
I.J. Information Technology and Computer Science, 2014, 07, 47-55
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.07.07

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

High Performance Network Security Using NIDS

Approach

Sutapa Sarkar
Department of Electronics and Communication, MVJ College of Engineering, Bangalore, India

Email: sutapasarkar11@rediffmail.com

Brindha.M
Department of Electronics and Communication,MVJ College of Engineering, Bangalore, India

Email: brindha_mo47@yahoo.com

Abstract— Ever increasing demand of good quality

communication relies heavily on Network Intrusion Detection

System (NIDS). Intrusion detection for network security

demands high performance. This paper gives a description of

the available approaches for a network intrusion detection

system in both software and hardware implementation. This

paper gives a description of the structure of Snort rule set which

is a very popular software signature and anomaly based

Intrusion Detection and prevention system. This paper also

discusses the merit of FPGA devices to be used in network

intrusion detection system implementation and the approaches

used in hardware implementation of NIDS.

Index Terms— Network Intrusion Detection System, Snort,

FPGA

I. INTRODUCTION

Network Intrusion detection system can be described

as the process of identifying and taking necessary actions

against malicious activities targeted to network and

computing resources. A network intrusion detection

system should continuously monitor the traffic crossing

the network and compare with a previously known set of

malicious activities or look for statistical deviation of the

system under surveillance from its normal behavior. Aim

of network security is to protect the device from

unauthorized and potentially harmful activities such as

denial of service attacks (forcing the targeted computers

to reset or to consume its resources so that it is not able to

provide the intended service), port scans or attempt to

crack into computers by monitoring network traffic.

Network connected devices are very often susceptible to

exploitation. The Intrusion detection system (abbreviated

as IDS) placed in the network should be able to sense the

unusual activity and alert the administrators. A set of well

defined rules eg. Snort and Bro are used to identify

network events that are other than expected.

The goal of modern network traffic is to provide a high

speed good quality communication keeping up with the

demand of ever increasing data usage. Deep packet

inspection with regular string matching is a very common

method of network intrusion detection. Implementation

of Signature based network Intrusion Detection System

(NIDS) requires to match a predefined string or

predefined pattern that is already identified as harmful to

the network. As the IDS should inspect the data packets

at the rate of data connection, a very high performance is

required for the IDS string matching operation. Also the

rule set gets regularly updated with the evolution of fresh

attacks. Hence the hardware system used to implement

NIDS should have the feature of dynamic reprogramming.

Both of these features of high network traffic collection

ability and dynamic reprogramming is supported by

FPGA devices. Hence they are suitable candidates for

hardware implementation of NIDS. But the high network

traffic collection ability is not matched by the device

frequency. Hence like multi core parallelization of

microprocessors it is mandatory approach to implement

parallelism in FPGA based NIDS traffic analysis.

The network intrusion detection system can be placed

at a choke point such as the company’s connection to a

trunk line [1], or can be placed on each of the hosts that

are being monitored to protect from intrusion. Intrusion,

incident and attack are three terms that we often come

across while discussing Intrusion Detection System.

Table I. gives a brief description of these terms[2].

One further challenge in designing these systems is the

lack of availability of dataset that is representative of

normal traffic. The normal traffic is generally corrupted

with different port scans and denial of service activities,

hence these patterns also may become a part of normal

state system behavior for anomaly detection activities [3].

A NIDS should have the following desirable features

[4]:

─ System should be fault tolerant and run with the

minimal human supervision.

─ The NIDS should not be susceptible to attacks from

the intruder

─ NIDS should not interfere with the normal operation

of the system.

─ It should be possible to reconfigure the NIDS over

time with the changing rules and security policies of

the network.

─ NIDS should be portable to different architectures

making it easy to deploy.

─ NIDS should be general to detect different types of

attacks and should have as less number of false

positives as possible.

48 High Performance Network Security Using NIDS Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

This paper serves the purpose of a reference that can be

used to understand NIDS and their applications. It also

describes the available types of NIDS in both software

and hardware implementations. The remaining part of the

paper is organized as follows: Section 2 gives a brief

description of the different types of Intrusion Detection

System, classifying them based on their placement in the

network or based on the methodology adopted by them to

detect a possible intrusion. Section 3 gives a description

of the software based NIDS approach with focus on Snort

rule set which is most popular software based NIDS used

worldwide. Section 4 gives a description of the hardware

based NIDS and the possible approaches to implement

them followed by conclusion in Section 5.

II. TYPES OF INTRUSION DETECTION SYSTEM

In software based NIDS approach the IDS are software

systems that are specially designed with the aim of

identifying and hence help to prevent the malicious

activities and security policy violations. IDS can be

classified into two main categories: analysis approach

and placement of IDS. Analysis approach consists of

misuse detection and anomaly detection.

2.1 Misuse Detection

This approach uses pattern matching algorithm to look

for some known misuses. They have very low false

positive (IDS generates alarm when no attack has taken

place) rate. Since they depend on comparing the

incoming traffic with a known set of malicious strings

they are unable to identify novel attacks. Hence a high

false negative (Failure to detect an actual attack) rate is

observed. The number of disallowed patterns now has

reached the order of the thousands making the

computation a rather difficult task. Signature based

Network Intrusion Detection System is a commercial

success. Snort is a well defined rule set that uses

signature, protocol and anomaly based detection methods.

In section 3 we go through a detailed description of Snort

rule set as this rule set is directly influencing the design

of FPGA based NIDS.

2.2 Anomaly Detection

This approach makes decisions based on normal

network or system behavior using statistical techniques

[5]. This approach monitors network traffic and compares

it against an established baseline of normal traffic profile.

The baseline characterizes normal behavior for the

network - such as the normal bandwidth usage, the

common protocols used. This approach is able to identify

novel attacks that are yet unknown and hence

undetectable by signature based NIDS. The main

disadvantage of anomaly detection method is that it may

generate a large number of false positives.

An anomaly detection technique consists of two

steps[3]: the first step is called training phase wherein a

normal traffic profile is generated; the second phase is

called anomaly detection, where the learned profile is

applied to the current traffic to look for any deviations.

The anomaly detection techniques are as follows:

statistical methods, data-mining methods and machine

learning based methods. In statistical methods it is

assumed that a variation of the traffic in terms of volume

of number of packets indicates attack, like bandwidth

flooding attack. But if the attacker keeps traffic parameter

bellow a certain level this method will not work.

Incorrect combinations of port numbers and devices

indicate attack. Then NIDS should alert the administrator

or user regarding detection of anomalous traffic.

It depends on the situation what can be considered as

normal and what can be considered as anomaly. But some

possible examples are as follows. Consider the case when

a user logs off the system 20 times, although the usual

frequency is 1 or 2 times. This increased frequency can

be considered as anomaly. Again consider the scenario of

an office where if the system gets used at midnight which

far beyond the normal business hour, then it can be

considered as anomaly. The decision of what is anomaly

and what is not is highly subjective.

Based on placement in the network IDS can be

classified as host based and network based systems.

2.3 Host Based System

This type of IDS is present on each host that needs

monitoring. These are able to determine if an attempted

attack is successful and can detect local attacks. It is

possible to analyze the traffic and the effect of any attack

can be analyzed very accurately. But it’s difficult to

deploy and manage them if the numbers of hosts that are

to be protected are more in number.

Table 1. Useful parameters to understand Network Intrusion Detection

Parameter name Description

Intrusion
Series of concatenated activities that pose threat to the safety of IT resources

from unauthorised access to a computer or address domain

Incident Violation of the system security, a successful intrusion

Attack A failed effort to break system security, actual violation not happened

2.4 Network Based System

Monitors the network traffic of the network to which

the hosts that are to be protected are connected. In this

case the deployment cost is less and it’s possible to

identify attacks to and from multiple hosts. This type of

IDS is passive so that it is easy to apply them to a pre-

existing network without causing much disruption.

Network based system can be implemented either as a

early warning system or can be used in internal

deployment mode [6]. Rafsanjani reported summary chart

comparing Network-based NIDS and Host-based NIDS

as depicted in Table 2.

 High Performance Network Security Using NIDS Approach 49

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

Table 2. Comparative study of Network-Based and Host-Based network system

Network-Based IDS Host-Based IDS

Broad in scope Narrow in scope, monitors specific activities

Near real-time response Responds after a suspicious entry

Host independent Host dependent

Bandwidth dependent Bandwidth independent

Slow down the network that has IDS client installed Slow down the hosts that have IDS client installed

Detects network attacks Detects local attacks

Not suitable for encrypted network Suitable for encrypted network

Better for detecting attack from outside Better for detecting attack from inside

2.5 NIDS as Early Warning System

NIDS is implemented outside the firewall and it scans

all the data that is entering the network. In this case it is

possible to detect attacks to and from multiple hosts. This

system has a single point of deployment and hence the

deployment cost is less and it is easy to update the

signatures and configuring the system up to date. The

disadvantage of this system is that it detects those

malicious activities also that are blocked by firewall. Fig.

1[3] gives a schematic of the use of NIDS as an early

warning system.

Fig. 1. NIDS as an early warning system

2.6 NIDS as Internal Deployments

In this approach the NIDS is deployed such that it

monitors every network link through which the traffic is

flowing and provides extra security. In this case the NIDS

is placed near the access router near the network

boundary. In this case the data that is blocked by the

firewall is not scanned by the NIDS. But because of the

large number of systems it is difficult to maintain and

reconfigure the system with every rule set update. Fig. 2

gives a schematic of the use of NIDS in internal

deployment mode. [3]

Fig. 2. NIDS in Internal Deployment Mode

III. SOFTWARE BASED NIDS APPROACH

Software based NIDS relies heavily on Snort Rules.

Snort is a network intrusion prevention and detection

system developed by Sourcefire. Snort is the most

popular intrusion detection and prevention technology

and has world -wide industry usage. It is a rule based

technology that uses signature, protocol and anomaly

detection methods. It has the capabilities of sniffer,

packet logger and network traffic analysis. The basic rule

set for Internet Traffic Analysis consists of 5567 rules.

50 High Performance Network Security Using NIDS Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

Snort is a cross-platform, lightweight network

intrusion detection tool that can be deployed to monitor

small TCP/IP networks and detect a wide variety of

suspicious network traffic as well as outright attacks. It

can provide administrators with enough data to make

informed decisions on the proper course of action in the

face of suspicious activity [7].

A lightweight network intrusion detection system can

be deployed almost on any node of the network.

Lightweight IDS should be small, powerful and flexible

so that they can be used as permanent elements of

network security infrastructure. When deployed they

should cause minimal disruption of the operations.

A signature based design method depends on

distinctive marks or characteristics that are present in an

exploit. This type of protection only has limited

capabilities as the attack has already taken place before a

signature can be written.

Snort can be configured to operate in three modes [8]:

Sniffer mode (reads the packets off the network and

displays them in a continuous stream on the console),

Packet logger mode (logs packets to the disk), NIDS

mode (performs detection and analysis on network

traffic). Snort rules operate on network (IP) layer and

transport (TCP/UDP) layer protocols.

The basic structure of Snort rule is as follows (refer Fig.

3):[9]

Fig. 3. Basic Structure of SNORT Rule

3.1 Rule Header

Consists of information for matching a rule against

data packets and information about what action a rule

takes.

3.2 Rule Options

Consists of alert message and information about which

part of the packet should be used to generate the alert

message.

Structure of the Snort rule header consists of the

following parts (refer Fig. 4).

Fig. 4. Structure of SNORT Rule Header

3.3 Action

Action part of the rule determines the type of action

taken when criteria are met and a rule is exactly matched

against a data packet. E.g. alert or log message or

invoking another rule.

3.4 Protocol

The protocol part is used to apply the rule on packets

for a particular protocol. Snort recognizes the following

protocols: IP, ICMP, TCP, UDP.

3.5 Address

Defines source and destination addresses.

3.6 Port

This part describes the source and destination ports of

the packet for TCP or UDP protocols. For network layer

protocols like IP and ICMP, port number has no

significance.

3.7 Direction

This part specifies which port is the source port and

which one is the destination port.

Rules can be grouped by port or protocol. Table 3

describes a few ports that are used popularly. Then only

the group of rules that are applicable to the port/protocol

to which the packet belongs is used. This helps to reduce

the memory consumption and CPU usage of Snort. Snort

rules are usually expressed in the form of

(content+modifiers). Contents represent a fixed pattern

that is to be searched in the packets payload of a flow.

Modifiers are locations where content is searched inside

the payload. .

3.8 Example of Snort Rule

Let’s try to understand SNORT rule by using the

example as provided in [9].This example explains a Snort

rule that generates an alert message whenever it detects

an ICMP1 ping packet (ICMP ECHO REQUEST) with

TTL equal to 100[9].

alert icmp any any -> any any (msg: "Ping with

TTL=100"; \ttl: 100;)

The first part of the rule is called rule header and the

later part within parentheses is the options part. The

header comprises of the below mentioned parts:

A rule action: Alert is generated when conditions are

met. Packets are logged by default when an alert is

generated. Depending on the action field, the rule options

part may contain additional criteria for the rules.

Protocol: In this rule the protocol is ICMP, which

implies that the rule will be applied only on ICMP-type

packets. If the protocol of a packet is not ICMP the rest

of the rule is not processed further by Snort Detection

Engine and will save CPU time.

Source address and source port: In this example

source address and source port are set as “any”, which

means that the rule will be applied on all packets coming

from any source. Port numbers have no relevance to

ICMP packets unlike to TCP or UDP.

Direction: Direction of the rule is indicated by the

symbols ->, <- and <> specifying the directions such as

left to right or reverse or both ways. In the example it is

set from left to right using the -> symbol. This shows that

the address and port number on the left hand side of the

symbol are source and those on the right hand side are

destination.

Destination address and port address:. In this example

destination and port address are very generic and both set

as “any”. This indicates the rule will be applied to all

packets irrespective of their destination address.

 High Performance Network Security Using NIDS Approach 51

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

Table 3. Description of few popularly used ports

Port
Number

Description

20 FTP Data

25 SMTP Used for e-mail servers

37 NTP, Used for synchronizing time on network hosts

53 DNS Server

80 HTTP, Used for all web servers

110 POP3, Used for e-mail clients like Microsoft Outlook

161 SNMP

443 HTTPS, or secure HTTP

The direction in this rule does not play any role

because the rule is applied to all ICMP packets moving in

either direction; due to the use of the keyword “any” in

both source and destination address parts.

The options part enclosed in parentheses shows that an

alert message will be generated containing the text string

“Ping with TTL=100” whenever the condition of

TTL=100 is met. TTL or Time To Live is a field in the IP

packet header.

IV. HARDWARE BASED NIDS APPROACH

A Software based NIDS such as widely employed

software implementation of the SNORT rules are not

capable of supporting very high rates of data (multi

Gbits/s traffic rates typical of network backbones). For

this reason these are normally applied in small scale

networks. Hardware based NIDS can be a possible

solution of this problem. But a main concern to be

addressed while using hardware based NIDS is that the

network intrusion threats and types of attacks are

changing regularly. Hence the set of rules to counter them

also needs to be updated continuously. Hardware system

used for NIDS implementation should be dynamically

reprogrammed (reconfiguration of the FPGA when the

system is under operation) and updated in accordance

with the changed rule set. Field Programmable Gate

Array is thus a very attractive choice for NIDS

implementation. FPGA support complex hardware

architecture and can be dynamically reconfigured i.e. they

can be modified when under operation. Reconfiguration

of the FPGA requires a complete reprogramming of the

chip.

FPGA devices consists of an array of interconnected

programmable logic blocks or configurable logic blocks

(CLB) surrounded by programmable I/O blocks. Special

I/O pads with sequential logic circuitry are used for input

and output of the FPGA. Fig.5 represents a schematic of

FPGA.

FPGA architecture is of two types:[10] Fine grained

Architecture: Consists of a large number of small logic

blocks, e.g. transistors and Coarse grained architecture:

Consists of larger and more powerful logic blocks, e.g.

Flip-Flops and LUTs.

Some of the FPGA architectures provided by different

vendors are as follows: Xilinx Virtex Architecture (coarse

grained), Lattice ORCA Architecture(coarse grained),

Lattice ispXPGA Architecture(coarse grained), Atmel

AT40K Architecture(Fine grained), AItera APEmOK

Architecture(coarse grained).

Present FPGA devices provide very high speed data

collection ability but the device frequency is not

enhanced proportionately. Use of FPGA helps in taking

the advantage of huge parallelism.

4.1 Traffic Aware Design

The Snort rules can be analyzed and organized into

disjoint subsets by suitable combinations of packet

header files. Checking a protocol field can reject a large

number of rules. The number of rejected rules varies

significantly with the protocol field [11]. The rule set that

used to counter the exploits against http servers

(protocol=TCP, destination port = 80) differs from the

ones employed for FTP or SMTP protocols. This subset

of rules also differs from the ones used against exploits

for web clients (protocol=TCP, source port = 80).

Analysis of the traffic provided by the internet service

providers can help to determine the expected worst case

per-class throughput. Variations in the traffic mix occur

during the operating lifetime of the NIDS. This can be of

the order of several weeks. But we have to rerun the

synthesis of rule content matching engine at every rule

set update (order of once per week). Hence variation of

the traffic mix can be accounted for while rerunning the

synthesis for rule set update.

String Matching Algorithms based on Deterministic finite

Automata (DFA) and Non-deterministic Finite Automata

(NFA) has been proposed and mapped on an FPGA.

These solutions pattern matching and matching of regular

expressions. One more useful architecture for NIDS is the

compare and shift architecture. Prefix sharing rules can

save the FPGA area. The basic unit of a pattern-matching

circuit designed using any of the approaches of DFA,

NFA or compare and shift architecture is a character

match unit. Approaches based on Hashing do not comply

with the implementation of Snort, while the other

approaches easily support it.

Fig. 5. FPGA Schematic Diagram

52 High Performance Network Security Using NIDS Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

4.2 Compare and Shift Approach of Traffic Aware Design

The main input of the circuit is an 8 bit signal. This

signal transports the payload under inspection one

character each clock cycle [12]. The only output of the

circuit is the “Match” signal. Match signal goes to high

when a string is matched. The input is fed into an 8 bits

register chain. The outputs of the register chain are

provided as input to a combinatorial network that detects

which are the characters are stored. The “Match” signal

indicates that a rule has been matched without specifying

which rule. This system can be deployed as a snort off

loader that is devised to forward the malicious packets to

a software IDS implementation driving simple pass/drop

packet logic. The deployment of a full-fledged hardware

IDS requires supplementary features (e.g. alert generation,

packet logging and so on), that can be better performed in

software.

Practical approaches implement a large number of

content matching rules (of the order of thousands) and the

strings to be matched can be hundred characters long. In

such situation parallel search for different strings

increases the fan in and fan out of the circuit components,

also the length of the register chain increases linearly

with length of the string to be matched. One solution of

this problem is the use of a data bus.

The main architecture of the string matching system

consists of the following components [12]:

4.2.1 Network Interface

Network interface is responsible for collecting packets

from network link under monitoring.

4.2.2 Dispatcher

Dispatcher provides a classification of packet based on

header.

Fig. 6. General Implementation of overall String Matching System

4.2.3 String Matching Engines

String Matching Engines perform the string matching

operation. The designs of different clusters used in the

implementation are identical. But the content searching

rules synthesized in string matching engines belonging to

different clusters differ and specifically depend on the

type of traffic routed to the considered cluster.

4.2.4 Queue Manager

This block provides a queue for each SME cluster.

This is used to maintain sudden burst of packets.

The general implementation of overall string matching

system is depicted in Fig.6.

The implementation of the above concept requires

attention to the following parameters:

Dispatcher classification policy, String matching rules

loaded over each cluster of engines, operating frequency

of each cluster, number of string matching engines

deployed in each cluster, per-engine optimized hardware

design, and traffic-load based system dimensioning.

4.3 Use of Deterministic Finite Automata for

Implementation of Content Scanning Module

Intrusion detection system can provide protection to

the Local Area Network (LAN) by implementing Access

Control Policies (ACP) for both incoming and outgoing

traffic. With regular expressions the efficiency of ACP

can considerably be improved. Additionally the use of

regular expressions in ACPs give them the ability to

enforce rules on mutable contents that are found in many

Denial of Service(DOS) Attack and services.[13]. DFA

has one active state. This provides the advantage of

compact state encoding which in turn supports efficient

context switches useful for certain applications. The

disadvantage of single active state is that it might need

complex state transition logic or a state machine with a

large number of states.[14]

A regular expression has individual characters as the

basic building blocks, eg. “a”, “b”, “c”. They individually

can be considered as simple regular expressions.

Characters can be combined with meta characters (*, |,?)

to form more complex regular expressions. Table. 4

describe a few examples [12]. Fig.7 represents a syntax

tree for regular expressions.[15]

The design of the content scanning engine consists of

three parts:

i) Receiving packets

ii) Processing packets

iii) Outputting packets.

Each of these operations are controlled independent of

the other two and can run in parallel.

Data enters the receiver in 32 bit chunks. Three control

signals are used to indicate the start of packet, end of

packet and a valid signal to indicate the presence of a

valid 32 bit data in the bus. Every valid data word along

with the three control signals are written into input

memory buffers.

 High Performance Network Security Using NIDS Approach 53

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

Table 4. Description of Regular Expression

Regular expression Comment

A Singleton set {“a”}

a*
Matches any string composed of zero or more occurrences of ”a”,

Denotes the infinite set {“”, “a”, “aa”, “aaa”,…}

a? Matches any string composed of zeo or one occurrence of “a”

a|b
Matches any string composed of a or b,

Denotes the set {“a”, “b”}

Ab Matches any string composed of a concatenated with b

Ε Regular expression that matches the empty string

Fig. 7. Syntax Tree for ((a\b)*)(cd)

On each clock tick, one character (8- bits) is read from

the memory bus and sent to each of the regular

expression DFAs. One counter is used to address the

memory devices. All of the DFAs search in parallel. Each

DFA maintains a 1-bit match signal which is asserted

high when a match is found within the packet that is

being processed. When the counter reaches the end of the

packet, if the match signals from all of the DFAs indicate

no match was found, or if any of the match signals

indicate a match was found but do not require dropping

the packet, then a pointer to the packet is inserted into a

queue for output. Otherwise a pointer to the packet is not

inserted into a queue for output, hence the packet is

dropped. To generate an alert signal a special pointer is

used. A packet is output from the content scanner

whenever there is an available pointer in the output queue.

Each pointer can be either for a regular packet or for an

alert packet. Fig.8 represents a content scanner block

diagram.

Fig. 8. Content Scanner Block Diagram

4.4 Use of Non Deterministic Finite Automata for

Implementation of Pattern Matching

The non-deterministic finite automata (NFA) approach

has lesser transition logic complexity as compared to

deterministic finite automata. NFA has multiple active

states and can support regular expressions. Informally an

NFA is a directed graph that has each node as a state and

edges labelled with a single chracter or ε. One state is the

initial state and some states are accepting or final states.

DFA has no edge labelled ε and no state has more than

one edge labelled with the same character.[15]

Pattern matching can be done using an 8-bit

comparison of input and the pattern character. Fig. 6

gives a diagram of distributed comparators.[14] Instead

of using a distributed comparator a character decoder can

be used. In this case all the processing are performed in a

single central location and only the necessary matched

information is passed to the required unit. For 8-bit

characters, this can be achieved by using a shared 8-to-

256 decoder and connecting the appropriate one-bit

output of the decoder to each unit. Compared to the

distributed comparator design, the character decoder

approach doubles the maximum pattern capacity of a

given reconfigurable logic device. Using this method it is

possible to fit one character matching unit into one logic

element whereas tho logic elements are required for the

distributed system. One logic unit is defined as one 4-

input LUT and a flip-flop. Fig. 9 gives the diagrams of

distributed comparators and the character decoders.

Fig. 9. Distributed Comparator and Character Decoder circuits

Character decoder technique can be used to build

circuits that can process more than one character at a time.

54 High Performance Network Security Using NIDS Approach

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

This helps to increase the throughput without increasing

frequency. A pattern matching circuit uses N character

decoders simultaneously decoding a different input

character to process N characters per clock cycle. All

patterns should be searched at N possible offsets by

implementing N parallel state machines to track matches

at all offsets. Fig. 10 represents block diagram of N-

character decoder NFA module. A wire label of the form

ci represents the match signal output of i-th input

character decoder for the character code c.

Fig. 10. Block Diagram of N-character Decoder NFA module

V. CONCLUSION

The demand for a secure network is ever increasing.

One central challenge with computer and network

security is the determination of the difference between

normal and potentially harmful activity. The core

component of popular IDSs, like Snort [2], is a deep

packet inspection engine that checks incoming packets

against a database of known signatures (also called

rules).The dominant factor in determining the

performance of this signature matching engine, both in

software or hardware implementation is the number and

complexity of the signatures that must be tested against

incoming packets. Exploitation of traffic classification

and load statistics may bring significant savings in the

design of Hardware Network Intrusion Detection Systems

(NIDS). The ultimate design goal for an intrusion

detection system is the development of automated and

adaptive design tool for network security.

REFERENCES

[1] Zachary K. Baker, Student Member, IEEE, and Viktor K.

Prasanna, Fellow, IEEE. Automatic Synthesis of Efficient

Intrusion Detection Systems on FPGAs. IEEE Transactions

on Dependable and Secure Computing, vol. 3, no. 4,

October-December 2006.

[2] Przemyslaw Kazienko & Piotr Dorosz. Intrusion Detection

Systems (IDS) Part I - (network intrusions; attack

symptoms; IDS tasks; and IDS architecture).

www.windowsecurity.com › Articles & Tutorials

[3] Sailesh Kumar, “Survey of Current Network Intrusion

Detection Techniques”, available at

http://www.cse.wustl.edu/~jain/cse571-07/ftp/ids.pdf.

[4] Srilatha Chebrolu, Ajith Abrahama,,*, Johnson P. Thomas,

Feature deduction and ensemble design of intrusion

detection systems, Elsevier Ltd.

doi:10.1016/j.cose.2004.09.008

[5] Uwe Aickelin, Julie Greensmith, Jamie Twycross .

Immune System Approaches to Intrusion Detection - A

Review.http://eprints.nottingham.ac.uk/619/1/04icaris_ids_

review.pdf

[6] http://www.intechopen.com/download/get/type/pdfs/id/869

5

[7] Martin Roesch , “Snort – Lightweight Intrusion Detection

for Networks”, © 1999 by The USENIX Association

[8] The Snort Project, Snort User Manual 2.9.5,May 29, 2013,

Copyright 1998-2003Martin Roesch, Copyright 2001-2003

Chris Green, Copyright 2003-2013 Sourcefire, Inc.

[9] Chapter 3, Working With Snort Rules, Pearson Education

Inc.

[10] Sumanth Donthi Roger L. Haggard . A Survey of

Dynamically Reconfigurable FPGA Devices. 0-7803-

7697-8/03/2003 IEEE.

[11] S. Sinha, F. Jahanian, J. Patel, “Wind: Workload-aware

intrusion detection”,Recent Advances in Intrusion

Detection, Springer, pp. 290–310,2006.

[12] Salvatore Pontarelli, Giuseppe Bianchi, Simone Teofili.

Traffic-aware Design of a High Speed FPGA Network

Intrusion Detection System. Digital Object Indentifier

10.1109/TC.2012.105, IEEE TRANSACTIONS ON

COMPUTERS

[13] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos,

“Implementation of a Content-Scanning Module for an

Internet Firewall,” Proc. of 11th IEEE Symp. on Field-

Programmable Custom Computing Machines, FCCM 2003,

pp. 31-38.

 High Performance Network Security Using NIDS Approach 55

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 47-55

[14] C. R. Clark and D. E. Schimmel, “Scalable parallel

pattern-matching on high-speed networks,” in Proc. of

IEEE Symposium on Field- Programmable Custom

Computing Machines, FCCM 2004, pp. 249-257.

[15] R. Sidhu and V.K. Prasanna, “Fast Regular Expression

Matching Using FPGAs,” in Proc. of the 9th IEEE

Symposium on Field-Programmable Custom Computing

Machines, FCCM 2001, pp. 227 - 238.

Authors’ Profiles

Sutapa Sarkar: Sutapa Sarkar is

pursuing her Master in Technology in

Digital Electronics and Communication

Engineering from M.V.J. College of

Engineering, Bangalore, India. She

completed Bachelor of Technology in

Optics & Opto-Electronics in 2006 from University of

Calcutta, India. Before starting her post-graduation, she

worked with HCL Technologies Ltd for three and half

years in field of software testing in avionics

domain(2007-2010). Her research interests cover wireless

sensor networks, safe and secure communication, FPGA

implementation.

Email:sutapasarkar11@rediffmail.com.

M. Brindha: completed Bachelor in

Engineering in Electronics and

Communication in 2004, Master of

Engineering in Electrical Drives and

Embedded Control from Anna

University, Chennai (2007). She is

currently an Associate Professor in the Department of

ECE, M.V.J. College of Engineering, Bangalore, India.

She has published many journals and attended many

Conferences in National and International Level. Her

research areas are Embedded Systems, Control system,

Networking, FPGA Implementation and Algorithms.

Email: Brindha_mo47@yahoo.com.

How to cite this paper: Sutapa Sarkar, Brindha.M,"High

Performance Network Security Using NIDS Approach",

International Journal of Information Technology and

Computer Science(IJITCS), vol.6, no.7, pp.47-55, 2014.

DOI: 10.5815/ijitcs.2014.07.07

