
I.J. Information Technology and Computer Science, 2015, 10, 8-14
Published Online September 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.10.02

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

Two Fold Optimization of Precopy Based Virtual

Machine Live Migration

Sangeeta Sharma
Department of Computer Science & Engineering, MANIT, Bhopal, 462003, India

E-mail: sanjsharma29@gmail.com

Meenu Chawla
Department of Computer Science & Engineering, MANIT, Bhopal, 462003, India

E-mail: chawlam@manit.ac.in

Abstract—Virtualization is widely adopted by the data

centers, in order to fulfill the high demand for resources

and for their proper utilization. For system management

in these virtualized data centers virtual machine live

migration acts as a key method. It provides significant

benefit of load-balancing without service disruption.

Along with the various benefits virtual machine live

migration also imposes performance overhead in terms of

computation, space and bandwidth used. This paper

analyzes the widely used precopy method for virtual

machine live migration and proposes the two fold

optimization of precopy method for virtual machine live

migration. In the first phase, the proposed two fold

precopy method reduces the amount of data sent in first

iteration of precopy method. Second phase restricts

sending of similar data iteratively in each subsequent

iterations of precopy method by identifying frequently

updated pages and keeps it till the last stop and copy

iteration. In this way it reduces total migration time and

total amount of data transferred. The proposed two fold

precopy method is compared with precopy method and

simulation results show the performance improvement of

a virtual machine live migration in terms of total

migration time and total amount of data transferred.

Index Terms—Live VM migration, Virtualization,

Resource utilization, Total migration time.

I. INTRODUCTION

In present scenario, subscription based services are

found beneficial to enhance availability and cost

effectiveness of resources and services in case of

simultaneous multiple user accesses. Cloud computing [1]

provides IT resources or services as a subscription based

service. It allows sharing the pool of resources between

multiple users simultaneously and pay as per use. For this

reason, datacenters need to be more capable in order to

serve the exponentially increasing demand for resources

such as CPU and storage. With the growth of cloud

computing environment, optimal resource utilization is

required in order to serve multiple users simultaneously.

Virtualization [2] supports sharing of single physical

machine by multiple users at the same time.

Virtualization is used as an important tool to fulfill the

goal of optimum resource utilization.

In the virtualized environment, resources are allocated

by means of a virtual machine. Virtual machine provides

the abstract view of an underlying hardware. They are the

many instances of operating systems run on single

physical machine. Virtual machine live migration is an

important tool of virtualization. The motivation behind

the use of a virtual machine live migration is load

balancing, fault-tolerance and maintenance of datacenters.

For example, by moving the virtual machine from one

host to another host without any service interruptions by

means of virtual machine live migration leads to

improved resource utilization [3] and service availability.

By transferring virtual machine from underutilized hosts

and shutting it down, can reduce power consumption.

General architecture of a virtual machine live migration

from one physical machine to another is shown in Fig. 1.

Fig.1. Virtual machine migration in virtualized physical machine

VMware [4], HyperV [5], KVM [6] and XEN [7] are

some of the widely available platforms used for

implementing virtualization. KVM and XEN are open

source and widely used for research work.

Besides many benefits virtual machine live migration

leads to performance overhead and long migration time.

In order to address different issues imposed due to the

migration process, this paper proposes a modified pre-

copy method for virtual machine live migration. It utilizes

the bitmap arrays in a way that frequently updated pages

are found out and kept till the last stop-copy iteration.

 Two Fold Optimization of Precopy Based Virtual Machine Live Migration 9

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

This paper models virtual machine live migration

performance based on theoretical analysis and empirical

studies on CloudSim platform. In this paper performance

of proposed two fold precopy method is compared with

pre-copy method on various performance parameters

such as Total migration time, Downtime, and Total data

transferred.

The objective of this work can be summarized as

follows:

 To reduce number of pages transferred in first

iteration as well as in subsequent iterations.

 To efficiently find out frequently updated pages

by utilizing features of a bitmap array.

 To reduce total time of migration process by

reducing total number of pages transferred.

 Simulation results to validate the effectiveness of

the proposed two fold precopy method.

The rest of the paper is organized as follows: Section 2

describes the previous work related to the proposed work.

Section 3 briefly presents the background knowledge of

the proposed work. Section 4 describes the precopy

method and design of the two fold precopy method for

virtual machine live migration is presented in Section 5.

In Section 6 implementation detail of proposed work is

presented. Section 7 concludes the paper.

II. RELATED WORK

This section presents a survey of some existing works

on virtual machine live migration. Research work in this

field is broadly categorized into two [8] [9] types viz.

precopy and postcopy method. Most of the works use

precopy method due to its fault tolerance nature over the

post copy method. In the precopy method some of the

basic techniques [10] are memory ballooning, dynamic

rate limiting and rapid page dirtying. Removal of unused

memory during a migration process is performed in

Memory ballooning method. Dynamic rate limiting

adopts the varying bandwidth limit during each precopy

iteration. By identifying and sending frequently updated

pages at the last iteration, Rapid page dirtying method

controls the dirty rate. From several available methods,

they can be grouped into different categories based on

their techniques. Some of them are compression based,

CPU scheduling based and prediction based.

Compression based methods reduce the total data

transferred during iterative data transfer phase of

migration method. Based on the memory page

characteristics Jin et al. [11] presents an adaptive zero-

aware memory compression algorithm. Its compression

algorithm is dynamic and lossless with small overhead.

Ma et al. [12] uses Run length encoding to transfer

only non-empty memory pages in compressed form. Live

migration of large virtual machine Svard et al. [13]

presents a Delta compression technique. It stores delta

pages which is a difference between versions of a page,

instead of full page. These delta pages are further

compressed using XOR binary run length encoding

(XBRLE) to increase migration throughput. It

significantly reduces migration downtime along with

reduced migration time. Delta compression successfully

migrate very large virtual machine that fails while

migrating using the traditional method. Svard et al. [14]

also presents another dynamic page transfer reordering

and compression technique. In this technique, it combines

dynamic page transfer reordering with delta compression,

in order to reduce both the total migration time and

downtime. Dynamic page transfer reordering prioritizes

less frequently updated pages over frequently updated

pages. In this way, it reduces possibility of resending

these pages again.

Compression based methods reduce the amount of data

transfer, but the overhead imposed due to compression at

source side and decompression at destination is not well

evaluated. This also does not consider effect of repeated

transmission of a same page during migration.

Performance of migration processes is highly related to

the memory dirty rate. For better performance memory

dirty rate needs to be kept as low as possible. Towards

this goal Jin et al. [15] presents an approach based on

CPU scheduling for optimizing the virtual machine live

migration method. This method schedules the CPU in

such a way that the memory dirty rate can be fixed within

the acceptable limit. Liu et al. [16] presents a CPU

scheduling based approach combined with the recovering

system, Viz. checkpointing/recovery and trace/reply. It

schedules a CPU to adjust the log generation rate since it

synchronizes the state of log files between source and

destination. CPU scheduling based methods are able to

reduce memory dirty rate, but impact of CPU scheduling

on the application performance running within the virtual

machine is ignored.

To reduce the total data transferred some of the

methods try to find out the frequently updated pages and

keep it till the last stop and copy iteration, which also

reduce total migration time and downtime. One of the

research works based on this idea is presented by

Alamadari et al. [17]. It represents cache replacement

policy to trace out the reuse pattern of memory pages. It

calculates the reuse distance of a page when the same

page is reused again. Frequently updated pages are

modified repeatedly and having less reuse distance as

compared to less frequently updated pages. Ma et al. [18]

presents an improved precopy approach, in which it uses

the bitmap which keeps the frequently updated pages till

the last iteration of migration. It also bounds the number

of iteration in migration method up to five times.

A memory modification probability prediction model

is presented by Wu et al. [19]. The model monitors the

modification rate of each memory page at present

iteration and tries to predict the probability of

modification rate in next iteration. In this way, most of

the frequently updated pages are found out and kept till

last iteration. Hu et al. [20] presents a time series

prediction method, in which it uses historical statistics of

memory pages to identify the frequently updated pages in

a future period. Li et al. [21] also uses historical statistics

to identify frequently updated pages. It presents a

10 Two Fold Optimization of Precopy Based Virtual Machine Live Migration

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

performance and energy model for the prediction of

virtual machine migration cost. Success of the methods

based on identification of frequently updated pages

highly depends upon the correct prediction process used

by it. All above methods discussed here is based on

precopy method.

One of the methods based on postcopy method is

presented by Hines et al. [22]. In postcopy method,

virtual machine is resumed at destination in a first

iteration with the transmission of CPU state. Remaining

memory pages are transmitted subsequently. It uses the

Adaptive prepaging and Dynamic self-ballooning

mechanism to remove redundant pages and free memory

pages before transmission. It improves the migration

method by lowering unnecessary data transfer. Another

method based on postcopy method is an advanced virtual

machine dynamic consolidation system presented by

Hirofuchi et al. [23]. It consolidates the load by migrating

the virtual machine with response to every changing

resource usage.

Strunk et al. [24] and Voorsluys et al. [25] determine

the cost of a virtual machine live migration and discover

parameters that affect migration costs.

III. BACKGROUND KNOWLEDGE

This section presents the background knowledge of

migration and analyzes the problems which affect the

performance of a virtual machine live migration. Virtual

machine migration is considered as live migration when

the virtual machine moves from one physical machine to

another without halting the running virtual machine. The

basic need for the virtual machine live migration is to

maintain the liveness of virtual migration. This can be

done by keeping Downtime (described in 3.1) as

minimum as possible. Virtual machine consists of a

number of components which need to be transferred

during a migration. These components include CPU

registers state, Device state, memory and storage state.

CPU and device register information are very small in

size and have a negligible impact on performance. Virtual

machine storage is very large in size and greatly affects

the performance of a migration process. But in present

scenario it is assumed that datacenters are equipped with

NAS (Network attached storage) by which storage can be

accessed by all physical machines. So there is no need to

transfer storage data. Virtual machine memory size is

comparably larger than CPU registers data and updated

continuously while virtual machine is running.

Transferring continuously changing large size virtual

machine memory is the main issue in a virtual machine

live migration which highly affects the migration process.

Proposed two fold precopy method presented in this

paper efficiently transfers the virtual memory with its

CPU register data with a minimum service interruption

delay.

After knowing the various components which are

transferred during migration, next issue to address is the

way (method) in which these components will be

transferred. There are generally three types of migration

methods [9] viz. Stop and copy, Postcopy, and Precopy as

shown in Fig. 2.

Fig.2. Types of live virtual machine migration

Type 1: Stop and Copy is simple but it is an offline

method. In this method, virtual machine can be stopped at

a source and then move to another machine. Service

interruption is a major drawback of this method.

Type 2: Post Copy method initially transfers the CPU

register with a minimum required memory pages and

resumes a virtual machine at the destination machine.

Remaining data is transferred subsequently. It provides

the low service interruption. One major drawback of post-

copy method is that, it cannot recover from failure of the

virtual machine at destination side during migration [22].

If the destination side virtual machine is crashed then the

running virtual machine will be unsynchronized and all

remaining data will be lost.

Type 3: Pre-Copy method is widely adopted method

due to its fault proof nature. It also gives the low service

interruption by transferring virtual machine in a first

iteration then remaining updated data iteratively till both

sides have a synchronized copy of a virtual machine. In

the final iteration virtual machine resume at a destination

machine by sending the remaining data. Proposed two

fold precopy method presented in this paper is also based

on precopy method and improves its performance.

A. Performance Parameters

There are various performance parameters and factors

that affect the migration process and need to handle

efficiently. These performance parameters are measured

to show the effectiveness of the proposed work as

compared to precopy method. They are as follows:

Total migration time (𝑇𝑚𝑖𝑔): It is the total time taken

by a migration process for its completion. It is defined

as 𝑇𝑚𝑖𝑔 = ∑ 𝑇𝑖
𝑁
𝑖=0 , where Ti is the time taken by the ith

iteration of migration and N is the number of iterations.

Minimum total migration time leads to fast migration

process.

Downtime (TD): It is the time for which service is

interrupted and for higher service availability, it is needed

to keep this value minimal. It is defined as time taken in

last iteration of migration process or difference of time

between Virtual machine resumed at destination side (Tr)

and virtual machine stopped at source side (Ts).

Total data (pages) transferred (𝑉𝑚𝑖𝑔): It is the amount

of data transferred during the migration process. More

data transfer directly affects the migration time. It is

defined as 𝑉𝑚𝑖𝑔 = ∑ 𝑉𝑖 𝑁
𝑖=0 , where, Vi is the volume

(number of pages) of data transferred in ith iteration and N

is the number of iterations. This value should be minimal.

 Two Fold Optimization of Precopy Based Virtual Machine Live Migration 11

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

Overhead: It is the additional data transferred during

migration which directly affects the time taken for virtual

machine migration. To describe overhead trade-off of the

migration method, Redundancy ratio Rd is defined

as 𝑅𝑑 =
𝑉𝑚𝑖𝑔

𝑉𝑚𝑒𝑚
× 𝐵 , Where Rd indicates additional data

transferred during migration, Vmig is total data transferred

during migration, Vmem virtual memory size and B is data

rate. Bigger the ratio more will be the overhead caused by

iteratively dirtied memory during migration. The

overhead occurred due to migration process leads to

degradation of application performance running on the

virtual machine.

Other factors which affect the performance of a virtual

machine live migration are as follows:

Memory dirty rate: It shows the memory changing rate

by which the memory gets dirty. With the lower memory

dirty rate, a migration process sooner reaches the

stopping condition and results in a reduction of migration

time.

Data rate: It is the data transferring rate during the

migration process. It is inversely proportional to the

migration time which implies higher data transfer rate

sends more data in less time.

𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 =
1

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

IV. PRECOPY METHOD

To better understand the proposed work it is necessary

to study precopy method. Working of precopy live

migration method consists of:

 Complete virtual machine image is transferred in

first iteration of precopy migration.

 Data updated (dirty pages) in first iteration is

iteratively transferred in subsequent iterations to

maintain the consistency. For further iterations

dirty pages are iteratively transferred until reached

to a predefined threshold value i.e. maximum

number of iterations or amount of data remaining

to transfer.

 After fulfilling the stopping condition precopy

method reaches its last iteration known as stop and

copy. In this iteration, virtual machine is

terminated at source side and transfers remaining

data to the destination. Finally, virtual machine is

resumed at destination and migration process ends.

Iterations performed in precopy method are shown

in Fig. 3.

In the precopy method three types of bitmap [17]

called TO_SEND, TO_SKIP and TO_FIX, are used to

improve the migration process. These bitmaps are used to

find pages which are transferred in current iteration, with

the objective that the frequently updated pages are kept

till the last iteration. Bitmap TO_SEND holds dirty pages

of previous iteration and need to be transferred to the

destination. Bitmap TO_SKIP holds frequently updated

pages which are not transferred in current iteration.

Bitmap TO_FIX holds those pages which are transferred

in last stop and copy iteration. In this way, bitmaps help

to mark the frequently updated pages in order to reduce

the transfer of same pages repeatedly.

Fig.3. Iterations in Precopy method

H (remaining data) and N (maximum number of

iterations) are two thresholds which are used as stopping

condition for performing last stop and copy iteration.

Pseudo code for precopy method is described as

follows.

Pseudo code: Precopy Method

1. D <- Send complete VM // first iteration
2. i <- 0

3. while D>H & i<N

4. Send pages TO_SEND ∩ TO_SKIP
5. Perform stop and copy operation to send the pages to

destination // last iteration

6. Resume VM on another host

After studying the precopy method, following issues

are found:

 Complete virtual machine image is transferred in

first iteration of precopy migration which is large

in size.

 Data updated in first iteration is transferred in

subsequent iterations, which leads to repetitive

transfer of same data.

In both cases amount of total data transferred increases,

which further increases total migration time.

Above issues can be solved by applying following two

way solution. First instead of sending complete virtual

machine image in a first iteration of migration method,

only unmodified pages are sent. Second for further

iterations frequently updated pages are traced by utilizing

the bitmaps and historical data (memory pages which are

updated in previous iterations). Idea behind this is to keep

frequently updated pages till last iteration which reduce

repetitive transfer of same pages. Sending only less

frequently updated pages in each iteration starting from

the first iteration greatly reduce the total data transferred

by avoiding transfer of complete virtual machine image

in first iteration. In the following section proposed two

fold precopy method is discussed.

12 Two Fold Optimization of Precopy Based Virtual Machine Live Migration

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

V. PROPOSED WORK

This section presents proposed two fold precopy

method, which reduces the transfer of similar frequently

updated pages iteratively and improves the performance

of live migration process.

Two fold precopy method works in two phases:

First phase: It simply sends only unmodified memory

pages and reduces the data transferred in first iteration.

For this it uses the dirty log bitmap shown in Fig. 4.

When the memory pages are modified then the

corresponding bit in dirty-log bitmap is 1. Any page in

dirty-log bitmap, whose corresponding bit is 0

(unmodified page), is sent to a destination in a first

iteration. For this task two fold precopy method does not

imposes any extra overhead. Finally, in place of complete

virtual machine only unmodified pages are transferred

which reduces the amount of data transferred in first

iteration. Amount of data transferred in first iteration

depends on the virtual machine workload type. If the

virtual machine is lightly loaded or less write intensive

(modification or dirty rate), then the number of

unmodified pages are more. Whereas in highly loaded or

more write intensive virtual machines, unmodified pages

are less. But in both cases amount of data transferred in

first iteration is reduced. First phase provides the initial

writable working set (WWS [10]), which is further

optimized in second phase or in further iterations.

Fig.4. Dirty log bitmap

Second phase: It further improve the writable working

set (WWS) obtained from a first iteration, in order to

trace the frequently updated pages. More accurate

writable working set (WWS), helps to reduce the iterative

transfer of similar memory pages in subsequent iterations.

Precopy method compares TO_SEND and TO_SKIP

bitmaps and the result of an intersection of these two lists

are the pages which are transferred in current iteration.

But still there is a possibility that the pages already

transferred in current iteration may be modified again in

next iteration. It is required to trace the frequently

updated pages more accurately. For this purpose along

with the TO_SEND and TO_SKIP bitmaps, one more

bitmap TO_SEND_h[i] [20] is used which stores

historical data of modified pages. TO_SEND_h[i] bitmap

stores those pages which are modified in iteration ‘i' and

number of times they are modified. Organization of

TO_SEND and TO_SEND _h[i] bitmap is shown in Fig.

5.

For each iteration, TO_SEND bitmap is compared with

TO_SEND_h[i] bitmap and threshold T1 (value of higher

dirty rate). Pages whose value is more than threshold T1

is considered as frequently updated pages. Value of

threshold T1 is changed for every iteration and it can be

defined as:

T1 =└
 Max [page modification rate]+ Min [page modification rate]

2
┘

 (1)

Only the page which satisfies following condition will

be transferred:

Number of times page modified < T1 (2)

It means pages having less modification rate than the

threshold value are considered as less frequently updated

pages.

Fig.5. TO_SEND and TO_SEND_h bitmap

In this way two fold precopy method trace the

frequently updated pages in each iteration and send them

to a last stop and copy iteration.

Pseudo code for two fold precopy method is described

as follows.

Pseudo code: Two Fold Precopy Method

1. D <- Send only Unmodified data // first phase

2. Modified pages are stored into TO_SEND bitmap

3. i <- 0

4. while D>H & i<N // Second phase
5. Compare TO_SEND and TO_SEND_h[i] and Calculate

6. T1=└
 Max [page modification rate]+ Min [page modification rate]

2
┘

7. Send pages P(Number of times page [a] modified < T1)
8. i = i +1

9. Perform stop and copy operation to send the pages to

destination // last iteration
10. Resume VM on another host

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of two fold

precpoy method, Cloudsim simulator is used.

Effectiveness of the two fold precopy method is shown

by comparing it with precopy method with respect to

metrics, Total migration time, Downtime, and Total data

transferred. CloudSim simulator is a framework for

modeling and simulating a cloud environment. It is also

 Two Fold Optimization of Precopy Based Virtual Machine Live Migration 13

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

widely used within the group of researchers and industry-

based developers. CloudSim helps to investigate the

specific design issues without getting concerned about the

low-level details of a cloud environment.

A. Simulation setup and measurement

Experimental environment consist of one datacenter,

which contains two hosts. Four virtual machines are

created each with different memory sizes. 128M, 256M,

512M and 1024 memory sizes for VM1, VM2, VM3, and

VM4 respectively. All virtual machines migrate from one

host to another separately.

Dirty matrix is a data structure used to show memory

pages of a virtual machine modified in last iteration

called dirty log bit. In this ‘0’ entry corresponding to the

pages shows that these pages are not modified and

transferred in a first iteration whereas remaining modified

pages are stored in TO_SEND bitmap. Here four bitmap

arrays are also used such as TO_SEND, TO_SKIP,

TO_FIX, and TO_SEND_h. For each iteration pattern is

generated by the dirty matrix and based on this, behavior

of precopy method and two fold precopy method is

checked. Simulation results are shown here in the form of

three graphs.

Fig.6. Total data transferred

Total data transferred: It shows the amount of data

(pages) transferred during the migration of all four virtual

machines. Graph in Fig. 6 clearly shows that amount of

data transferred in two fold precopy method is less as

compared to precopy method.

Total migration time: Fig. 7 shows the total time taken

by the migration of all four virtual machines individually.

The two fold precopy method takes less time for the

migration as compared to precopy method.

Fig.7. Total migration time

Downtime: Graph in Fig. 8 shows that Downtime is

approximately equal to both two fold precopy method

and precopy method.

Fig.8. Downtime

Performance evaluation of two fold precopy method

shows that it is more effective than precopy method in

terms of total migration time, total data transferred and

nearly same in terms of downtime.

VII. CONCLUSION

This paper proposes a new two fold precopy method

which optimizes the precopy method. The simulation

results show that two fold precopy method perform better

than precopy method. It reduces the amount of data sent

in first iteration by sending only unmodified pages

instead of full virtual machine image. It traces out the

frequently updated pages for the subsequent iterations, by

using the historical statistics of dirty pages. The main

feature of the two fold precopy method is that Threshold

(high dirty page) value need not to be decided manually.

It is calculated based on the historical statistics of dirty

pages, which is dynamic in nature. The two fold precopy

method does not impose any overhead for the first phase,

and for the second phase only one array is used which

only stores the statistics of modified pages. The capturing

of historical statistics and processing of method is

implemented in such a way that it does not affect the

performance of a virtual machine.

Two fold precopy method improves the precopy

method in terms of total migration time and total data

transferred, but downtime still needs improvement.

Downtime will be further optimized as a future work.

Apart from this effectiveness of two fold precopy method

will be tested for real time implementation. Presently, the

two fold precopy method works for local area network

but further it will be extended for wide area network.

REFERENCES

[1] M. I. Alam, M. Pandey, and S. S. Rautaray, “A

Comprehensive Survey on Cloud Computing”,

International Journal of Information Technology and

Computer Science (IJITCS), no. 2, pp. 68-79 (2015).

[2] N. el-Khameesy, and H. A. R. Mohamed, "A Proposed

Virtualization Technique to Enhance IT Services."

14 Two Fold Optimization of Precopy Based Virtual Machine Live Migration

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 8-14

International Journal of Information Technology and

Computer Science (IJITCS) 4, no. 12, pp. 21-30 (2012).

[3] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic

resource management using virtual machine migrations,”

Communications Magazine, IEEE, vol. 50, no. 9, pp. 34–

40, 2012.

[4] “VMware Incorporation,” http://www.vmware.com

[5] “Microsoft Corporation,” http://www.microsoft.com/en-

us/server-cloud/hyper-v-server/

[6] “KVM,” http://www.linux-kvm.org

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A.Warfield, “Xen and the

art of virtualization,” ACM SIGOPS Operating Systems

Review, vol. 37, no. 5, pp. 164–177, 2003.

[8] S. Sharma and M. Chawla, "A technical review for

efficient virtual machine migration." In Cloud &

Ubiquitous Computing & Emerging Technologies (CUBE),

2013 International Conference on IEEE, pp. 20-25, 2013.

[9] S. Sharma, and M. Chawla, "A Review on Efficient Virtual

Machine Live Migration: Challenges, requirements and

technology of VM migration in cloud" International

Journal of Cloud Computing and Services Science (IJ-

CLOSER) 3, no. 6 (2014).

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.

Limpach, I. Pratt, and A. Warfield, “Live migration of

virtual machines,” in Proceedings of the 2nd conference on

Symposium on Networked Systems Design &

Implementation-Volume 2. USENIX Association, pp. 273–

286, 2005.

[11] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual

machine migration with adaptive, memory compression,”

in Cluster Computing and Workshops, CLUSTER’09.

IEEE International Conference on IEEE, pp. 1–10, 2009.

[12] Y. Ma, H. Wang, J. Dong, Y. Li, and S. Cheng, “Me2:

Efficient live migration of virtual machine with memory

exploration and encoding,” in Cluster Computing

(CLUSTER), 2012 IEEE International Conference on

IEEE, pp. 610–613, 2012.

[13] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth.

"Evaluation of delta compression techniques for efficient

live migration of large virtual machines." ACM Sigplan

Notices 46, no. 7 (2011): 111-120.

[14] P. Svard, J. Tordsson, B. Hudzia, and E. Elmroth, “High

performance live migration through dynamic page transfer

reordering and compression,” in Cloud Computing

Technology and Science (CloudCom), 2011 IEEE Third

International Conference on IEEE, pp. 542–548, 2011.

[15] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu, and F. Zhou,

“Optimizing the live migration of virtual machine by cpu

scheduling,” Journal of Network and Computer

Applications, vol. 34, no. 4, pp. 1088–1096, 2011.

[16] Z. Liu, W. Qu, W. Liu, and K. Li, “Xen Live Migration

with Slowdown Scheduling Algorithm”, The 11th

International Conference on Parallel and Distributed

Computing, Applications and Technologies, pp 215-221,

2010.

[17] J. Alamdari and K. Zamanifar, “A reuse distance based

precopy approach to improve live migration of virtual

machine,” in Parallel Distributed and Grid Computing

(PDGC), 2012 2nd IEEE International Conference on

IEEE, pp. 551–556, 2012.

[18] F. Ma, F. Liu, and Z. Liu, "Virtual Machine Migration

Based on Improved Pre-copy Approach," In Proc. IEEE

Int'l Conf. Software Engineering and Service Sciences,

pp.230-233, 2010.

[19] Y. Wu and M. Zhao, “Performance modeling of virtual

machine live migration,” in Cloud Computing (CLOUD),

2011 IEEE International Conference on. IEEE, pp. 492–

499, 2011.

[20] B. Hu, Z. Lei, Y. Lei, D. Xu, and J. Li, “A Time-Series

Based Precopy Approach for Live Migration of Virtual

Machines”, IEEE 17th International Conference on Parallel

and Distributed Systems, pp 947-952, 2011.

[21] H. Liu, C. Xu, H, Jin, J. Gong, X. Liao, “Performance and

energy modeling for live migration of virtual Machines”,

ACM 2011.

[22] M. R. Hines and K. Gopalan, “Post-copy based live virtual

machine migration using adaptive pre-paging and dynamic

self-ballooning,” in Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual

execution environments. ACM, pp. 51–60, 2009.

[23] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi,

“Reactive consolidation of virtual machines enabled by

postcopy live migration,” in Proceedings of the 5th

international workshop on Virtualization technologies in

distributed computing. ACM, pp. 11–18, 2011.

[24] A. Strunk, “Costs of virtual machine live migration: A

survey,” in Services (SERVICES), 2012 IEEE Eighth

World Congress on. IEEE, pp. 323–329, 2012.

[25] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya,

“Cost of virtual machine live migration in clouds: A

performance evaluation,” in Cloud Computing. Springer,

pp. 254–265, 2009.

Authors’ Profiles

Sangeeta Sharma: She is currently working

towards her PhD degree under Computer

Science and Engineering department, at

Maulana Azad National Institute of Technology,

Bhopal, India. Her main research interest

includes virtualization technology for cloud

computing.

Meenu Chawla: She received Bachelor of

Engineering degree in Computer Science and

Engineering from MANIT Bhopal, India, and

Master in Technology from IIT Kanpur, India.

She was awarded the Ph.D. degree in

Computer Science and Engineering from

MANIT Bhopal, India. She is currently a

Professor in the Department of Computer Science and

Engineering, at Maulana Azad National Institute of Technology,

Bhopal, India. Her research interests includes adhoc networks,

wireless networks etc. She has authored and published over 50

research papers in various International conference and

International journals.

How to cite this paper: Sangeeta Sharma, Meenu

Chawla,"Two Fold Optimization of Precopy Based Virtual

Machine Live Migration", International Journal of Information

Technology and Computer Science(IJITCS), vol.7, no.10, pp.8-

14, 2015. DOI: 10.5815/ijitcs.2015.10.02

