
I.J. Information Technology and Computer Science, 2014, 08, 65-71
Published Online July 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.08.09

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

An Efficient Diffusion Load Balancing Algorithm

in Distributed System

Rafiqul Z. Khan
Department of Computer Science, Aligarh Muslim University, Aligarh, India

Email: rzk32@yahoo.co.in

Md F. Ali
Department of Computer Science, Aligarh Muslim University, Aligarh, India

Email: firojali.mca@gmail.com

Abstract— In distributed computing system some nodes are

very fast and some are slow and during the computation many

fast nodes become idle or under loaded while the slow nodes

become over loaded due to the uneven distribution of load in the

system. In distributed system, the most common important

factor is the information collection about loads on different

nodes. The success of load balancing algorithm depends on how

quickly the information about the load in the system is collected

by a node willing to transfer or accept load. In this paper we

have shown that the number of communication overheads

depends on the number of overloaded nodes present in the

domain of an under loaded nodes and vice-versa. We have also

shown that communication overhead for load balancing is

always fairly less than KN but in worst case our algorithm’s

complexity becomes equal to KN.

Index Terms— Distributed System, Load Balancing, Under

Loaded, Overloaded, Overheads

I. INTRODUCTION

A distributed computing system (DCS) is a set of

processors (nodes) connected through a network.

Distributed network is mainly heterogeneous in nature in

the sense that the processing nodes, network topology,

communication medium, operating system etc. may be

different in different network which are widely

distributed over the globe [1-4]. Presently several

hundred computers are connected to build the distributed

computing system [3, 5-7]. In order to get the maximum

efficiency of a system the overall work load has to be

distributed among the nodes according to their

performance over the network. So the issue of load

balancing became popular due to the existence of

distributed memory multiprocessor computing systems

[8].

The main purpose of the DCS is to share the resources

in a best way available in the network. So one of the best

way to utilize and to share the network resources is

through the load balancing among the processors. In DCS

generally some processors may have more numbers of

jobs and some others may have less numbers of jobs or

even idle causing inequality of job distribution on

different processors resulting low performance of the

system. And the performance of a system is considered to

be the performance of the slowest node in the network.

Some time it is observed in the network that at peak time

the fastest processors are idle or lightly loaded and the

slower nodes are heavily loaded. So load balancing can

be done by transferring excess load from the heavily

loaded nodes to the lightly loaded nodes so that the load

on each node becomes approximately the same. The load

balancing algorithms improve the overall performance of

the system by exploiting maximum power of the

processors and minimizing the average response time.

The distribution of loads to the processing elements is

simply called the load balancing problem. In a system

with multiple nodes there is a very high chance that some

nodes will be idle while the other will be over loaded.

The goal of the load balancing algorithms is to maintain

the load to each processing element such that all the

processing elements become neither overloaded nor idle

that means each processing element ideally has equal

load at any moment of time during execution to obtain

the maximum performance (minimum execution time) of

the system [9-13]. So the proper design of a load

balancing algorithm may significantly improve the

performance of the system.

In the network there will be some fast computing nodes

and slow computing nodes. If we do not account the

processing speed and communication speed (bandwidth),

the performance of the overall system will be restricted

by the slowest running node in the network [13]. Thus

load balancing strategies balance the loads across the

nodes by preventing the nodes to be idle and the other

nodes to be overwhelmed. Furthermore, load balancing

strategies removes the idleness of any node at run time.

The need of load balancing arises from the concept that

there is a very little probability that the load to a system

will be distributed according to the processing power of

the nodes. In the network some nodes will be highly

loaded and some will be lightly loaded or idle sometimes

as a result the performance of the system will be

considerably degraded which can be resolved in an

optimized way through the load balancing strategies

which deals with assigning the tasks to each processor

according to the speed and bandwidth of the

communication link to obtain the maximum performance

(minimum execution time) of the system [8,14-16] .

66 An Efficient Diffusion Load Balancing Algorithm in Distributed System

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

During the design of a dynamic load balancing

algorithm the following issues are considered [11,15]:

Assignment which assigns the jobs to the processors

according to the situation in a system; load Calculation

which tells how to calculate the workload of a particular

node in a system; job transfer which determines whether

a job is to be executed locally or remotely, this also

defines when a node becomes overloaded; system State

which tells whether a node is overloaded or lightly loaded;

priority assignment which tells the priority of execution

of local and remote processes at a particular node and

information exchange which tells how to exchange the

system load information among the nodes. The

information policy includes the following steps [17]:

processors begin to collect load information of other

nodes when load balancing operation is going to start

which is called on demand information policy; processors

inform their load information at regular interval to the

other nodes which either may not be interested which is

known as periodical information policy and when a

processor changed its state, it immediately informs the

others by passing information which is called On-state

change information policy. Migration limiting which

determines frequency of transfer that how many of times

a process can migrate from one node to another.

There are two fundamental approaches to the load

balancing algorithm design. In static load balancing

design approach the tasks are assigned on the basis of

priori knowledge of the system and once the tasks are

allocated on the nodes do not change [5,20]. The load

balancing decisions are determined either

deterministically or probabilistically at compile time and

remain unchanged during run time. The performance of

the static load balancing algorithms depends on the prior

information about the tasks and the system. The decision

to transfer the tasks does not depend on the system state

change. This approach is widely applicable because of its

simplicity and the minimized run-time overhead. During

the static load balancing too much information about the

system and jobs must be known before the execution.

This information may not be available in advance and the

thorough study on the system state and the jobs is quite

tedious approach in advance. However static approaches

do not respond to a dynamic run-time environment and

may lead to load imbalance on some nodes and

significantly increase the job response time. Most of the

loosely coupled distributed systems exhibit significant

dynamic behavior, having load varied with time. So,

dynamic load balancing algorithm came into existence.

The assignment of jobs is done at the runtime. So the

dynamic load balancing algorithms take the decision to

transfer the tasks depending on the current state of the

system. The tasks are transferred from heavily loaded

node to the lightly loaded node [15,20]. So the quality of

dynamic load balancing algorithms depends on the

collection of information of load on different nodes in the

system. The information may be collected either by

centralized or distributed approach. In centralized

approach the information is collected by a specially

designed central node and in distributed approach each

node has the autonomy to collect the information about

the load of the system. In distributed information

collection policy the information is collected either by

sender initiative or receiver initiative algorithm. In sender

initiative approach the heavily loaded nodes search for

lightly loaded nodes for transferring extra load and the

receiver initiative approach is the converse of sender

initiated approach. Dynamic load balancing policies are

considered to be better to respond to changing

environments and to avoid states that result in poor

performance. The drawbacks of the dynamic load

balancing policies are that these policies are more

complex than their static load balancing policies because

dynamic load balancing policies require information on

the run-time load and activities of state collection.

Dynamic load balancing algorithms surely incur non-zero

run-time overhead due to the communication costs of

load information collection and distribution. A good

dynamic load balancing algorithm always minimized

these costs.

Hybrid algorithms [18, 19] combine the advantages of

both static and dynamic policies. Static algorithm is

considered a coarse adjustment and the dynamic

algorithm a fine adjustment in hybrid algorithm. When

the static algorithm is used, load imbalance may result.

Once this happens, the dynamic algorithm starts to work

and guarantees that jobs in the queues are balanced in the

entire system.

The dynamic load balancing approach has three most

important policies: transfer policy, information policy and

location policy [21,22,24]. Transfer policy decides

depending upon some predefined value whether a job

would be executed locally or remotely. In selection policy

the load balancing node select suitable node for

transferring the selected job depending upon the state

information collected by information policy. Both sender

initiated and receiver initiated approaches fall under the

location policy.

Practically load balancing decisions are taken jointly

by location and distribution rules [15,32]. The balancing

domains are of two types: local and global. In local

domain, the balancing decision is taken from a group of

nearest neighbors by exchanging the local workload

information while in global domain the balancing

decision is taken by triggering transfer partners across the

whole system and it exchanges work load information

globally.

Benefits of load balancing algorithm are: load

balancing improves the performance of each node and

hence the overall system performance; load balancing

reduces the job idle time; small jobs do not suffer from

long starvation; maximum utilization of resources;

response time becomes shorter; higher throughput; higher

reliability; low cost but high gain; extensibility and

incremental growth.

The remainder of this paper is organized as follows.

Section II discusses the related work on different

diffusion algorithms. Section III presents the basic

notations to represent a distributed computing system. In

section IV we make the problem formulation. In section

 An Efficient Diffusion Load Balancing Algorithm in Distributed System 67

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

V complexity of the proposed algorithm is evaluated. In

section VI result and discussion are given and over heads

in worst case and optimal cases are presented in tabular

form and in pictorial form as well. And a conclusion is

drawn in section VII.

II. RELATED WORK

Load balancing is the way of distributing load units

(jobs or tasks) across a set of processors which are

connected to a network which may be distributed across

the globe. The excess load or remaining unexecuted load

from a processor is migrated to other processors which

have load below the threshold load [5]. Threshold load is

such an amount of load to a processor that any load may

come further to that processor. In a system with multiple

nodes there is a very high chance that some nodes will be

idle while the other will be over loaded. So the processors

in a system can be identified according to their present

load as heavily loaded processors (enough jobs are

waiting for execution), lightly loaded processors(less jobs

are waiting) and idle processors (have no job to execute).

By load balancing strategy it is possible to make every

processor equally busy and to finish the works

approximately at the same time.

It has been shown that as more information is collected

by an algorithm in a short time, potentially the algorithm

can make better decision [15]. Dynamic load balancing

is mostly considered in heterogeneous system because it

consists of nodes with different speeds, different

communication link speeds, different memory sizes, and

variable external loads due to the multiple. The numbers

of load balancing strategies have been developed and

classified so far for getting the high performance of a

system [15].

Researchers have proposed a numbers of load

balancing strategies [23,25-33]. We have considered the

diffusion algorithm for the load balancing. There are

mainly two types of diffusion algorithms. In sender

initiated diffusion (SID) algorithm an over loaded

processor wants to send task to the under loaded

processor by selecting a remote node in the network.

Three sender initiated algorithms have been proposed

[25]. The first algorithm sent the load from overloaded

node to the randomly selected node without considering

the load situation there [25]. The second strategy sent the

load from the overloaded node to the randomly selected

node by including the concept of threshold load to

prevent the load to reach the overloaded node [25]. In the

last one, several nodes selected randomly and compare

the load and target is the least loaded node [25]. Although

no information is collected for the load transfer but the

receiver may be far away from the sender and this may

cause performance degradation due to the transfer cost.

To overcome this problem, immediate neighbor state

policy has been proposed which states that the receiver

and sender would be adjacent to each other [32]. Receiver

initiated diffusion (RID) approach is just the converse of

sender initiated approach. An under loaded node initiates

the load balancing in this scheme. In this strategy all the

near-neighbors of the under loaded node inform their load

and update the information. In RID approach the under

loaded node which wants to transfer load does consider

all the nearest nodes without knowing whether the node is

ready to transfer the load or not. It has been shown that

the total number of messages communicated for updating

for load balancing for K–connected (K neighbors) system

of N processors is equal to KN [32]. In our approach we

do not consider the nearest node which does not

interested in load transferring. This approach would

reduce the over heads and always less than KN but in

worst case our algorithm’s complexity merges with KN.

III. BASIC NOTATIONS

We have considered a homogeneous distributed

network. All the necessary parameters related to

distributed network are presented in tabulated form in

Table 1. All the tasks are homogeneous and are of equal

size. We considered three types of nodes as over loaded

node (OLN), under loaded node (ULN) and moderate

loaded node (MLN) and the classification of nodes

depending upon the load on a node is shown in Fig. 1.

Table 1. Mathematical Notation for Distributed Network

Symbol Description

G=(V, E) Distributed Network

V={1,2,……,N} Set of nodes in a distributed system

E⊆V×V Set of edges

N Total number of nodes in distributed system

n Total number of under loaded nodes(ULN) in the system at a particular instant where n<N

li Load of node i

L Total load in the system

Lavg Average load per node

Mn Message communicated for collecting load information by n ULN

Di Neighbors of node I denoted by Di = 𝑗| 𝑗 ∈ 𝑉 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ 𝐸}

Ki Numbers of overloaded nodes in Di of under loaded nodes

LDi LDi is the amount of excess load of over loaded node in the domain of i

68 An Efficient Diffusion Load Balancing Algorithm in Distributed System

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

IV. PROBLEM FORMULATION

In nearest neighbor algorithm all the directly connected

nodes are considered for load transfer which causes more

over head because it involves even the reluctant node. We

consider just those nodes which want to participate either

in sending or receiving the load. In our model we

considered that the under loaded node will forecast its

load status to the immediate nodes. We considered the

global average load which can be calculated by (1). The

most important fact is that the under loaded node will not

communicate all the nearest nodes provided that the

nodes are not overloaded.

 (1)

Where 



N

n

ilL
1

After calculating the average load globally, the

processors will decide whether they are under loaded or

overloaded or moderate loaded as shown in Fig. 1.

Fig 1. Classification of nodes depending on load

As it is the RID approach, the under loaded node will

send the load situation to its immediate neighbors and

acknowledgement will be sent by only overloaded

processors. We have considered absolute load transfer

rather than weight calculation [25]. In weight calculation

approach all the neighbors are involved. Fig. 2 shows

how a under loaded node (ULN) communicates with its

domain under a particular situation. We designed an

algorithm for getting the overheads by an ULN as shown

in Fig. 3.

Fig. 2. ULN communicates with its domain at a particular moment

begin:

Calculate 



N

i

ilL
1

;

Calculate
N

L
Lavg  ;

for any node i: 0 to n

if  avgi Ll 

 il sends the update msg to Di ;

for any node ij Dl  /* 𝐷𝑖 = {𝑗| 𝑗 ∈ 𝑉 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ 𝐸} */

if (avgj Ll ) /* OLN in /*iD

for ii DK  /* ii DK  */

iK sends back ACK with LDj to il ;

 end for

 end for

 end for

end

Fig. 3. Algorithm for collecting communication overheads

V. COMPLEXITY

Number of message updated for load information by

ULN is given by

 (2)

  NKupdateCtot 

(3)

Nn 
lim in NDM  (4)

Where the value of both Di and Ki depend on the

network topology. Marc Willebeck-Lemair and

Anthonyhas given (3) [32]. We compared (2) with (3)

and our equation reduces to (4) at n=N.

VI. RESULT AND DISCUSSION

We have considered Mesh topology in this paper. In

mesh topology 4iD and 4iK . For inner node of

mesh topology 4iD and  4,3,2,1,0iK . For

iK =0, no load balancing would be done but iD number

of overheads per ULN would occur. In worst case our

algorithm reduces to NK (or NDi) [32] when n=N. At

n=N, Ki =0. We considered worst case as the situation

when Ki=4. In our simulation we considered 20%, 30%,

40% and 50% of ULD in 4×4 and 16×16 mesh topology

and results are tabulated in Table 2 and Table 3

 An Efficient Diffusion Load Balancing Algorithm in Distributed System 69

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

respectively. Fig. 4 and Fig. 5 illustrate Overheads VS

ULN. The simulation shows that as the numbers of ULN

increases the value of Ki goes on decreasing because there

is a great probability to have more under loaded

neighbors under the domain of an ULN. At 50% of ULN,

M is fictitious in worst case as Ki trends to zero. The

converse is also true for an OLN. An OLN sends the

message for load balancing to its immediate neighbors

and the ULN under Di sends back the information about

their load deficiency.

Table 2. Simulation Result for 4X4 Mesh Topology

n Worst Case (Overheads) Optimal (Overheads)

3 (20%) 24 19

4 (30%) 32 24

6 (40%) 44 28

8 (50%) 56 36

Table 3. Simulation Result for 16X16 Mesh Topology

n Worst Case (Overheads) Optimal (Overheads)

51 (20%) 408 398

76 (30%) 580 402

102 (40%) 752 462

128 (50%) 872 516

Fig 4. Overheads VS ULN in 4X4 mesh topology

Fig 5. Overheads VS ULN in 16X16 mesh topology

VII. CONCLUSION

In distributed computing system some nodes are under

loaded and some are over loaded and during the

computation many fast nodes become under loaded while

the slow nodes become over loaded due to the uneven

distribution of load in the system. In distributed system,

the most common important factor is to collect the

information about load status on different nodes. The

success of load balancing algorithm depends on how

quickly the information about the load in the system is

collected by a node willing to transfer or accept load. In

this paper we have shown that the overheads depend on

the number of OLN present in the domain of ULN and

vice-versa by (2). Our simulation results show that the

numbers of overheads communicated at a particular

moment are fairly less than KN and our algorithm

complexity merges with KN when the number of ULD is

equal to N. Most important thing is that at 50% of ULN,

the overheads becomes fairly less than expected due to

the fall in the value of Ki. The value of Ki falls because

there is a great probability to have more under loaded

neighbors under the domain of an ULN and Ki=0 when

there will be no over loaded node in the network.

ACNOWLEDGEMENT

The authors would like to thank all those who have

made the significant contributions in the field of load

balancing strategies in distributed computing system. The

authors also wish to thanks all the reviewers who

constantly recommended us to improve this paper to

reach this level. The authors are indebted to Aligarh

Muslim University that provided all the facilities for

doing research in this field.

REFERENCES

[1] Garshasbi M S and Effatparvar M. High Performance

Scheduling in Parallel Heterogeneous Multiprocessor

Systems Using Evolutionary Algorithms. I.J. Intelligent

Systems and Applications, 2013, (11), 89-95.

[2] Fotohi R and Effatparvar M. A Cluster Based Job

Scheduling Algorithm for Grid Computing. I.J.

Information Technology and Computer Science, 2013, 12,

70-77

[3] Ali M. Alakeel, "Load Balancing in Distributed Computer

Systems", International Journal of Computer Science and

Information Security, Vol. 8, No. 4, 2010.

[4] Ali M. Alakeel, "A Guide to Dynamic Load Balancing in

Distributed Computer Systems", International Journal of

Computer Science and Network Security, VOL.10 No.6,

June 2010.

[5] Haddad E. Dynamic Optimization of Load Distribution in

Heterogeneous Systems. IEEE,1994, pp. 29-34.

[6] Weinrib and Shenker S. Greed is not Enough: Adaptive

Load Sharing in Large Heterogeneous Systems.

INFOCOM, 1988, pp. 986-994.

[7] Sánchez D, MacíasE Mª and Suárez Á. Effective Load

Balancing on a LAN-WLAN Cluster. PDPTA 2003, pp.

473-479.

70 An Efficient Diffusion Load Balancing Algorithm in Distributed System

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

[8] Penmatsa S and Cronopoulos A T. Dynamic Multi User

Load Balancing in Distributed Systems. IEEE International

Parallel and Distributed Processing Symposium, 2007, pp.

1-10.

[9] Berenbrink P, Friedetzky T and Steger A. Randomized and

Adversarial Load Balancing.CiteSeerx, 1997.

[10] Hamdi M and Lin C K. Dynamic Load Balancing of Data

Parallel Applications on a Distributed Network. In 9th

International Conference on Supercomputing, ACM, 170-

179, 1995.

[11] Kabalan K Y, Smari W W and Hakimian J Y. Adaptive

Load Sharing in Heterogeneous System: Policies,

Modifications and Simulation.CiteSeerx, 2008.

[12] Penmatsa S. and Cronopoulos A.T. “Dynamic Multi User

Load Balancing in Distributed Systems”. IEEE

International Parallel and Distributed Processing

Symposium, 2007.

[13] Weinrib and Shenker S. “Greed is not Enough: Adaptive

Load Sharing in Large Heterogeneous Systems”.

INFOCOM, 986-994, 1988

[14] Chhabra A, Singh G, Waraich S S, Sidhu B and Kumar G.

Qualitative Parametric Comparison of Load Balancing

Algorithms in parallel and Distributed Computing

Environment. Word Academy of Science, Engineering and

Technology, 39-42, 2006.

[15] Jain P and Gupta D. An Algorithm for Dynamic Load

Balancing in Distributed Systems with Multiple

Supporting Nodes by Exploiting the Interrupt Service.

Academy Publisher, 2009, pp. 232-236.

[16] Valkalis I and Doncker E d. Parallel Global Adaptive

Integration and Dynamic Load Balancing on Loosely

Coupled Systems. ACM,1993, pp 454-561.

[17] Xu C. and Lau F.C.M. “Load Balancing in Parallel

Computers: Theory and Practice”. Kluwer Academic Press,

1997.

[18] Yan K.Q., Wang S.C, Chang C.P and Lin J.S. A hybrid

load balancing policy underlying grid computing

environment, computer standards and Interfaces, 2007, 29

(2).

[19] Zaki M. J., Li W., Parthasarthy S. Customized dynamic

load balancing for a netwok of workstations, Journal of

Parallel and Distributed Computing , 1997, 43(2), 156-162.

[20] Ali M F and Khan R Z. The Study on Load Balancing

Strategies in Distributed System. International Journal of

Computer Science & Engineering Survey, 2012, Vol.3,

No.2, April, pp. 19-30.

[21] Bernard G, Steve D and Simatic M. A Survey of Load

Sharing in Networks of Workstations. The British

Computer Society, The Institute of Electrical Engineers

and IOP Publishing Ltd,199, pp. 375-86.

[22] Xu C and Lau F C .M. Load Balancing in Parallel

Computers: Theory and Practice. Kluwer Academic

Press,1997.

[23] Evans D J and Butt W U N. Dynamic Load Balancing

Using Task-Transfer Probabilities”. Parallel Computing,

Aug. 1993, Vol. 1 9, No. 8, pp. 897-916.

[24] Bernard G, Steve D and Simatic M. A Survey of Load

Sharing in Networks of Workstations. The British

Computerm Society, The Institute of Electrical Engineers

and IOP Publishing Ltd, 1993,75-86.

[25] Eager D L, Lazowska E D and Zahorjan J. A Comparison

of Receiver Initiated and Sender Initiated Adaptive Load

Sharing. Performance Evaluation, 1986, Vol. 6, pp. 53-68.

[26] Goswami K K., Devarakonda M, and Iyer R K. Prediction

Based Dynamic Load-Sharing Heuristics”. IEEE Trans.

Parallel and Distributed Systems, June 1993, Vol. 4, No. 6,

pp. 638-648.

[27] Iqbal M A, Saltz J.H and Bokhari S H. A Comparative

Analysis of Static and Dynamic Load Balancing Strategies.

ACM Performance Evaluation Revision, 1985, Vol. 11, No.

1, pp. 1040 1047.

[28] Lin F C H and Keller R M. The Gradient Model Load

Balancing Method. IEEE Trans. Software Eng., Jan. 1987,

Vol. 13, No. l, pp. 32-38.

[29] Lin H -C. and Raghavendra C S. A Dynamic Load

Balancing Policy with a Central Job Dispatcher (LBC).

IEEE Trans. Software Eng., Feb. 1992, Vol. 8, No. 2, pp.

148-158.

[30] Loh, P K K, Hsu W J, Wentong C and Sriskanthan N. How

network topology affects dynamic loading balancing.

Parallel & Distributed Technology: Systems &

Applications, IEEE, 1996. 4(3), pp. 25-35.

[31] Muniz F J and Zaluska E J. “arallel Load-Balancing: An

Extension to the Gradient Model. Parallel Computing,

1995, Vol. 2 1, pp. 287-301.

[32] Willebeek-LeMair M H and Reeves A P, Strategies for

Dynamic Load Balancing on Highly Parallel Computers.

IEEE Trans. Parallel and Distributed Systems, 1993, Vol. 4,

No. 9, Sept. pp. 979-993.

[33] Zhou S. A Trace-Driven Simulation Study of Dynamic

Load Balancing. IEEE Trans. Software Eng., Sept. 1988,

Vol. 14, No. 9, pp. 1327-1341.

Authors’ Profiles
Dr. Rafiqul Zaman Khan: Dr. Rafiqul

Zaman Khan is presently working as an

Associate Professor in the Department

of Computer Science in Aligarh Muslim

University (A.M.U), Aligarh, India. He

received his B.Sc. Degree from M.J.P

Rohilkhand University, Bareilly, M.Sc

and M.C.A from A.M.U. and PhD

(Computer Science) from Jamia

Hamdard University, New Delhi, India. He has 19 years of

Teaching Experience of various reputed International and

National Universities viz King Fahad University of Petroleum

& Minerals (KFUPM), K.S.A, Ittihad University, U.A.E, Pune

University, Jamia Hamdard University and AMU, Aligarh. He

worked as a Head of the Department of Computer Science at

Poona College, University of Pune. He also worked as a

Chairman of the Department of Computer Science, AMU,

Aligarh. His Research Interest includes Parallel & Distributed

Computing, Gesture Recognition, Expert Systems and Artificial

Intelligence. Presently four students are doing PhD under his

supervision. He has published about 40 research papers in

International Journals/Conferences. Names of some Journals of

repute in which recently his articles have been published are

International Journal of Computer Applications (ISSN: 0975-

8887), U.S.A, Journal of Computer and Information Science

(ISSN: 1913-8989), Canada, International Journal of Human

Computer Interaction (ISSN: 2180-1347), Malaysia, and

Malaysian Journal of Computer Science(ISSN: 0127-9084),

Malaysia. He is the Member of Advisory Board of International

Journal of Emerging Technology and Advanced Engineering

(IJETAE), Editorial Board of International Journal of Advances

in Engineering & Technology (IJAET), International Journal of

Computer Science Engineering and Technology (IJCSET),

International Journal in Foundations of Computer Science &

technology (IJFCST) and Journal of Information Technology,

and Organizations (JITO).

http://en.scientificcommons.org/karim_y_kabalan
http://en.scientificcommons.org/waleed_w_smari
http://en.scientificcommons.org/jacques_y_hakimian

 An Efficient Diffusion Load Balancing Algorithm in Distributed System 71

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 65-71

Mr. Md Firoj Ali: Mr. Md Firoj Ali is

presently working as a Research Scholar in

the Department of Computer Science in

Aligarh Muslim University (A.M.U),

Aligarh, India. He received his B.Sc. and

MCA Degree from A.M.U. He has been

awarded Senior Research Fellowship by

UGC, India and also cleared National

Eligibility Test conducted by UGC, 2012. His Research Interest

includes Load balancing in Distributed Computing System. He

has published ten research papers in International

Journals/Conferences.

How to cite this paper: Rafiqul Z. Khan, Md F. Ali,"An

Efficient Diffusion Load Balancing Algorithm in Distributed

System", International Journal of Information Technology and

Computer Science(IJITCS), vol.6, no.8, pp.65-71, 2014. DOI:

10.5815/ijitcs.2014.08.09

