

changes. An effective integration through ALM 

solutions ensures that the consistent build 

environment should be used by all the team 

members. 

3) Testing: It is no longer acceptable to perform testing 

at the end of development. Rather reactive teams 

involve testing throughout the development cycles 

as specified by the following types of testing which 

contributes software quality improvements. 

 Developer testing 

 Build verification testing 

 Test planning 

Testing is added as part of each iteration in iterative 

models. Each iteration involves unit testing, build 

verification, functional, integration and system testing 

and testers are involved in multiple phases of testing. 

VI. STEPS TO IMPLEMENT APPLICATION LIFECYCLE 

MANAGEMENT 

Application lifecycle management (ALM) is different 

from Software development cycle (SDLC). ALM which 

is a part of SDLC provides more details how application 

is developed. Now days each company manage its 

application development in different way. Department 

and manager have its own method of supervising and 

conforming standards during application development. 

For example, a company which follows waterfall SDLC 

is different from a company that follows agile SDLC. 

Now days, almost every tool provide an integration 

options with ALM and each company will use it 

according to its needs. 

Through the software development methods which are 

used by companies, ALM is indicative of how well its 

end product will meet the milestone for being successful.  

All external and internal stakeholders should be agreed 

upon on the ALM processes during and after the 

application development.  A standalone role or person 

can’t take the place of a multidimensional process.  

Sometimes project manager dictates the project process 

based on his or her priorities of what process should be—

though he or she is more concerned about time, scope and 

cost. The impact of ALM and process is the responsibility 

of quality assurance department. 

There are 11 steps to successfully achieve the 

application lifecycle management [9]. 

1) Defined roles should be part of the ALM: Define 

the responsibility of each role in Software 

technology, Information technology, Quality 

assurance, Software testing and the business 

stakeholders on customer side.  

2) Goals and objectives should be defined for each 

role: If this step is not followed then the details for 

each role will not be unstated and the question of 

“what will I do?” will never be lucid. This step 

helps to avoid finger pointing each other. 

3) Foresee the dependency of internal-processes: 

Mark the outline and explain which roles and what 

work will depend on your deliverables and actions. 

If this is not mentioned clearly, other people on the 

project assume that time is not crucial or 

milestones can be postponed or covered later if 

done improperly. A proper ALM process ensures 

that all work is done correctly and follow standards 

for quality.  

4) Develop a risk and contingency plan: Each step in 

the process has the potential to give impression if 

something goes wrong. You have to think about the 

possibilities how a missed deadline and objective 

could be maintained without a major interruption to 

the overall ALM process. If the risks are not 

understood and maintained from the start of the 

project, then you will face the catastrophic effects 

later in the project. Problems distressing time, 

functionality, outcome, quality, performance 

improvement, security concerns and budget all add 

to the risk of the end product.  



66 Impact of Collaborative ALM on Software Project Management  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

5) Process preparation: Defining the flowing path of 

documentation and communication is quite 

important for ALM. That’s the point where the 

SDLC comes to play and company or department 

defines how they will operate. 

6) Predict the potential output from each individual: 

Recognize the capabilities of each person in your 

team and expect the outcome accordingly. 

7) Plan again and again: In order to make ALM 

successful and beneficial, then detailed planning is 

a must. At the start of each project each role must 

be defined and their role’s objectives, needs and 

dependencies should be known. 

8) Effect of communication: Communication with the 

customer is crucial because client expects 

something whenever you interface with him/her. 

As earlier your clients are involved, they will feel a 

part of the process and accept your ideas and 

thoughts. 

9) Apply quality assurance checkpoints: Usually 

quality analyst set up the checkpoints to ensure that 

the ALM process is working. (Here quality analyst 

is different from the software tester, Quality analyst 

ensure that all the processes are running). When 

project is being executed by a project manager, 

they also want to manage ALM; in that case it’s 

hard to give good quality assurance since there is 

no opportunity for outside entity to perform 

evaluation. Checkpoints added by the quality 

analyst helps to balance the process. 

10) Work for continuous improvement: It is QA’s 

responsibility to highlight what went right and 

what went wrong in order to correct any problems 

in the process at the end of each lifecycle attempt. 

A document “lessons learned” should be created 

and offered to all the major stakeholders to rectify 

the problems and improve for the next attempt. If 

this doesn’t happen then the process truly not exist 

and shows that one person on team is “running the 

show” instead of collective group [10]. 

11) Provide control: When the baseline is set, all 

process activities must go through the formal plan 

to ensure new rules within the company’s adoption 

of ALM process. That’s why the quality assurance 

checkpoints are so important. QA monitors the 

processes that are applied and control works with 

in-house regulatory and audits for standards. 

 

VII. ALM QUALITY DASHBOARDS DESIGNING AND 

IMPLEMENTATION 

Managers’ needs to deal with different software 

projects at the same time and there are a lot of challenges 

they face each day. Identify the nature of projects and the 

measure make sense across projects, implication of data 

collected from the various sources, handling them across 

different project sizes, choosing meaningful ways to 

present information and effective utilization [12]. 

Targeting the analysis, design and execution formulate 

the dashboards actionable, intuitive and effective. 

A.  ALM quality dashboard analysis 

1) Metric: Metrics are required for the dashboards that 

incorporates all the phases of application lifecycle – 

requirement elicitation, design, development, testing 

and maintenance. Also should care about the 

efficient collection and effectiveness of metrics. For 

example, effect measure for requirement elicitation 

should be balanced with the effective measure for 

end user satisfaction. If the addressed requirements 

are not prioritized and work in the same systematic 

manner for the reasonable period of time, end user 

would be not satisfied and may feel that they are part 

of lengthy accumulation.  

2) Normalization: Applications may vary in size; 

mainframe-based, enterprise-level, client server or 

mobile. They may encompasses multiyear, large-

funding projects or short-run, simple projects. The 

dashboard needs to have same measures on all 

projects so that they can be comparable in 

meaningful manner. Often for meaningful 

comparisons, weighted projects based on size and 

complexity.  

3) Actionable metrics: If the metrics are a part of an 

ALM dashboards, they should be actionable and the 

actions taken from the metrics should be practical 

and implementable to improve the ALM quality. 

 

B.  ALM quality dashboard design 

1) Minimum no. of metrics: If too many metrics are 

provided, ALM quality dashboards would be useless. 

The main idea of the dashboard is to provide 

comprehensive picture of quality through the metrics 

without spending a lot of time. It is always a good 

practice to classify the metrics as primary 

(mandatory) and secondary (Optional) on the basis 

that how much they affect the quality of ALM. And 

the primary ones should be provided on dashboards. 

2) Detailed display: Try to keep all quality information 

on a single dashboard screen, whether it’s webpage 

or a pop-up on a computer or mobile device. Mobile 

devices like smartphones and tablets are becoming 

ideal for dashboards. 

3) Filter capabilities: Dashboards just provide you 

summary for analysis. Advance actions might not be 

feasible without the in-depth metrics analysis. 

Filtering will help user to extract the variances with 

convenient accessible statistics. 

 

C.  Execution and Follow-up 

Various test management solutions provides the data 

for quality metrics. This info is managed in centralized 

manner so that desired analysis and action could be done.  

Feeds are managed on the dashboards coming from db 

queries, data in files, sheets and reports [13]. Monitors 

should be applied on such sources to make sure that the 

data have been received from all sources before generated 

on dashboards. 

1) Comparing timeline: The timelines presented in the 

data should be comparable because data sources are 



 Impact of Collaborative ALM on Software Project Management 67 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 06, 61-67 

directly linked with dashboards and timelines 

coming from files and reports are managed in 

synchronized manner.  

2) Actions to make it correct: Actions which are taken 

to correct should be linked with the dashboards to 

people those are responsible for quality metrics. If 

queries or notes can be directly emailed to the liable 

person that will provide/improve the sequence of 

corrections at the level of drill-down. 

3) Follow-up and repeat: Reporting tools should 

provide feedback and discussion options as feedback 

loop fashion. Metrics which are not easily accessible 

and actions which needs to be taken should be 

available on the dashboard for convenient 

accessibility.  

ALM quality dashboards provide a large amount of 

details for their tracking, analysis and decision needs to 

be taken. In product lifecycle, development teams might 

be geographically dispersed and applications vary in size 

and complexity [14]. Creating a single ALM quality 

dashboard in those cases is difficult and challenging, but 

if we design and implement the dashboard for efficiency 

and effectiveness by focusing on key characteristics. 

 

VIII. CONCLUSION 

In this paper, we provide the blueprint for 

Collaborative Application Lifecycle Management 

(CALM) and demonstrate how the CALM solutions 

support the development organization by relating with the 

basic aspects of Software Project Management. In this 

paper, we provide the steps for deploying ALM solutions 

into an existing enterprise environment. Our primary 

focus is to highlight the value of CALM by explaining a 

user view of the solution that supports distributed 

enterprise development team that incorporates the critical 

aspects of “Agility-at-Scale” approach. 

 

REFERENCES 

[1] Göthe, M., Pampino, C., Monson, P., Nizami, K., Patel, K., 

Smith, B. and Yuce, N. (2008) Collaborative Application 

Lifecycle Management with IBM Rational Products, An 

IBM Redbooks publication, December 2008.  

[2] Schwaber, C. (2006) The Changing Face of Application 

Life-Cycle Management, Forrester Research Inc., White 

Paper, 18 August. 

[3] Jalali, S. and Wohlin, C. (2010) Agile practices in global 

software engineering – a systematic map, International 

Conference on Global Software Engineering, ICGSE 2010, 

Princeton, NJ, USA, August 23–26, 2010, pp. 45–54. 

[4] Goth, G. (2009) Agile Tool Market Growing with the 

Philosophy, IEEE Software, Vol. 26, No. 2, pp. 88–91.  

[5] Battin, R.D., Crocker, R., Kreidler, J. and Subramanian, K. 

(2001) Leveraging resources in global software 

development, IEEE Software, Vol. 18, Issue 2, March-

April 2001, pp. 70–77  

[6] Driving Your Business Forward with Application Life-

cycle Management (ALM), Microsoft, White Paper, 

August 2007. 

[7] “Eleven steps to kickoff application lifecycle management” 

by John Scarpino, D. Sc. 

[8] Doyle, C. and Lloyd, R. (2007) Application lifecycle 

management in embedded systems engineering, Embedded 

System Engineering (ESE magazine), Vol. 15, No. 2, 

March, pp. 24–25. 

[9] Carolyn Pampino (2011) Five imperatives for effective 

Application Lifecycle Management, IBM December 2011. 

[10] Ebert, C. and De Neve, P. (2001) Surviving global 

software development. IEEE Software, Vol. 18, Iss. 2, 

March–April 2001, pp. 62–69.  

[11] Booch, G. and Brown, A. (2003) Collaborative 

development environments, Advances in Computers, Vol. 

59, Academic Press.  

[12] Nari Kannan (2012) Designing and implementing ALM 

quality dashboards. ALM and Agile Strategies - July 2012, 

Vol. 1 Iss. 3 

[13] Dearle, A. (2007) Software deployment, past, present and 

future, Future of Software Engineering (FOSE ‘07), 23–25 

May, Minneapolis, MN, USA, pp. 269–284.  

[14] Murta, L., Werner, C. and Estublier, J. (2010) The 

Configuration Management Role in Collaborative Software 

Engineering, In: Mistrík et al., Collaborative Software 

Engineering, Springer-Verlag, Berlin, Heidelberg, pp. 

179–194. 

 

 

Author’s Profiles 

Engr. Tahmoor Shoukat is MS Scholar 

in Department of Software Engineering at 

University of Engineering & Technology, 

Taxila. He has done his BSc Software 

Engineering (with distinction) from the 

same the university in 2009. He worked in 

various Software organizations in Pakistan. 

Currently he is working in Ministry of 

Defense, Pakistan. His areas of interest are Digital Image 

Processing, Software Quality and Software Project Management. 

 

 

Muhammad Nadeem Majeed is PhD 

Scholar in Department of Computer 

Engineering at University of Engineering 

& Technology, Taxila. He holds a MS 

degree in Computer Engineering from 

Center for Advance Engineering, 

University of Engineering & Technology 

Taxila and has 11 years teaching 

experience. He is currently serving University of Engineering & 

Technology as Assistant Professor and working on Optimized 

Vertical handoff algorithms in vehicular Ad-hoc network. His 

research related to Risk management in IT industry of Pakistan 

which is aimed to aid different managers and team leads to 

manage the risk in their software development 

 

 

 

How to cite this paper: Tahmoor Shoukat, Muhammad 

Nadeem Majeed,"Impact of Collaborative ALM on Software 

Project Management", International Journal of Information 

Technology and Computer Science(IJITCS), vol.6, no.6, pp.61-

67, 2014. DOI: 10.5815/ijitcs.2014.06.09 


