
I.J. Information Technology and Computer Science, 2014, 07, 32-39
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.07.05

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

Improving the Performance of Semantic Web

Services Discovery: Shortest Path based

Approach

Maamar Khater
Computer Science department of Tahar Moulay University, Algeria

Email: khater.maamar@gmail.com

Mimoun Malki
Computer Science department of Djillali Liabes University, Algeria

Email: malki@univ-sba.dz

Abstract— Service discovery is the process of retrieving the

service most similar to the query based on the description of

functional and/or non-functional semantics. The original

algorithm used in literature was proposed by Paolucci et al.,

2002. Some research works, propose an extension or an

improvement of this algorithm to correct the matchmaking used.

In this paper we present an algorithm of matchmaking that

resolves the problems of Paolucci algorithm by using the

shortest path algorithm which determines the optimal matching

between user query and provider service. This approach is

validated within a framework proposed at the end of this paper

and compared with the greedy approach and the bipartite graph

based matching.

Index Terms— Web Services, Ontology of Service OWL-S,

Discovery, Matchmaking, Graph, Shortest Path

I. INTRODUCTION

The semantic web services are services with semantic

descriptions. This semantic description is provided by

ontologies which are one of significant semantic web

technologies where the main objective is to increase the

degree of automation of standard tasks such as discovery,

selection, composition, etc. In literature, there are two

approaches to describe the semantic web services. The

first approach presents a description based on annotations.

In this category, the web service is in its syntactic form,

and it is enriched with semantic annotations associated

with ontology. In this approach, the description is

independent of a particular ontology language. As

implementation of this approach we find: Semantic

Annotation for Web Service Description Language –

SAWSDL-, Web Service Semantics -WSDL-S- [1], and

Universal Service-Semantics Description Language –

USDL-. Another approach for the semantic description of

RESTful services is Semantic Annotation for REST

services -SA-REST-. The second approach presents a

description based on semantic language. In this category,

we choose from the beginning a semantic language to

describe the service. As implementation of this approach,

we find: Ontology Web Language for Services -OWL-S-,

Web Service Modeling Ontology –WSMO-[2].

In addition, there are other proposals aim to describe

semantic web services, like easy-L, and pyramid-S [3]. In

this paper, we focus our study on the ontology of services

OWL-S which is defined as a semantic language for

describing Web services in an unambiguous way; this

ontology is based on OWL language. OWL-S [4]

describes the service in three ways as depicted in figure 1.

The service profile tells "what the service does". It

contains the name of the service and its textual

description, the description of functional properties (Input

Output Precondition Effect -IOPE-) and non-functional

properties (Quality of Service –QoS-). Many approaches

of service discovery are based on the elements of the

profile as criteria (called black-box Service matching

approaches).

The service model tells a client how to use the service.

It describes the internal running of the service which is

modelled as a process and a set of control flow. There are

three types of processes:

Atomic process corresponds to a single operation

(single interaction); composite Process corresponds to a

combination of processes (atomic or not) using control

constructs (Sequence, Split, If-Then-Else etc.); finally

Simple Process is not executable (or invoked). It provides

an abstraction mechanism to provide multiple views of

the same process.

Fig. 1. Top level of the service ontology [4]

Service grounding specifies the details of how an agent

can access a service. Typically grounding will specify a

communication protocol, message formats, and other

service-specific details such as port numbers used in

contacting the service.

mailto:fxzhu@public.wh.hb.cn

 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach 33

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

The rest of this paper is organised as follows. Section 2

presents an overview of some existing semantic web

service matchmakers. Section 3 presents a review of

some extensions or improvements of greedy algorithm.

Section 4 describes our proposition for semantic

discovery. Finally, the paper is concluded in section 5.

II. SEMANTIC WEB SERVICE DISCOVERY

Service discovery is the process of retrieving the

service most similar to the query based on the description

of functional and/or non-functional semantics. In

literature, some researchers deem service discovery

system as matchmakers; and in other works it covers the

entire spectrum of tasks from service request to service

invocation which means the inclusion of the selection

process. In general, any service discovery framework

needs to define the matchmaker which evaluates the

similarity metric between two services. We have two

kinds of result returned by the discovery system:

- Exact discovery: in the case where exist a service

which satisfies exactly the user requirements.

- Approximate discovery: is considered as realistic

case, the discovery system returns a service (or set

of services) which satisfies approximately the user

requirements.

We can classify the related work on service matching

in two categories of criterion:

- Category 1: {logic-based matching, non-logic-based

matching, hybrid matching}

- Category 2: {interface level, process level, hybrid

level}

An overview of some existing semantic web service

matchmakers is illustrated in table 1.

In this section, we define the principle of each element

of both categories.

- Logic-based matching: the matchmakers use the

semantic relations and logic inference to measure the

similarity between two services. The degree of

logic-based matching can be determined either (a)

exclusively within the considered logic theory by

means of logic reasoning, or (b) by a combination of

logical inferences within the theory and algorithmic

processing outside the theory [5]. Examples of logic-

based matchmakers are illustrated in table 1. The

original algorithm used in literature was proposed by

Paolucci et al., 2002 [6] which determines four

degrees of match: exact, plugin, subsumes, and fail.

- Non-logic-based matching: the matchmaker

performs out of any logic-reasoning to determine the

similarity between services. They use other

techniques from the search area like: graph

isomorphism, information retrieval measurement …

etc.

- Hybrid matching: the matchmaker uses a

combination of logic and non-logic mechanisms to

perform the matching process.

- Service profile matching level (so-called black-box

service matching): in this case, the matchmaker is

generally based on input/output matching. The

algorithm of Paolucci performs the matching process

at the interface level. Other matchmakers exploit

other element of service profile like IOPE, PE, E, in

the matching process.

- Process matching level (so-called glass-box service

matching): in this case, the matchmaker is based on

the behaviour matching in terms of control and data

flow.

- Hybrid matching level: the matchmaker uses a

combination of service profile matching level and

process matching level mechanisms to perform the

matching process.

In table 1, we summarize the categories of existing

Semantic Web Service matchmakers. The description

given by Klush et al., [5] is used with the integration of

other categories (such as hybrid between profile and

process) and other approaches.

In this paper, we focus our study on the improvement

of Paolucci algorithm.

Table 1. Categories of some existing Semantic Web Service matchmakers

Hybrid

(Profile and Process)
(Grigori et al., 2008)[14] (Gunay et al., 2013)[15]

(Gater et al., 2010)[13],

(BenMokhtar et al.,

2005)[11]
(Majithia et al., 2004)[18]

Process

Model

(Nejati et al., 2007)[20]
(Vander aalst et al 2006)[21]

(Minor et al., 2007)[19]

OWSPM[5],

(Ehrig M. Et al., 2007)[12]
IORPTM [5],

combined

(QoS and functional)

iMacher1 [5],
(Cassar G., et al 2013) [5]

GSD-MM [5]

Imatcher2[5],

FC-MATCH [5]

(Abhijit et al., 2004)[10]

IOPE
DSD-MM[5],

XSSD, (Li Jing 2013) [17]

RFSD, GLUE, [5]

(Kourtesis et al., 2008)[16]

WSMO-MX, LARKS,

SA-WSDL-MX [5]

PE PCEM [5]

E MAMAS, RACER [5]

IO
MWSDI-LUMINA

SE HotBlu [5]

OWLSM, SDS, OWLS-UDDI [5]

[Paolucci et al., 2002][6]
OWLS-MX [5]

QoS WSML-QoS SE [5] ROWLS [5]

 Non-logic Logic Hybrid

34 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

III. RELATED WORK

In this section, we review some extensions or

improvements of greedy algorithm.

3.1 Greedy approach:

The algorithm proposed by Paolucci et al.,[6] is a

greedy approach for matchmaking. It uses input/output

concepts in the process of matching by defining four

degrees of match as depicted in figure 2.

The algorithm of Paolucci [6] tries to find a max-match

between each concept of the query (input/output) and

concepts of the advertisement (input/output).

Fig. 2. degree of match in greedy algorithm [6]

This algorithm presents an ambiguity where it doesn’t

describe whether a concept is removed once it has been

matched.

3.1.1 Complexity

Let n1 and n2 the number of input concepts of query

and advertise. Let m1 and m2 the number of output

concepts of query and advertise. The complexity of

matching is given by ((n1*n2)+(m1*m2))

The matching algorithm iterates over t advertisement

services in repository, then the total complexity is given

by (t*((n1*n2)+(m1*m2))). The complexity of this

algorithm is polynomial, and at worst case where

t=n1=n2=m1=m2=N, the complexity is bounded by O(N3).

3.1.2 Performance of matchmaking

The matchmaking results given by the greedy

algorithm are not reliable. We consider the following

scenarios. The concepts of advertise ‘A’ and query ‘Q’

are defined in Books ontology illustrated in figure 3. We

denote ‘dom’ as degree of matching, and ‘Gdom’ as

global degree of match.

Fig. 3. Part of book ontology [4]

a. The first scenario: without removal of advertise

concepts.

Advertise ‘A’
Input publisher

Output novel, price

Query ‘Q’

Input publisher

Output
romantic novel,

science-fiction novel

dom(romantic novel, novel)=exact=1.

dom(romantic novel, price)=fail=0.

dom(science-fiction novel, novel)=exact=1.

dom(science-fiction novel, price)=fail=0.

Gdom=exact.

The matchmaker returns ‘A’ as correct response to ‘Q’,

where ‘A’ presents a false positive (two or more concepts

from ‘Q’ match a single concept in ‘A’).

b. The second scenario: with removal of advertise

concepts

Advertise ‘A’

Input publisher

Output
novel, science-fiction

book

Query ‘Q’

Input publisher

Output
science-fiction novel,

romantic novel

dom(science-fiction novel, novel)=exact=1.

dom(science-fiction novel, science-fiction book)=1=

exact.

Science-fiction novel match novel, and novel is

removed from advertise concepts.

dom(romantic novel, science-fiction book)=fail=0.

The matchmaker returns as a response ‘A’ don’t match

‘Q’, where ‘A’ presents a false negative (the order of

query concepts influences in the matching process, and

changes the global degree of match).

Some research works, propose an extension or an

improvement of Paolucci algorithm. Bellure U., et al [7]

uses the Hungarian algorithm to determine the matching

of bipartite graphs. Phatak J. et al., [8] adds ontology

mappings and QoS constraints. Michael C. Et al., [9]

proposes a matching based on properties matching and

service profile hierarchy. We compare our approach with

the bipartite graph based matching.

3.2 Bipartite graph based matching:

To solve the problems of greedy algorithm, Bellure U.,

et al [7] proposes a semantic matchmaking based on

bipartite matching and the Hungarian algorithm to

achieve an optimal solution of concepts matching. As

depicted in table 2, the algorithm assigns different

numerical weights to degrees of match.

Table 2. weight of degree of match

Degree of match Weight

Exact W1=1

Plugin W2=(w1*|v0|)+1

Subsume W3=(w2*|v0|)+1

V0 is the vertices cardinality of bipartite graph.

 Book

 Novel Science-fiction-book Encyclopedia

Romanti-novel Fantasy-novel Science-fiction-novel

 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach 35

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

The Hungarian algorithm computes a complete

matching for weighted bipartite graph, and the optimal

matching is given by a complete matching with a

minimum of all maximum weighted edges in the

matching.

3.2.1 Complexity

We use the same variables to compute the complexity

of this algorithm. The time complexity of Hungarian

algorithm is bounded by O(n3) where “n” is the

cardinality of concepts (input/output). The complexity of

the matching is given by ((n1*n2)+n2
3+(m1*m2)+m1

3) The

repository cardinality is t, then the global complexity is

given by (t*((n1*n2)+n2
3+(m1*m2)+m1

3)). The complexity

of the matchmaking algorithm is polynomial. At worst

case, where t=n1=n2=m1=m2=N, the complexity of

bipartite graph based matching is bounded by O(N4).

3.2.2 Performance of matchmaking

Bipartite graph based matching regulates false

positives and false negatives as discussed in the previous

scenarios. The performance of the matchmaker is better

than the greedy algorithm.

IV. PROPOSITION

4.1 Principles:

Our proposal consists to resolve the problem of the

concepts order in the algorithm of Paolucci, we propose

to represent the matching process as a matrix Mn,m where

we consider the following weights:

Table 3. degree of match of OWLS-SP

degree of match Weight

Exact W1=1

Plugin W2=(w1*|M|)+1

Subsumes W3=(w2*|M|)+1

Fail W4=(w3*|M|)+1

Where |M| is the dimension of the matrix M.

Definition “matching matrix”: the matching is

represented as matrix Mn,m where :

mij= dom(Ci,Cj) such Ci and Cj are ontological

concepts.

For example, let M a matching matrix for output

concepts between query and advertise services:

𝑀 = (
1 4 40
4 40 1

40 13 4
)

Before determining the global degree of matching (for

the output or input concepts), we define the following

rules:

- Transform the matching matrix Mn,m to graph G

where: The vertices are mij, the arcs are organized

by column (arc (ci, ci +1)), and it is not allowed to

create an arc between the first and the 3rd column. It

is not allowed to connect two vertices of the same

line or column. The source vertex of G is connected

to all the vertices of the first column. Each vertex

(element) in a column is connected to all other

vertices (elements) of the next column, if exist. The

terminus vertex of G is connected to all the vertices

of the last column.

- Each arc Ai that connects two vertices ni and nj is

weighted by the ni value where ni presents the

source of this arc. Pij is the weight of the transition

between nodes ni and nj, where Pij = ni.

- Outgoing arcs of the source vertex are weighted by

zero “0”.

- We search the shortest path in G; Dijkstra's

algorithm is applied according to the specification of

our graph G (a path is valid if it is made up of

independent nodes, its nodes do not share the same

line).

- The optimal solution of the matching matrix M is

done by the vertices of shortest path, denoted π.

Lemma: a matching in which wi is minimized, is

equivalent to a matching with a shortest path.

We use a proof by contradiction to prove this lemma.

Let =V1V2V3….Vn denotes the path with minimal

sum of weights in G: ||=Vi where Vi are the vertices of

.

Let ’=N1N2N3….Nm denotes the shortest path in G:

|’|=Ni where Ni are the vertices of ’.

Assume that the lemma is untrue, that means ||=Vi <

|’|=Ni ….(I)

By definition, if ’ is the shortest path in G then there

is no path with minimum length (minimal sum of weights)

than ’ in G, which means that (I) is untrue.

We can hence infer that ||=Vi = |’|=Ni and both

and ’ are a shortest path in G.

Definition “global degree of matching Gdom“: the

Gdom in both output matching and input matching is

given by the following rule: Gdom= || where π

represents the shortest path of G.

For the previous example, the optimal matching is

given by π where: π=m21m12m33

π is a valid path, and Gdom=||=12

We use the Gdom for ranking the results returned by

the matchmaker.

Examples: let M1, M2, M3, M4 four output matching

matrixes, and we aim to rank them:

𝑀1 = (
1 4 40

40 1 13
4 1 40

) π=m11m32m23, Gdom_out=15

𝑀2 = (
4 1 13
1 13 4

13 4 1
) π=m21m12m33, Gdom_out=3

𝑀3 = (
1 13 40
4 1 4

40 1 13
) π=m11m32m23, Gdom_out=6

𝑀4 = (
1 4 40

40 4 13
4 13 40

) π=m31m12m23, Gdom_out=21

The results ranked in descending order of Gdom are:

M2, M3, M1, and M4.

36 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

4.2 Algorithm:

In this section, we present the procedures used in our

matchmaking algorithm.

Matchmaking Algorithm

Input: Query Q

Output: set of services ranked in descending order,

 called Result

Result=empty

For each service Ai in repository do

If card(Qout)>card(Aout) then Gdom_out=0

Else Gdom_out=Matching output concepts (Qout, Aout)

If Gdom_out ≠ 0 then If card(Ain)>card(Qin) then

Gdom_in=0

Else Gdom_in= Matching input concepts (Ain, Qin)

score[Ai]=(Gdom_out + Gdom_in)/2

Append.Result(Ai, score[Ai])

End_for

Ranked Result in ascending order of score, the best

score is which have the lowest value (different to zero).

Return Result.

--

Degree of match_out

Input: two concepts: Qout, Aout, Max(n,m)

Output: dom, where dom={w1, w2 , w3 , w4}

If Qout = Aout then return w1 //exact

If Qout subclassOf Aout then return w1 //exact

If Qout subsumed by Aout then return w2 //plugin

If Qout subsumes Aout then return w3 //subsumes

Otherwise return w4 //fail

--

Degree of match_in

Input: two concepts: Ain, Qin, Max(n,m)

Output: dom, where dom={ w1, w2 , w3 , w4}

If Ain=Qin then return w1 //exact

If Ain subclassOf Qin then return w1 //exact

If Ain subsumed by Qin then return w2 //plugin

If Ain subsumes Qin then return w3 //subsumes

Otherwise return w4 //fail

--

Output Matching Matrix

Input: two set of output concepts: Qout, Aout //vectors

Output: M_outn,m

For i= 1 to n do

 For j= 1 to m do M[i,j]=degree of

match_out(Qout[i], Aout[j])

Return M_outn,m

--

Input Matching Matrix

Input: two set of input concepts: Ain, Qin // two vectors

Output: M_inn,m

For i= 1 to n do

 For j= 1 to m do M[i,j]=degree of

match_in(Ain[i], Qin[j])

Return M_inn,m

--

Matching output concepts: // each Qout needs to be

 // matched with Aout

Input: n concepts of Qout, m concepts of Aout

Output: Gdom_out // the global degree of matching for

 // output concepts

1. Call the procedure: Output Matching Matrix //

return M_outn,m

2. If all elements of a line in the matrix M_outn,m

equal to max(n,m) then Gdom_out=0, goto (5)

3. Call the procedure: Dijkstra algorithm for

shortest path(M_outn,m) //search an optimal matching ()

4. Gdom_out=||=Vi

5. Return Gdom_out, END.

--

Matching input concepts: // each Ain needs to be

 // matched with Qin

Input: n concepts of Ain, m concepts of Qin

Output: Gdom_in //the global degree of matching for

 // input concepts

1. Call the procedure: input Matching Matrix //

return M_inn,m

2. If all elements of a line in the matrix M_inn,m

equal to max(n,m) then Gdom_in=0, goto (5)

3. Call the procedure: Dijkstra algorithm for

shortest path (M_inn,m) //search an optimal matching ()

4. Gdom_in=||=Vi

5. Return Gdom_in, END.

Dijkstra algorithm for shortest path:

Input: matching matrix Mn,m

Output: shortest path denoted π,

1. T ← ∅

2. For v V do d(v) ← ∞

3. d(s) ← 0

4. while (T≠V)

v ← 𝑟𝑔𝑚𝑖𝑛 {𝑑(𝑢): 𝑢 ∉ 𝑇}

T ← 𝑇 ∪ {𝑣}

For u voisins(v) do

 d(u) ← 𝑚𝑖𝑛 {𝑑(𝑢), 𝑑(𝑣) + 𝑤𝑣𝑢}

5. Return optimal matching expressed by π, END.

--

The complexity of our matchmaker algorithm is

computed as follows. We denote: Card(Adv), the number

of advertise services, Card(Qout), the number of query

output concepts, Card(Qin), the number of query input

concepts, Card(Aout), the number of advertise output

concepts, Card(Ain), the number of advertise input

concepts.

The complexity formula can be expressed as:

Time complexity of Matchmaking Algorithm is

bounded by O(n3)

Time complexity of Dijkstra algorithm for shortest

path (Mn,m) is bounded by O(n2)

Time complexity of Matching output concepts(vector

Qout, vector Aout) is bounded by O(n2)

Time complexity of Output Matching Matrix(vector

Qout, vector Aout) is bounded by O(n2)

Time complexity of Degree of match_out(Qout, Aout) is

bounded by O(1)

The proposed algorithm has cubic time complexity.

4.3 Experimentation:

In this section, we implement our algorithm of

matchmaking, and we use some tools like: Owl-s API [22]

(to parse queries, services, and ontologies), Owls-tc as

 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach 37

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

benchmark [23]. The architecture of our application is

illustrated in figure 4. For measuring the accuracy of our

algorithm we use a collection of Web services (OWLS-

TC). This collection has more than 500 services covering

several application domains.

Fig. 4. OWLS-SP matchmaker architecture

In order to analyze the improvement of accuracy

obtained by our algorithm, we use the individual

precision-recall chart technique. Precision and Recall are

two indicators of effectiveness [24].

Precision is the ratio of the number of relevant records

retrieved (TP -true positive-) to the total returned (TP and

FP -false positive-). It is expressed as: precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall is the ratio of number of relevant records

retrieved to the total number of relevant records (TP and

FN -false negative-). It is expressed as: recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁

Numerator is same for precision and recall: number of

correct returned; denominator for precision is all that is

returned; denominator for recall is all that is relevant.

In this paper both indicators were used to measure the

effectiveness of our algorithm and compared to greedy

algorithm and bipartite graph based matching, for this

purpose we made a test set (queries and services) for the

evaluation of the performance of the three discovery

matchmakers.

Query:

Input: BOOK, NOVEL, PUBLICATION

Output: RECOMMENDEDPRICE, PRICE,

 TAXEDPRICE

Ontology:

C:\Program Files\Apache Software

Foundation\Tomcat 6.0\webapps\ ontology\books.owl

C:\Program Files\Apache Software

Foundation\Tomcat 6.0\webapps\ ontology\concept.owl

We use five services for parsing our algorithm against

greedy algorithm and bipartite graph based matching.

Fig. 5. OWLS-SP interface

Fig. 6. performance evaluation.

Client

Matchmaker

OWLS-SP

OWLS-TC

Owl-s API Owls Q

38 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

Greedy algorithm:

Paolucci with removal concepts: VP=3, VN=3,

 FP=0, FN=4

Paolucci without removal concepts: VP=1, VN=2

 FP=2, FN=5

Bipartite graph based matching: VP=7, VN=3,

 FP=0, FN=0

Our approach: OWLS-SP: VP=7, VN=3,

 FP=0, FN=0

We conclude that our approach OWLS-SP which uses

the shortest path algorithm presents the same results as

the bipartite graph based matching which uses the

Hungarian algorithm. Both approaches present results

better than greedy algorithm. The complexity of our

algorithm is bounded by O(N3). Indeed, this result

presents an advantage compared to bipartite graph based

matching algorithm.

Table 4. comparison results

 Paolucci approach Bellur approach Our approach

Dom exact, plugin, subsume, fail

exact=w1=1

plugin=w2

 =(w1*|v|)+1
subsumes=w3

 =(w2*|v|)+1

fail=w4
 =(w3*|v|)+1

exact=w1=1

plugin=w2

 =(w1*|M|)+1
subsumes=w3

 =(w2*|M|)+1

fail=w4
 =(w3*|M|)+1

Matching algorithm Greedy algorithm Hungarian algorithm Shortest path algorithm

ranking Descending order of Gdom_out Gdom=max-weight edge in Graph Gdom=Length of shortest path in Graph

complexity O(N3) O(N4) O(N3)

V. CONCLUSION

The quality of results of the discovery process is based

mainly on the correctness of the matchmaker used. In this

paper we have presented an algorithm of matchmaking

that resolves the problems of Paolucci algorithm by using

the shortest path algorithm which determines the optimal

matching between user query and provider service. The

complexity of the proposed matchmaker is polynomial

and is bounded by O(N3), this result is better than the

complexity of the bipartite graph based matching which

is bounded by O(N4). We performed some experiments to

validate our approach and to analyze the improvement of

accuracy obtained by our algorithm based on two

indicators of effectiveness: Precision and Recall. We

concluded that our approach had better results than the

greedy approach and presents the same performance as

the bipartite graph based matching. Finally we developed

a tool called OWLS-SP Discovery to disseminate our

algorithm. Our future work is focused on analysis our

algorithm in the case of composite services.

REFERENCE

[1] WSDL-S. http://www.w3.org/Submission/WSDL-S/

visited 15/09/2013

[2] WSMO. http://www.w3.org/Submission/WSMO/ visited

15/09/2013

[3] Ngan L.D., Kanagasabai R. Semantic Web service

discovery: state-of-the-art and research challenges.

Personal and Ubiquitous Computing journal, september

2012. Springer-Verlag. Online ISSN 1617-4917

[4] OWL-S. http://www.w3.org/Submission/OWL-S/ visited

15/09/2013

[5] Klusch M, “Semantic Web Service Coordination”,

CASCOM - Intelligent Service Coordination in the

Semantic Web, Chapter 4, Springer, pp.69-pp.114, 2008.

[6] Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K.

(2002). Semantic matching of Web services capabilities. In

Proc. of 1st International Semantic Web Conference

(ISWC). LNCS Volume 2342, 2002, pp 333-347

[7] Bellur Umesh, Kulkarni Roshan, Improved Matchmaking

Algorithm for Semantic Web Services Based on Bipartite

Graph Matching. Conference: International Conference on

Web Services - ICWS , pp. 86-93, 2007

[8] Phatak J. et al. A Framework for Semantic Web Services

Discovery. WIDM, 2005.

[9] Michael C. Jaeger, Stefan Tang, Ranked Matching for

Service Descriptions using DAML-S Conference on

Advanced Information Systems Engineering - CAiSE , pp.

217-228, 2004

[10] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth,

Kunal Verma. Meteor-s web service annotation framework.

World Wide Web Conference Series - WWW , pp. 553-

562, 2004

[11] BenMokhtar S, Nikolaos Georgantas, Valérie Issarny: Ad

Hoc Composition of User Tasks in Pervasive Computing

Environments. Software Composition 2005: 31-46

[12] Ehrig M, A. Koschmider, and A. Oberweis. Measuring

similarity between semantic business process models. In

Proc. of APCCM 2007, pages 71-80, 2007.

[13] Gater A, Daniela Grigori, Mokrane Bouzeghoub: A Graph-

Based Approach for Semantic Process Model Discovery.

Graph Data Management 2011: 438-462

[14] Grigori D, J.C. Corrales, and M. Bouzeghoub. Behavioral

matchmaking for service retrieval: Application to

conversation protocols. Inf. Syst., 33(7-8):681-698, 2008.

[15] Günay A, Pinar Yolum: Service matchmaking revisited:

An approach based on model checking. J. Web Sem. 8(4):

292-309 (2010)

[16] Kourtesis Dimitrios, Iraklis Paraskakis: Combining

SAWSDL, OWL-DL and UDDI for Semantically

Enhanced Web Service Discovery. ESWC 2008: 614-628

[17] Li Jing. A Fast Semantic Web Services Matchmaker for

OWL-S Services. JOURNAL OF NETWORKS, VOL. 8,

NO. 5, MAY 2013.

[18] Majithia S., David W. Walker and W. A. Gray. A

framework for automated service composition in service-

 Improving the Performance of Semantic Web Services Discovery: Shortest Path based Approach 39

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 32-39

oriented architecture. In 1st European Semantic Web

Symposium, 2004.

[19] Minor M, A. Tartakovski, and R. Bergmann.

Representation and structure-based similarity assessment

for agile workows. In Proc. of the Intl. Conf. on Case-

Based Reasoning, volume 4626 of LNAI, pages 224-238.

Springer, 2007.

[20] Nejati S, M. Sabetzadeh, M. Chechik, S. Easterbrook, and

P. Zave. Matching and merging of statecharts

speci_cations. In Proc. of ICSE 2007, pages 54-63, 2007.

[21] van der Aalst W, A.K. Alves de Medeiros, and A. Weijters.

Process Equivalence: Comparing two process models

based on observed behavior. In Proc. of BPM 2006,

volume 4102 of LNCS, pages 129-144. Springer, 2006.

[22] OWL-S API. MINDSWAP: Maryland Information and

Network Dynamics Lab Semantic Web Agents Project.

http://www.mindswap.org/2004/owl-s/api/

[23] OWL-S Service Retrieval Test Collection.

http://projects.semwebcentral.org/projects/owls-tc/

[24] Rijsbergen C. J. V., “Information Retrieval,” Buttersworth,

London, 1976.

Authors’ Profiles

Maamar Khater is a PhD student in Computer Science

at the Department of Computer Science in the University

of Djillali Liabes (Sidi Bel-Abbes, Algeria). His

academic interests include semantic web services,

workflow management and multi-agent systems.

http://fsi.univ-tlemcen.dz/depart-inf/fiche-KHATER.html

Mimoun Malki is graduated with Engineer Degree in

Computer Science from National Institute of Computer

Science, Algiers, in 1983. He received the Master of

Science degree and the PhD degree in Computer Science

from the University of Sidi Bel-Abbes, Algeria, in 1992 and

2002, respectively. He was a Senior Lecturer in the Department

of Computer Science at the University of Sidi Bel-Abbes from

1986 to 2002. Currently, he is a Professor at University of

Djillali Liabes, Sidi Bel-Abbes, Algeria. His research interests

include databases, ontology engineering, web-based information

systems, semantic web, web services and web reengineering.

How to cite this paper: Maamar Khater, Mimoun

Malki,"Improving the Performance of Semantic Web Services

Discovery: Shortest Path based Approach", International

Journal of Information Technology and Computer

Science(IJITCS), vol.6, no.7, pp.32-39, 2014. DOI:

10.5815/ijitcs.2014.07.05

