
I.J. Information Technology and Computer Science, 2015, 03, 1-11
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.03.01

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

A Distributed Fault Tolerance Global Coordinator

Election Algorithm in Unreliable High Traffic

Distributed Systems

Danial Rahdari
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Iran

E-mail: d.rahdary@srbiau.ac.ir

Amir Masoud Rahmani, Niusha Aboutaleby
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Iran

E-mail: rahmani@sr.iau.ac.ir; n.aboutaleby@gmail.com

Ali Sheidaei Karambasti
No15, Ghafari Alley, Mashahir St., Ghaem Maghame Farahani Ave., Tehran, Iran

E-mail: a.sheidaei@etadbir.com

Abstract — Distributed systems consist of several management

sites which have different resource sharing levels. Resources

can be shared among inner site and outer site processes at first

and second level respectively. Global coordinator should exist

in order to coordinate access to multi site’s shared resources.

Moreover; some other coordinators should manage access to

inner site’s shared resources so that exerting appropriate

coordinator election algorithms in each level is crucial to

achieve most efficient system. In this paper a hierarchical

distributed election algorithm is proposed which eliminates

single point of failure of election launcher. Meanwhile traffic is

applied to network at different times and the number of election

messages is extremely decreased as well which applies more

efficiency especially in high traffic networks. A standby system

between coordinators and their first alternative is considered to

induct less wait time to processes which want to communicate

with coordinator

.

Index Terms— Distributed Algorithm, Coordinator Election,

Fault Tolerance, Cloud Computing, Hot Standby,

Unreliability, ·Global Coordinator

I. INTRODUCTION

Processes and systems collaboration are growing more

and more by emerging new technologies and concepts in

the world of distributed systems which give

communication the most crucial role of these systems.

It is clear that Processes communicate with each other

through operating system and Transition layer [1]. The

functions of some processes during execution procedure

are dependent on the others state because of the same

shared resources.

As an example if a process wants to access an

exclusive shared resource, it should check over to ensure

to be the only one which uses the critical region to fulfill

mutual exclusion property. There are lots of challenges,

few of which are listed below, that should be considered

during this process.

 Processes should ask all the others for permission

before accessing the shared resources. Therefore a

significant number of messages should be passed.

 During permission asking process, the processes

response isn’t guaranteed. It usually happens because

of their failure or 100% usage of system’s processor.

Therefore they cannot access the resource because of

lack of permission.

The existence of central controlling process is

necessary to handle these situations. Single point of

failure is clearly the so that if it crashes, new election

should be launched to set new process as coordinator.

Leader election algorithms which are used for electing

coordinator and its alternatives are useful in many

various areas. They are used in distributed systems for

load balancing and keeping resource replicas consistency

[2]. When a coordinator crashes, some wait time is

applied to processes supposed to communicate to

coordinator. This time is affected by the power of an

election algorithm which goes more by higher speed and

less bandwidth usage. Hence, more powerful algorithms

apply less wait time and appreciate system performance.

Meanwhile, there should be a trade-off between the

safety and power of an election algorithm in the system,

because if we need more powerful algorithms, we must

attend to safety less since it needs to exchange more and

more messages between processors which cause the

weakness of the algorithm. This problem is also known

as election problem [3].

Coordinators play a huge role in spread areas such as

video conferencing, multiplayer games, recognizing

processor or computer failure for data transferring, load

balancing, and many others which show the importance

of the coordinators once more and convince the

researchers to give more attention to it.

2 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

II. RELATED WORK

This area welcomed wide range of algorithms with the

passing of time. Algorithms differ in specifications such

as network topologies, the kind of communications

between processes, and also setting the name of the

processes. Bully [4] and Ring [5] are two classic ones

that are referred to in many papers. Bully algorithm

whose network topology is used in this paper launches

election when processes find coordinator crashed. In the

first step of election, these processes send Election

messages to the processes with an upper process number

than themselves. Then when processes receive Election

labeled message, they will respond by an OK message.

However, if no process responds, the sender would

introduce itself as the new coordinator to the system by

sending a Coordinator message to them. If process P2

replies the sender, P2 will send another Election message

in the system by using the previous procedure. These

steps continue until no other process with an upper

number than the sender process exists or any other OK

messages from the upper number processes didn’t receive

to informer.

Author in [6] proposed a uniform self–stabilizing

distributed algorithm which is able to apply to any

network with unique IDs. The algorithm elects the

process of least ID as coordinator and constructs a

breadth first search (BFS) tree rooted at coordinator

within O (n) rounds which n is the network’s process

number. This algorithm’s contribution is based on

stabilization and is completely different with ours. An

algorithm based on star graph is proposed in [7] which

uses tournament scheme based on the recursive structure

of the star graph. A star graph Sn of dimension n is

decomposed into n substars Sn-1 of dimension n-1.

Election in S1 is quite simple because it just contains a

single node, then election in S2 will be done by elected

coordinators in S1. This process will be continued to elect

the coordinator in Sn by the elected coordinators in Sn-1.

The message passing complexity in each step is from O

(√n), but the whole algorithm is from O (n). The

algorithm is applied on star networks and elects

coordinators recursively. Moreover, it isn’t considered

multi management sites, which means any coordinator in

lower layers is just elected in order to elect coordinators

in the upper ones.

A probabilistic election algorithm with average

message complexity O (n) for anonymous, unidirectional

asynchronous bounded expected delay network is

presented in [8]. Every node is in one of the following

states: idle, active, passive or leader. The idle state is the

default one at the beginning. The algorithm passes

messages among the nodes and will change the idle ones

to passive or active. Coordinator will be the active node

that initially created and sent message in the network.

This algorithm considered that network is anonymous

and has restriction on response delay that is in contrast

with ours which processes have IDs and delay is also

accepted. Author in [9] studied stabilization and fault-

tolerant elections in systems with static crash failures.

They considered stabilization in the form of self-

stabilization and pseudo-stabilization, so they tried to

have election algorithms with these types of

characteristics. Five systems are assumed in their paper.

The base one has arbitrary slow or loosely

communication links and then appropriate election

algorithms are proposed for each of them. Stabilization

and fault tolerance are the main ideas of the paper that

cause more messages to pass in order to achieve these

advantages.

Park [3] proposed an algorithm based on unreliable

crash detecting procedure by processes assumption. New

election will be run when local failure detectors of all

processors commit coordinator failure. In this algorithm,

processors send Coordinator messages to the other when

they realize coordinator has crashed. Then receivers

check message crash information and their local failure

detectors information to reject or accept the failure.

Commit message which is consisted of new coordinator

number will be sent by informer if it receives accept from

all processes. However, unreliable failure detector is not

considered in our paper.

Effatparvar [10] and Shirali [1] are proposed

algorithms by modifying the Bully. In the first paper

processors which receive Election message, send their

numbers to informer. After that it compares all processes

numbers and then coordinator will be chosen. Processes

are informed about the elected coordinator by receiving

Coordination message from informer in the next step.

These methods improve the Bully algorithms since it

reduced the number of messages which should pass for

coordinator election. Our algorithm consists of two

algorithms. The first one is based on Bully algorithm and

passes fewer messages than [10] which will be proved by

simulation. Mirakhorli [11] proposed an algorithm by

considering k candidate for coordinating in order to

prevent new global election. When a typical process such

as N finds a coordinator crashed, it’ll send Crash-Leader

message to candide1. If candide1 is not available,

messages will be sent to the other ones respectively. If

one candidate remains up, it will check the number of the

last coordinator and message crashed coordinator, and

then N will be introduced as new coordinator by it if they

are the same. Alleviating the number of exchanged

messages and lunching new election algorithm

prevention are the algorithm advantages. By our

algorithm, any time a process finds a coordinator crashed,

it informs the others about it and then a new election will

be postponed until the failure of all the coordinator

alternatives.

Effatparvar [12] proposed an algorithm based on Ring

election. Algorithm’s Message format has one section

which denies coordinator crash fault tolerance. Election’s

message number is reduced dramatically when more than

one process realize coordinator crash at the same time.

But if during crash time and new coordinator

identification, other processes find the crash out; election

will be launched again, which is the fundamental

difference with one of our algorithm in this case. Xie [13]

algorithm is based on bidirectional ring network.

 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable 3

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

Processors make election message and then send it to

their successor and predecessor simultaneously when

they are finding coordinator crashed. The most important

advantage of the algorithm is raising the speed of election

in Our algorithm is a hierarchical coordinator election

that in the first level an algorithm based on Bully is

applied, which elects the site’s coordinators. Then global

coordinator will be chosen among the elected sites

coordinators in the next level.

The rest of paper is organized as follow. Section 3 is

about system’s assumptions that this algorithm is based

on. Section 4 is considered to express the system’s

message format. In section 5 an algorithm based on Bully

is proposed and section 6 describes the fault tolerance

coordinator election algorithm in bidirectional ring

(FCEABR) algorithm. Our proposed algorithm is

described In Section 7 and section 8 is dedicated to

mathematical analyzing of the algorithm. The algorithm

is simulated in section 9 and the convergence of final

results is approved by Section 10. At the end, section 11

is devoted to paper conclusion.

III. SYSTEM ADMINISTRATON

Our algorithm is based on distributed networks with

multi management site in it. Sites are not forced to have

similar number of processes. The algorithm works in

systems such as cloud, Grid, cluster, and other regular

distribute environments that have shared resources in

each site and among themselves. A typical network’s

topology is shown in Fig. 1.

Fig. 1. Grid where there are k sites in the network

IV. ELECTION MESSAGE’S FORMAT

The Message’s format depends on the number of

coordinator’s alternative; therefore a different number in

each site causes a different message’s format in

comparison to the others.

If K refers to the number of alternatives, the site’s

message format is determined in Fig. 2. By assigning 1 to

K, the format will be the same as the format of FCEABR

algorithm that is shown in Fig. 3. Many other formats are

used by various types of algorithms in the area such as

basic Ring algorithm’s format. When processes receive

Election message in this format, they’ll add their number

into it, and pass it to their successor. Hence, as the

number of processes in a typical network increases, the

size of message will be bigger and bigger. This format is

shown in Fig. 4.

It should be noted that the other messages such as

network controlling ones can pass easily because of

message’s label which causes difference among them.

The first format is preferred in our algorithm because of

advantages such as reducing the size of messages,

inducting fault tolerance into system and being very

practical in high traffic networks.

Fig. 2. Sites Message format with K coordinator Alternative

Fig. 3. FCEABR message forma

Fig. 4. Basic Ring algorithm Format

V. FCEABOB ALGORITHM

A Fault tolerant coordinator election algorithm based

on Bully algorithm (FCEABOB) is proposed in this

section. According to inner site’s topology, each process

placed in the sites has full information about the other

processes, so they can easily communicate (like the one

Bully is based on). FCEABOB is applied to the inner

site’s election and has the following specifications.

 K coordinator alternatives {A1, A2, A3, … , Ak} are

considered which replaced to coordinator respectively

at any time the previous one crashed.

 T is denoted as the number of processes received

Election messages and didn’t reply back to it.

 The replying back Election message might not sent by

processes or received to informer although processes

are available. In this case the message will be sent to

them once more to gain more powerful algorithm. The

situations such as message loosing during network

transition or 100% CPU usage in specified time and so

on cause this case.

The algorithm elects coordinator and its k alternatives

by these six steps following:

 First of all, the algorithm will be run when at least one

process finds crash out.

 Then these processes send Election message to k

(number of alternatives) processes with upper process

number than themselves.

 After that, the available processes send their number to

election informer processes.

 Next, the election message will be sent again to any

processes which haven’t replied (T ones totally). The

messages also will be sent to the next T upper number

4 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

processes to place each of them respectively as

alternative if any of those t processes do not response.

It means that if {P1, P2, P3, … , Pt} are formed processes

which failed to response to the election procedure, the

coordinator message will be sent to them and also to

the next upper T number ones.

 The most upper number process is elected as

coordinator with the next K upper ones as its

alternatives.

 Finally, the informer propagates coordinator message

in network to announce new coordinator and its k

alternatives.

An example of algorithm and its pseudo code when

there isn’t any coordinator in network are shown in Fig. 5

and Fig. 6 respectively. The number of processes is eight

and there are four coordinator alternatives. Process

number 9 starts the election in this example. Four

messages are sent to the four must upper number

processes. In (Fig 5-b) all the processes replied back to 9

except process 12. Then in (Fig 5-c) process 9 sent

messages to 5 and to 12 as well. In (Fig 5-d) process 5

replied back to 9, finally in (Fig 5-e) process 9 broadcast

information in the network. It is clear by the pseudo code,

if all processes that received election message respond to

the informer, the election will be done; otherwise it will

go to some other section and necessary functions will be

done there.

Fig. 5. FCBABOB algorithm example in a typical network

Fig.6. FCBABOB pseudo code

VI. FCEABR ALGORITHM

Fault tolerance coordinator election algorithm in

bidirectional Ring (FCEABR) is based on network’s

topologies in which each process just knows its successor

and predecessor.

 In these networks, the processes are able to send

messages just to their two sides (sides are really or

logically existed). The algorithm was proposed by [14]

and behaves according to following steps. First of all,

Election message is created by a random selected

process.

 Then selected process launches election by sending

Election messages to its successor and predecessor

simultaneously.

 Any time each process receives these messages, it

checks their number to message’s coordinator and its

alternatives. If its number is upper than each of those

items, the process will replace it with them and will

send the message to their successor or predecessor

according to its direction in the ring.

 At least one process such as Pc in the network will

receive Election messages from its two sides. This

 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable 5

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

process, which has all the processes number in the

network, will elect coordinator and its alternatives.

 Then Pc creates a coordinator message and sends it into

the network in the same way which Election message

was sent.

 Afterwards, anytime the coordinator crashes, the

subrogate coordinator is replaced with it. Processes

which realize crash create Selection message and

propagate it to the network. Therefore, a new

subrogate coordinator is identified.

Election’s speed in the algorithm is more than simple

Ring algorithm and number of messages that passed is

fewer; especially when multi processes realize crash.

However, a bit more processing time is needed.

This algorithm is modified and used in this paper by

considering more than one coordinator alternative in the

case, which causes change of message’s format, the

procedure of coordinator election and its alternative. We

illustrate the algorithm by an example in Fig. 7. As we

can see, the network has six processes and one alternative.

In Fig. 7-a process 5 creates an Election message and

sends it into the network, then process number 6 which

received election messages with the same informer

number from its two sides creates coordinator messages,

and throws these messages into network from its sides as

well.

Fig.7. FCEABR algorithm in a typical network.

VII. LEADER ELECTION ALGORITHM

The algorithm is designed based on networks with

multi management sites with no constraint on the number

of processes in them. FCEABOB algorithm is applied to

inner site election but the number of alternatives can be

chosen by the site’s administrator depending on

specifications such as the site’s traffic, reliability value,

and required performance and so on. More alternative,

that causes fewer election messages passing but on the

other hand lower chance is applied to new processes that

recently came into network to get the coordinator or its

alternative role in no time, so there should be a tradeoff

between these two characteristics. In each site there are

two coordinators, internal and external ones, the most

upper process numbers will be internal coordinator and

the next one is considered as external coordinator.

 Internal Coordinator. This coordinator is used to

coordinate accessing to the internal site’s shared

resources. In the rest of the paper we will refer to it by

ICoordinator.

 External Coordinator. This type of coordinator is

considered to coordinate accessing to shared resources

among multi sites. It will be referred by ECoordinator

Typical site architecture is shown by Fig.8. Each Site’s

coordinator has a number of alternatives which are

determined by the site’s administrator. ICoordinator and

ECoordiantor have connection with their first alternative

which is considered as standby system to minimize its

replacing time with the crashed coordinator. Hot, cold,

and warm standbys form three types of standby systems

and any of these can be chosen by the site’s administrator

but each of them has advantages and disadvantages and is

used in appropriate situations

Fig.8. Typical Site Architecture

Hot standby systems are usually used in real time

environments and increase the cost and probability of

coordinator’s alternative crash because it is always up

and updated by each update of global coordinator but no

wait time is applied to any process in the network to

launch new global election. The advantages and

disadvantages of cold standby are in contrast with hot

standby.

When site’s election is done, the ICoordinator,

ECoordinator, and their alternatives are elected. Now it is

the time to elect global coordinator in order to manage

accessing to the multi site’s shared resources. Virtual

bidirectional ring network is set up among sites to elect

Global Coordinator (GCoordinator) between them. For

coordinator election in this virtual network we should

apply one of the various election algorithms based on

ring network topology. It is necessary to mention that

GCoordinator is definitely elected from existing

processes in sites and no special processes are considered

for this role.

We elect coordinator and its alternatives in this

network by FCEABR algorithm. There are n1 processes

(number of sites) and P alternatives for GCoordinator in

the network (1≤P≤ n1). Network architecture and the way

that virtual bidirectional network is created are shown in

Fig. 9.

6 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

Fig.9. Network architecture. IC: internal coordinator, EC: External

Coordinator, S(k) EC: External coordinator of site k. Each site has
internal and external coordinator.

Any site’s ECoordinator is placed in this network, so

they just know about their successor and predecessor

site’s ECoordinator according to the bidirectional ring

topology. We can set up this network by another

topology which all processes in network are known by

one another so if a new process wants to join a virtual

network it should announce its entry to all other

processes (such as Bully algorithm). If n2 is denoted as

the site’s number of processes, n2 messages should be

exchanged when new a process wants to join a virtual

network but in bidirectional ring network two message

sending is enough. Hence, this topology is preferred in

the virtual network because of the dynamic nature of

heterogeneous distributed systems (resources can join or

leave network by little management effort).

In this network all the time coordinator and

alternatives exist but when all alternatives are crashed, a

new election in the virtual network will be run. When the

GCoordinator crashes, each process in the bidirectional

ring network which finds it out will send a message to the

site’s ICoordinator of the crashed GCoordinator

separately in order to inform it to broadcast Coordinator

crash message to processes in its site. If the ICoordinator

knows about coordinator crash, it will not pay attention

to these messages in order to avoid the waste passing of

messages in the network, but if it doesn’t know, then it

replaces the first external alternative to ECoordinator.

With K alternatives for a typical site ICoordinator (K<n),

when the first ICoordinator and K-2 internal alternatives

crash, first of all new coordinator election will be run in

the site because another crash causes processes which

want to access some shared resource whether in the site

or out of it to wait until new coordinators are elected.

Then first external alternative is replaced to ECoordinator

and in the similar way of inner site election, if no other

alternative remains in the virtual network, a new

coordinator election will be run by the processes which

find crash out. When any site’s ECoordinator crashes, its

first external alternative will be replaced with it in the site

and also in virtual network to send and manage accessing

to the requests of outer site shared resources. The pseudo

code of algorithm behavior to coordinator crash and how

their alternatives replace with it is determined in Fig.10.

Description of all used variables in equations is inserted

in Table 1.

Table 1. Variable and Description

Symbol Definition

VMN Virtual Network Messages Number

FPN Number of Processes which find coordinator Failed

NS Number of Sites

SMN Site’s Message Number

SCANi Site i Coordinator’s Alternative number

SPNj Site j Process Number

EMN Exchanged Message Number

CC1 FCEABR Communication Cost

CC2 FCEABOB Communication Cost

PT1 FCEABR Processing Time

PT2 FCEABOB Processing Time

ECT1 FCEABR Election Process Consuming Time

ECT2 FCEABOB Election Process Consuming Time

HECT Hierarchical algorithm Election Consuming Time

GCFCC Global Coordinator Failure Communication Cost

ICFCC Internal Coordinator Failure Communication Cost

α1 Communication time between two processes in the virtual network

α2 Communication time between two processes in the site.

α3 Communication time between a process in the virtual network and a process one in a typical sites

Β1 Time consumed to compare two numbers by a process in the virtual network

Β2 Time consumed by a process to find out the processes which didn’t reply back to it.

 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable 7

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

Fig. 10. Crash Identify procedure. It runs by a process which finds out

coordinator crashed.

VIII. MATHEMATICAL ANALYZE

Proposed algorithm is consisted of two algorithms

applied on sites and built virtual network. Therefore both

should be analyzed in order to achieve complete analysis.

A. Message Complexity Analyzing

One of the most important features of an algorithm is

the number of messages exchanged among the processes,

which is vital in the high traffic networks.

1. FCEABR Message Complexity Analyzing

This algorithm is applied on ring network and virtual

network message’s number (VMN) is subjected to the

number of sites (NS) in the network and number of those

processes which find coordinator crash out (FPN).

Therefore, VMN is calculated by (1).

𝑉𝑀𝑁 = (𝐹𝑃𝑁 − 1) ∗ (𝑁𝑆/ 𝐹𝑃𝑁) + 2 ∗ 𝑁𝑆 (1)

2. FCEABOB Message Complexity Analyzing

This algorithm is applied to inner site election. Site’s

messages number (SMN) is subject to the site’s process

number (SPN) and site’s coordinator alternatives number

(SCAN). Hence, the total site’s messages number during

election at the best case achieves by (2).

𝑆𝑀𝑁 = 2 ∗ 𝑆𝐶𝐴𝑁 + 𝑆𝑃𝑁 − 1 (2)

However, when response disability by processes in the

site is considered, SMN will be increased. Therefore, the

worst case of the algorithm is calculated by (3). It should

be mentioned this number is gained when all the process

in the network are crashed except informer, so there is no

need to inform the other about the elected coordinator,

which is the informer itself.

𝑆𝑀𝑁 = 𝑆𝐶𝐴𝑁 + 2 ∗ (𝑆𝐶𝐴𝑁) ∗ (𝑆𝑃𝑁/𝑆𝐶𝐴𝑁)

= 𝑆𝐶𝐴𝑁 + 2 ∗ 𝑆𝑃𝑁 (3)

3. Hierarchical Message Complexity Analyzing

Exchanged message number (EMN) to elect

coordinator in the network with initial configuration will

be equaled to the below equations in the base which is

from O (NS + SPN). For the sake of the problem Site

coordinator alternatives number and site’s process

number is assumed to be the same. But the worst case

number of exchanged message in the algorithm can be

calculated by (5) which is from O (SPN + NS)

Hence the algorithm’s message passing during

coordinator election is from Ο (SPN + NS) and Ω (SPN +

NS).

B. Time Complexity Analyzing

Low message complexity of an algorithm is considered

as a great advantage. However, if these messages are

exchanged during a long period of time, the algorithm is

almost impractical and useless. Therefore, time

complexity of our algorithm is discussed by analyzing

FCEABR and FCABOB algorithms separately as same as

the previous section.

1. FCEABR Time Complexity Analyzing

During election procedure by this algorithm, the

Election messages are circulated among all the processes

in the network, and then they should be informed about

the elected coordinator and its alternatives. Moreover,

any process compares its own number with Election

message’s coordinator and its alternatives. As discussed

before, the number of messages passed by this algorithm

is variable due to number of processes in the network.

Communication time between each two processes is

considered to be the same for simplicity, so

Communication Cost (CC1) of the algorithm is gained by

(6).

Total Processing Time (PT) by processes in the

network is calculated by the below (7). Therefore, (10)

calculates Election process Consuming Time (𝐸𝐶𝑇1).

However, (7) and (10) will be changed to (11) and (14)

respectively when all coordinator alternatives are already

crashed but coordinator itself is still up.

SCAN, 𝛽1 and 𝛼1 are constant variables, so time

complexity of the algorithm is from O (NS) and Ω (NS)

which means the algorithm is from order number of

processes in the network.

EMN = NS ∗ (2 ∗ SCAN + SPN) + (FPN − 1) ∗ (NS/FPN) + 2 ∗ NS (4)

𝐸𝑀𝑁 = 𝑆𝐶𝐴𝑁 + 2 ∗ 𝑆𝑃𝑁 + (𝐹𝑃𝑁 − 1) ∗ (𝑁𝑆/𝐹𝑃𝑁) 2 ∗ 𝑁𝑆 (5)

𝐶𝐶1 = {
2 ∗ (𝑁𝑆 − 1) ∗ 𝛼1 𝑁𝑆 𝑖𝑠 𝑒𝑣𝑒𝑛
 2 ∗ 𝑁𝑆 ∗ 𝛼1 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

𝑃𝑇1 = (𝑆𝐶𝐴𝑁 + 1) ∗ (𝑁𝑆 − 1) ∗ 𝛽1 (7)

𝜆1 = 𝑁𝑆/2 ∗ ((𝑆𝐶𝐴𝑁 + 1) ∗ (𝑁𝑆 − 1) ∗ 𝛽1 + 2 ∗ (𝑁𝑆 − 1) ∗ 𝛼1) (8)

 𝜆2 =

𝑁𝑆/2 ∗ ((𝑆𝐶𝐴𝑁 + 1) ∗ (𝑁𝑆 − 1) ∗ 𝛽1 + 2 ∗ 𝑁𝑆 ∗ 𝛼1) (9)

8 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

𝐸𝐶𝑇1 = {
𝜆1 𝑁𝑆 𝑖𝑠 𝑒𝑣𝑒𝑛
𝜆2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10)

𝑃𝑇1 = 𝑆𝐶𝐴𝑁 ∗ (𝑁𝑆 − 1) ∗ 𝛽1 (11)

𝜆3 = 𝑁𝑆/2 ∗ (𝑆𝐶𝐴𝑁 ∗ (𝑁𝑆 − 1) ∗ 𝛽1 + 2 ∗ (𝑁𝑆 − 1) ∗ 𝛼1) (12)

𝜆4 = 𝑁𝑆/2 ∗ (𝑆𝐶𝐴𝑁 ∗ (𝑁𝑆 − 1) ∗ 𝛽1 + 2 ∗ 𝑁𝑆 ∗ 𝛼1) (13)

𝐸𝐶𝑇1 = {
𝜆3 𝑁𝑆 𝑖𝑠 𝑒𝑣𝑒𝑛
𝜆4 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)

𝐶𝐶2 = 2 ∗ 𝑆𝐶𝐴𝑁 ∗ 𝛼2 + 𝑆𝑃𝑁 (15)

𝐶𝐶2 = (2 ∗ 𝑆𝑃𝑁 + 𝑆𝐶𝐴𝑁) ∗ 𝛼2 (16)

𝑃𝑇2 = (𝑆𝑃𝑁/ 𝑆𝐶𝐴𝑁) * 𝛽2 (17)

𝐸𝐶𝑇2 = (2 ∗ 𝑆𝑃𝑁 + 𝑆𝐶𝐴𝑁) ∗ 𝛼2 + (𝑆𝑃𝑁/ 𝑆𝐶𝐴𝑁) * 𝛽2 (18)

𝐻𝐸𝐶𝑇 = 𝐸𝐶𝑇2 + 𝐸𝐶𝑇1 (19)

𝐻𝐸𝐶𝑇 = {
2 ∗ 𝑆𝐶𝐴𝑁 ∗ 𝛼2 + 𝑆𝑃𝑁 + 𝜆1 𝑁𝑆 𝑖𝑠 𝑒𝑣𝑒𝑛
2 ∗ 𝑆𝐶𝐴𝑁 ∗ 𝛼2 + 𝑆𝑃𝑁 + 𝜆2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20)

𝐻𝐸𝐶𝑇 = {
 (2 ∗ 𝑆𝑃𝑁 + 𝑆𝐶𝐴𝑁) ∗ 𝛼2 + (𝑆𝑃𝑁/ 𝑆𝐶𝐴𝑁) ∗ 𝛽2 + 𝜆1 𝑁𝑆 𝑖𝑠 𝑒𝑣𝑒𝑛

(2 ∗ 𝑆𝑃𝑁 + 𝑆𝐶𝐴𝑁) ∗ 𝛼2 + (𝑆𝑃𝑁/ 𝑆𝐶𝐴𝑁) ∗ 𝛽2 + 𝜆2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

𝐺𝐶𝐹𝐶𝐶 = 𝛼3 + (𝑆𝑃𝑁𝑖 − 1) ∗ 𝛼2 + (𝑆𝑁 − 1) ∗ 𝛼1 (22)

𝐼𝐶𝐹𝐶𝐶 = (𝑆𝑃𝑁𝑗 − 1) ∗ 𝛼2 (23)

2. FCEABOB Time Complexity Analyzing

In the best case, Communication Cost of this algorithm

(CC2) is calculated by (15). However, processing time

(PT2) is equal to zero since all the alternatives are

responding. Therefore, the election time is equal to

communication time. Equation (15) will be changed to

(16) in the worst case of the algorithm. The Processing

Time of the algorithm (PT2) and the whole Election

Consuming Time (ECT2) are also calculated by (17) and

(18). As it is obvious this algorithm is from Ο (SPN) and

Ω (SPN).

3. Hierarchical Time Complexity Analyzing

The Election Consuming Time (HECT) in the best and

worst case is calculated by (20) and (21) respectively.

Both of the worst and the best cases of algorithm are

from O (NS+SPN) and Ω (NS+SPN) since all the other

parameters are constant and SCAN is lower equal to SPN.

Global Coordinator Failure Communication Cost

(GCFCC) is gained by (22) if GCoordinator belongs to

site i.

Internal Coordinator Failure Communication Cost

(ICFCC) with this assumption that ICoordinator belongs

to site j equals the (23).

IX. SIMULATION

The simulation program is written by Microsoft Visual

Studio 2010, C#.Net programming language. The

processes numbers are assigned randomly in the entire

network so the numbers are distributed in it.

We have run our simulation program in different

situations to test the proposed algorithm’s behavior in

various conditions.

We assume that there are 8 sites in the network,

GCoordinator has 3 alternatives, connection type

between coordinator and its first alternative is hot

standby, and process which received election message

could respond to sender. The specification of each site is

shown in Table 2. When network is started up, there is no

coordinator in it so simulator is run to elect coordinators

and it also counts the number of messages which are

exchanging among the sites and the processes in each.

Table 2. Sites specifications. NOP: Number of Processes, NOA:

Number of Alternatives

Table 3. Number of Messages exchanged among processes in each

site to elect coordinators. NOM: Number of Messages

The number of messages that passed during

coordinator election in each site is determined in Table 3

and the total number of it is 2164. 16 messages are also

exchanged among the sites to elect the GCoordinator and

its alternatives, so 2180 messages are totally being passed.

As we can see the majority of message passing is

dedicated to inform processes about the elected

coordinators and their alternatives. This number was

stable in 50 times of running the simulator by these

different site’s specifications because the number of

 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable 9

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

message in FCEABOB algorithm depends on the number

of alternatives in the site.

In the rest of the tests, the 4 following cases are

considered to compare proposed algorithm with the other

practical ones. In each case a different algorithm for the

inner site election and virtual network election is applied.

(1) The virtual network election is simple Ring algorithm

and the inner site election will be done by FCEABOB.

This algorithm is referred by R.

(2) In this case, the virtual network is based on the

topology which every process in the network has

known one another; Modified bully algorithm [10] is

applied to it and Inner site election is done by

FCEABOB. This case is referred by MB.

(3) The inner site and virtual network coordinator

election are done by simple Ring algorithm. We

denote this case with TR.

(4) FCEABOB algorithm is considered for the inner site

election and virtual network election is done by

FCEABR. Algorithm referred by MA.

The four cases are compared from the total message

number exchanging point of view. Sites quantity is

changed in each test but the number of processes existed

in them are 200, number of alternatives is 8 and

GCoordinator has 2 alternatives. The result of our test is

determined in Fig. 11. It is obvious that the number of

exchanged messages by TR is almost more than others

because of the nature of Ring algorithm which pass more

messages in each site in order to elect coordinators. R,

MB, and MA passed nearly the same number of

messages according to their election algorithm procedure.

Therefore, our algorithm behaves similar to the R and

MB in this test.

Fig.11. Number of exchanged messages in entire network to elect inner

and globalcoordinator

The next test (Test three) is examined in the situation

that coordinators in each site are already elected but the

GCoordinator is crashed. We keep the last test network’s

specifications and compare these four cases by changing

the numbers of processes that realize crash. The result is

shown in Fig. 12. This figure shows that MN exchanged

fewer messages than others since its mechanism is

avoiding of waste messages when more than one process

find crash out.

In other algorithms each process which realizes crash,

launches election and exchanges messages separately, so

if n3 process finds out that the coordinator is crashed, n3

separate election algorithm will be run simultaneously.

We consider network’s specifications inserted in Table 4

to run the fourth test. In this test we obtain the number of

messages that were exchanged among the processes

during the 3 times crashing of the GCoordinator by the

four cases which are already specified at the beginning of

this section.

Fig.12. Comparison between the four cases when main coordinator is

crashed

Table 4. Network specifications of test 4

Number of sites 9

Number of processes in each site 200

Virtual network alternative number 2

Each site alternative number 8

The result of the test is shown in Fig. 13. It is obvious

that the number of messages passed by MN algorithm is

fewer than the other cases. After 2 times of GCoordinator

crash, since there is no other alternatives in the virtual

network, the Last GCoordinator lunched another election

algorithm in the virtual network in order to avoid the wait

time induction to any process in the network.

Fig. 13. Number of messages that passed after 3 times crash of main

coordinator.

MB and R algorithms are similar since in both cases a

new election algorithm should be lunched and when a

new site’s ECoordinator wants to join the virtual network

in case MB, it should inform all the other processes about

its own information. Hence, when election in the virtual

network is done by the simple ring and modified bully,

the number of messages is almost as same as each other.

It was clear in these tests that our algorithm passed

fewer numbers of messages; especially when more than

10 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

one process realizes crash, so this algorithm can work

perfectly in the high traffic networks with low process

reliability.

X. CONVERGANCE APPROVING

The processes which realize crash and process

placement in the network are chosen randomly, so the

number of messages in several times repetition of one

test may differ from each other. We approve the final

result (number of messages which are passed in network)

convergence of our algorithm by calculating its standard

deviation. The average number of messages (𝑋) that is

exchanged after 200 times of test repetition is gained by

(24) and due to unknown statistical community, sample

variance (𝑆𝑥
2) , which is calculated by (25), should be

used.

X = (∑ Xi
n
i=1) /n (24)

Sx
2 = (∑ (Xi − X)

2n
i=1) /n − 1 (25)

Therefore, message’s standard deviation (𝑆𝑥) is

calculated by (26).

𝑆𝑥 = 𝑆𝑥/√𝑛 (26)

We calculated the standard deviation for four different

networks. The specification of networks and the average

number of messages that passed after 200 times repeating

the test is inserted in Table 5. It should be mentioned that

the number of alternatives and processes in each site is

the same.

Table 5. Total messages Standard deviation, network specification and number of messages which passed

Number
of site

Number of

Alternatives in

Virtual Network

Number of

Processes

in each site

Total

Number of

Processes

Number
of fault

Number of

Alternatives

in each site

Average number

of send and

received message

Standard
deviation

4 2 120 480 3 4 772 0.0141

13 3 160 2080 4 6 2618 0.0059

24 5 200 4800 5 8 5698 0.0076

40 7 250 10000 7 10 11492 0.0080

XI. CONCLUSION

As we mentioned in the previous sections of the paper,

our algorithm to elect the coordinator was based on the

networks which have multi management sites without

any restriction at number of processes. We proposed a

new algorithm to elect sites’ coordinators which was

based on bully. Two coordinators in each site were

elected which internal coordinators was for coordinating

accessing to the internal shared resources and external

coordinator had the duty to respond to the processes

wanted to access to multi site’s shared resources. For

coordinating the requests of shared resources among the

sites, we should have a global coordinator in the entire

network which is elected by setting up a virtual network

consisting of external coordinators of each site and

applying FCEABR to it. We also considered that the

number of alternatives in each site can be identified by its

administrator depending on the characteristics it has.

Simulation section approved that proposed algorithm

exchanged fewer messages than the other algorithms

REFRENCES

[1] Shirali M, Hagighattoroghi A, Vojdani M, Leader Election

Algorithms: History and Novel Schemes. 7th International

Conference on Computer and Information Technology,

2008, 452-456.

[2] Obeidat A, Gubarev V. Leader Election in peer to peer

systems, Siberian conference on control and

communications,2009, 25-31.

[3] Park S. A Stable Election Protocol Based on Unreliable

failure detector in Distributed Systems, Eighth

International Conference on Information Technology New

Generations, 2011, 979-984.

[4] Garcia Molina H. Elections in a Distributed Computing

System, IEEE Trans. Comp, vol.31, no.1, 1982, 48-59.

[5] Fredrickson N and Lynch N. Electing a Leader in

Asynchronous Ring, Journal of ACM, vol.34, no.1, 2007,

98-115.

[6] Datta, A, Larmore L, Vemula P. An O(n)–time self–

stabilizing leader election algorithm, Journal of Parallel

Distributed Computing ,vol.71, no.11, 2011,1532-1544.

[7] Shi W, Srimani P K. Leader election in hierarchical star

network, Journal Parallel Distributed Computing, vol.65,

nom 11, 2005, 1435-1442.

[8] Bakhshi R, Endrullis J, Fokkink W, Pang J. Fast leader

election in anonymous rings with bounded expected delay,

Journal of Information Processing Letters, vol.111, no.17,

2011, 864-870.

[9] Delporte-Gallet C, Devismes B, Fauconnier H. Stabilizing

leader election in partial synchronous system with crash

failure, Journal of Parallel and Distributed Computing,

vol.70, nom.1, 2008, 45-58.

[10] Effatparvar M, Effatparvar M R, Bemana M, Dehghan A.

Determining a Central Controlling Processor with Fault

Tolerant Method in Distributed System, 2007, 658 – 663.

[11] Mirakhorli M, Sharifloo A, Abaspour M. A Novel Method

for Leader Election Algorithm, 7th IEEE International

Conference on Computer and Information Technology,

2007, 452-456.

[12] Effatparvar M R, Yazdani N, Effatparvar M, Dadlani M,

Khonsari A. Improved Algorithm for Leader Election in

Distributed Systems, second International Conference on

Computer Engineering and Technology, ,2007, 6 – 10.

[13] Villadangos J, Cordoba A, Farina F, Prieto M. Efficient

leader election in complete networks, Pro of the 13th Euro

micros conference on Parallel, Distributed and Network-

Based Processing, 2005, 136-143.

[14] Rahdari D, Rahmani A.M, Arabshahi A. A Novel Message

Efficient Fault Tolerant Coordinator Election Algorithm in

Bidirectional Ring Networks, Journal of Information

 A Distributed Fault Tolerance Global Coordinator Election Algorithm in Unreliable 11

High Traffic Distributed Systems

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 1-11

Technology and Computer Science, Vol.5m no.1, 2012 ,

15 - 25, 2012.

Authors’ Profiles

Danial. Rahdari: received his B.S in

computer engineering from Sistan and

Balouchestan university, Zahedan in 20 in

2010, the M.S in computer engineering from

IAU University in 2013. His research

interests are in the areas of distributed

computing, cloud services, quality of service,

load balancing, fault tolerance, networking

and Cisco engineering

Amir Masoud. Rahmani: received his B.S.

in computer engineering from Amir Kabir

University, Tehran, in 1996, the M.S. in

computer engineering from Sharif

University of technology, Tehran, in 1998

and the PhD degree in computer engineering

from IAU University, Tehran, in 2005. He is

assistant professor in the Department of

Computer and Mechatronics Engineering at the IAU University.

He is the author/co-author of more than 80 publications in

technical journals and conferences. He served on the program

committees of several national and international conferences.

His research interests are in the areas of distributed systems, ad

hoc and sensor wireless networks, scheduling algorithms and

evolutionary computing.

Niusha. Aboutaleby: Received her B.S in

computer engineering from Iran University of

Science & Technology, in 2009 and she is

studying computer engineering in M.S at IAU

University. Her research interests are in the

area of distributed systems, cloud services,

load balancing and scheduling algorithms in

cloud computing, ad hoc and sensor networks

Ali. Sheidaei Karambasti: received his B.S

in computer engineering from Sistan and

Balouchestan university, Zahedan in 2010.

His research interests are in areas of social

network analyzing, real time computing

ecommerce systems, graph layout algorithms,

similarity ranking algorithms, classification

algorithms, enterprise application

development.

How to cite this paper: Danial Rahdari, Amir Masoud

Rahmani, Niusha Aboutaleby, Ali Sheidaei Karambasti,"A

Distributed Fault Tolerance Global Coordinator Election

Algorithm in Unreliable High Traffic Distributed Systems",

International Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.3, pp.1-11, 2015. DOI:

10.5815/ijitcs.2015.03.01

