
I.J. Information Technology and Computer Science, 2015, 03, 18-26
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.03.03

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

An Assessment of Software Testability using

Fuzzy Logic Technique for Aspect-Oriented

Software

Pradeep Kumar Singh1, Om Prakash Sangwan2

Amity University Uttar Pradesh, Noida, India1 and Gautam Buddha University, Gr. Noida, India2

Email: pradeep_84cs@yahoo.com, sangwan_op@yahoo.co.in

Amar Pal Singh3, Amrendra Pratap3

Amity University Uttar Pradesh, Department of CSE, Noida, India3

Email: singhamarpal48@gmail.com, amrendra.bt11@gmail.com

Abstract—Testability is a property of software which

introduces with the purpose of forecasting efforts need to test

the programs. Software quality is the most important factor in

the development of software, which can be depend on many

quality attributes. The absence of testability is responsible for

higher maintenance and testing effort. In this paper Fuzzy Logic

is used to ascertain the relationship between the factors that

affects the software testability. This paper presents the

application of fuzzy logic the assessment of software testability.

A new model is proposed using fuzzy inference system for

tuning the performance of software testability. Aspect-oriented

metrics are taken i.e. Separation of Concern (SoC), cohesion,

size and coupling. These metrics are closely related to the

factors i.e. Controllability, Observability, Built in Test

Capability, Understandability and Complexity. These factors are

independent to each other and used for accessing software

testability. A Triangular Membership Function (TriMF) is

applied on these factors which defined in Mamdani Fuzzy

Inference System in MATLAB. In this paper, we have defined

and evaluated factors combination which is used for the

assessment of software testability for as well as aspect oriented

software.

Index Terms— Aspect Oriented Programming (AOP), Aspect

Oriented Software Development (AOSD), Aspect Oriented

Software (AOS), Fuzzy Logic, Aspect-Oriented Metrics,

Separation of Concerns (SoC), Software Testability.

I. INTRODUCTION

Software Testability is one of the quality metric of

Software and ISO has defined software testability as a

functionality and it defines functionality as “the

collection of characteristics of software that bear on the

effort required to authenticate the software produced” [1,

2].

IEEE defines it as “An activity in which a component

or a system is evaluated for some specific conditions, the

results are examined and evaluation is based on some

aspect of the component or the system” [3].

It is also well known reality that more than 50% of the

total cost in the development of software is related to the

software testing activities [4]. Hence, in software

development life cycle, it is the most expensive phase in

terms of efforts needed, money as well as time. So, it is

very important to reduce the efforts and time required for

testing the software. Many researchers have focused their

study for the solutions to minimize the testing cost. If the

testability of software can be improved, then it is possible

to reduce the software cost along with achieving the

higher easiness in writing test cases, test automation, fault

detection.

The software testability is important during testing,

coding, quality assurance, and designing [5]. Testable

software attributes like low complexity, low coupling and

good separation of concerns formulate an easier way for

reviewers to realize the software artifacts [6].

“Software Testability” is a challenging issue to be

investigated in the process of software development for

improving the effectiveness of testing process. Software

testability cannot be measured directly so it can be

measured by the qualitative factors that affect testability.

The testability of software components is determined by

factors such as:

i) Controllability: The degree to which it is possible

to control all values of its individual output domain.

ii) Observability: The degree to which it is possible to

observe accurate output for a specified input.

iii) Built in Test Capability: It has the ability to test the

software itself. It reduces the complexity as well as

decreases the cost of software. It can improve

controllability and observability.

iv) Understandability: The degree to which the

component under test is documented or self-

explaining.

v) Complexity: It is the quantitative measurement of

the complexity of the program. Low complexity of

any software system is an indication of high quality.

In this paper we have mainly focused on software

testability in context of AO software. AOSD and its

major features are discusses below.

A. Aspect-Oriented Software Development (AOSD)

Aspect oriented software development (AOSD) has

widely used in industry as well as research environments.

An AO system requires new measurement of frameworks

 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software 19

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

to evaluate the maintainability and testability degrees.

Sant’Anna et al. [7] proposed a model for AO systems

makes up of two elements: a quality model and a set of

metrics. These elements are derived from existing metrics

and familiar principles to keep away from the recreation

of well tested results. Based on suggested model, a

quantitative assessment, the drawbacks and advantages of

the model were discussed for AO software.

Popular programming languages for aspect-oriented

systems are AspectC (a C extension), AspectC++ (a C++

extension), AspectXML (a XML extension), AspectL (a

LISP extension), AspectJ (a Java extension), CaesarJ and

Hyper/J (being used by IBM). This work focused on

those aspect-oriented programming languages that have

new AO features and almost all the features of Java

programming language. In this category, it is founded

that AspectJ and AspectJ-like (Springs AOP framework,

JBoss etc.), CaesarJ and Hyper/J are most famous

programming languages. Aspect-oriented programming

was developed to overcome the limitations of

programming approaches such as OOP in handling

crosscutting concerns. Aspect-orientation offers a new

modularization way by separating cross-cutting concerns

from non cross-cutting ones.

From the available AOP languages, AspectJ is the most

popular and mostly used in research areas. AspectJ [8] is

an easy extension to java which presents during the

modular execution of crosscutting concerns and

description of new constructors. It consists of mainly (i)

Join points are code sections in the execution of a

software where aspects are applied; (ii) Point-cuts are

declarations responsible for selecting join points, that is,

detecting which join points the aspect should intercept;

(iii) Advices are code used to implement crosscutting

concerns; (iv) Introductions (inter-type declarations) are

code that structurally modifies a class, adding new

members and relationships to it through a declare parents

clause; (v) Aspects are entities that encapsulates point

cuts, advices, and introductions in a modular code unit,

defined similarly to classes [9]. This paper is divided in

seven sections.

In first section, introduction of software testability in

context of aspect oriented software is discussed, followed

by literature review based on factors and metrics which

affects software testability. In third part of this paper,

aspect oriented design quality metrics are described. In

fourth section, fuzzy logic approach is discussed. In fifth

section, the simulation of fuzzy model is provided.

Finally, results are discussed followed by future scope.

II. RELATED WORKS

A number of testability theories have been published

till date and the testability concept has been grown with

different research states. Some of the important theories

given by researches in their paper’s and discussions

motivate us for the proposed work. However, till date less

number of theories deal with AO programs quality

evaluation.

Zhao [10] gives the earliest suggestion in the field of

coupling measurement for aspect oriented systems. Zhao

et al. [11] gives aspect cohesion assessment. It is derived

from a dependency framework for AO software.

Ceccato et al. [12] extend the use of Chidamber and

Kemerer’s [13] metrics suite for measuring the software

aspectization for AO systems.

Sant’Anna et al. [7] suggested a metric framework for

AO programs. Zhang [14] proposed the size, complexity,

coupling between objects, response time, no. of classes

for their assessment.

Tsang et al. [15] used the CK metrics framework for

their assessment for AO systems. The quality factors

considered are maintainability, understandability,

testability and reusability and the CK metrics is taken into

account for evaluation.

Mulo [16] considers the two main factors of testability

that are controllability and observability and strongly

recommended that these can improve the ability of tester

for good control of software.

Wang [17] identified the factors in order to improve

testability that are controllability, observability, built in

test capability, visibility, operability, simplicity,

understandability, suitability.

Pan et al. [18] introduces a framework for an aspect

oriented testability in which observability and

controllability are taken as a factor. This paper mainly

focuses on improving software observability.

Bach [19] describes practical testability is a function of

five types of testability’s i.e. project related testability,

value-related testability, subjective testability, intrinsic

testability and epistemic testability.

Basili et al. [20] gives a quality framework for metrics.

According to authors viewpoint, testability degree of AO

systems should be accessed through metrics and factors.

Khan et al. [21] proposed framework based on

testability for object oriented design. In this framework

inheritance, encapsulation, cohesion and coupling metrics

are used.

Shaheen et al. [22] considered a survey on metrics for

accessing testability of object oriented systems in which

various metrics have been taken to identify the testability

for object oriented systems.

Nazir et al. [23] proposed a list of commonly accepted

factors in order to find out measurable characteristics of

software testability.

Abdullah et al. [24] describes some observation.

Authors mentioned firstly; In order to reducing effort in

measuring testability of object oriented design we need to

identify a minimal set of testability factors for object

oriented development process, which have positive

impact on testability measurement and secondly,

testability metrics must be selected at the design phase

because metric selection is an important step in testability

estimation of objects oriented design.

Binder [25] described testability as the cost of

disclosing software faults and the relative ease. Binder

offers an analysis of the factors which are contributing to

the software testability. Binder also listed some of the

testability metrics from encapsulation metric, inheritance

20 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

metric and polymorphism metric. Encapsulation metric

includes public access to data members, lack of cohesion

in methods, while some of the inheritances metric are

number of children, depth of inheritance tree and also

polymorphism metric includes percentage of non-

overloaded calls, percent of dynamic calls. He also said

that controllability and observability will ultimately

increase the software testability.

Bruce et al. [26] recognize the factors which affect

testability in object oriented software and classified them

in communication factors, inheritance factors and

structure factors.

Bach [19] proposed testability factors as are operability,

visibility, control, understandability, simplicity, stability,

and suitability. Morris [27] tells that the observer pattern

can also provides good support for separation of concerns.

Jungmayr [28] described factors that affect testability as

separation of concerns, complexity, fault locality,

coupling, observability, controllability, built-in-test

capability, diagnostic capability, and automatability.

Gao et al. [29] identified a framework for the

measurement of testability based on the factors i.e.

observability, controllability, traceability, process

capability and understandability.

Voas et al. [30] described testability as the possibility

that a part of software fails in subsequently execution

during testing. They have suggesting dynamic technique

called software sensitive analysis for evaluating the

software testability.

Bache et al. [31] define testability as a quality attribute

to the testing effort needed and test criterion is an

important factor of the testing effort.

Singh et al. [32] proposed metrics and model based on

maintainability assessment for aspect oriented software.

The research by Bruntink et al. [33] is mainly

concerned with identifying and evaluating the factors of

testability in object oriented software and metrics related

to the factors, which have been supported by the case

studies.

The concept of testability of a software component was

initiated by Freedman [34] considering controllability and

observability.

Boxall et al. [35] determined the level of testability

affected by understandability and it can be determined by

interface properties.

Singh et al. [36] discussed the techniques for fault

based mutation testing and tools for AspectJ programs and

how these tools can be helpful in evaluating testability.

Piveta et al. [37] gives empirical data and analytical

evaluation from ten projects which determines the six

metrics for aspect oriented software i.e. weighted

operations in module, lines of code, number of children,

depth of inheritance tree, coupling on advice execution

and crosscutting degree of an aspect and talk about how

these metrics can be accustomed to recognize weakness in

existing aspect oriented software.

Malla et al. [38] proposed software testability factors i.e.

controllability, observability, understandability,

complexity, process capability and related metrics i.e. size

metrics, inheritance metrics and coupling metrics.

We have identified from above studies that testability

of software can be measured using metrics for aspect-

oriented system as well as for object-oriented system.

Factors of testability i.e. controllability, observability,

built in test capability, understandability and complexity

can be measured using these design metrics. We have

already conducted the detailed analysis on software

testability for AO software in our previous work [53] too.

A look on the factors that affect software testability is

provided in Table 1.

Table 1. Factors of Software Testability

In Table 1, the factors that are in Italic format also

affects the software testability in Aspect Oriented

environment as well as for object oriented software.

However, remaining factors only affects in object

oriented environment. Brief information about the

software testability metrics is given in Table 2. In Table 2,

the authors that are in Italic format have used aspect

oriented environment for qualitative assessment in their

research works. A look on software testability metrics

and their related factors is reported in Table 3.

Table 2. Metrics of Software Testability

 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software 21

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

Table 3. shows the factors that affects the software

testability based the related work.

Table 3. Factors and related Metrics of Testability

III. ASPECT-ORIENTED DESIGN QUALITY METRICS

Our approach for evaluation and identification of

testability of software is based on software quality factors

and their related metrics. The aim of this work is to

develop a model for the assessment of testability that can

be measured using these metrics. AOSD has straight

impact on the separation of the concerns and system size.

Some predefined metrics cannot be used directly in

aspect oriented software. Hence, AOSD identifies new

cross cutting concern techniques and different type of

abstractions. Some factors have been extensively

recognized in both for OO and AO like coupling, size and

cohesion. SoC in AO software differentiate the AOP from

OO programming because of crosscutting concerns. We

have identified four main metrics for the testability

evaluation in AO software.

A. Separation of Concerns (SoC)

Separations of concern is the new metrics. Within [12]

first time separation of concern metrics were anticipated.

SoC is a well-established standard in software

engineering. SoC is the ability to encapsulate, manipulate

and identify those sections of software which are related

to a particular concern. As yet, these metrics requires the

identification of concerns manually. SoC metrics are as

follows:

i) Concern Diffusion over Components (CDC): It

contribute for execution of a concern and measures

the total number of components that access the

primary components using formal parameters, local

variables, attribute declarations, throws

declarations and return types.

ii) Concern Diffusion over Operations (CDO): It

contribute for concern implementation and

measures the total number of primary operations

also counts advices and the number of methods

which access return types, formal parameters, local

variables, throws declarations and constructors.

iii) Number of Attributes per Concern (NOAconcern):

It measures the total number of attributes for every

aspect or class.

iv) Number of Operations per Concern (NOOconcern):

It measures total no of operations in every concerns

(inherited, public, private).

B. Coupling Metrics

Coupling between objects [46] can be defined as no. of

coupled classes within all classes. Low coupling is

desirable for better design. In [13], a metric suite for OO

is provided and coupling is considered as one of the main

metrics in framework. Coady et al. [47] provides separate

set of metrics for couplings in aspect oriented. Coupling

metrics are as follows: (i) Coupling between Objects

(CBO) (ii) Depth of Inheritance Tree (DIT), (iii) Number

of Children (NOC).

C. Cohesion Metrics

The measurement of cohesion for a component is the

proximity of the relationship in internal components. The

measurement is based on the methods of a class and how

those methods are correlated to each other. Fenton et al.

[48] defined cohesion in more illustrative way. Main

cohesion metric is LCOM. If the value of LCOM

becomes higher then cohesion is low.

D. Size Metrics

Size metrics are dependent on the length of program.

We can measure it by LOC. As an aspect viewpoint it

might be count a pointcut as a code line. In [13], LOC

metric has been measured and avoids duplicacy in lines

by writing pointcuts. For determining physical code and

design the size metrics are as follows:

i) Number of system components (NOSC): It measures

only the component names for the number of aspects

and classes in the system. It is also known as

Vocabulary Size (VS).

ii) Lines of Code (LOC): It measures the number of code

lines, comment lines, blank lines and documentation

lines are not counted as part of LOC. It is one of the

traditional metric for measuring size of the project.

iii) Number of Attributes (NOA): It measures the number

of attributes for every component. As per our generic

framework, inherited attributes have also been

included in counting.

iv) Number of Operations (NOO): It measures the

number of operations for every component. It also

includes inherited operations in our framework.

v) Number of Statements (NOS): It measures the

number of statements in a method.

vi) Weighted Operation per Component (WOC): It

counts the complexity of a component by counting

the number of arguments of the operations.

As, testability of AO Software mainly depends on the

metrics such as (i) Separation of Concerns (SoC), (ii)

Cohesion, (iii) Coupling and (iv) Size. These metrics

relates to the factors i.e. controllability, observability,

built in test capability, understandability and complexity.

In order to access testability of AOS, it is also very

difficult to determine percentage of contribution of these

metrics in testability. To overcome these difficulties, we

adapted fuzzy logic technique considering the four

metrics as input variable and testability as output variable.

22 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

IV. FUZZY LOGIC

Fuzzy logic is a systematic technique to solve the

problems that are very complex to understand

quantitatively. It is a tool which deals with uncertainty

and imprecision [49]. It is less dependent on historical

data and fuzzy model can be built with less data [50, 51].

The fuzzy system accepts vague statements and

imprecise data using the available membership functions

and gives decisions as shown in Fig.1.

Fig. 1. Fuzzy Logic System

The fuzzy model gives mapping from input to output.

Architecture includes four different modules. The

fuzzification module converts the crisp input values into

fuzzy values. Fuzzy values are forwarded by an interface

engine derived from rule base in the knowledge base

given by domain experts. Finally, defuzzification module

converts fuzzy data to crisp values. The fuzzy model

architecture is shown in Fig. 2.

In this proposed work, testability of AO system is a

measure of different factors: Controllability,

Observability, Built in Test Capability, Understandability

and Complexity. These factors are independent to each

other. These joined factors used in the measurement for

the dependent variable i.e. testability because we can not

directly measure the testability.

Fig. 2. Fuzzy Model

The proposed fuzzy logic considers all these factors as

inputs and finally gives a crisp value of testability using

rule base. All input values are categorized as low,

medium and high. The output testability is categorized as

very low, low, medium, high and very high. A rule base

is created using all feasible arrangements of inputs. Fuzzy

Inference System (FIS) includes the following module

which is shown in Fig. 3.

i) FIS Editor: It shows information related to fuzzy

inference system to handle the complex problems

for the system.

ii) Membership Function Editor: It describes the

shapes of all the membership functions related to

every factor.

iii) Rule Editor: It is used for editing the rules which

determines the behavior of the problem.

iv) Rule Viewer: It is used to see the rule base i.e. how

an individual rule affects the results.

v) Surface Viewer: It is used to see the graph on the

basis of given inputs and the output for the system.

Fig 3. Fuzzy Inference System [52]

V. SIMULATION AND EXPERIMENTATION

In this section, the trained fuzzy inference system and

proposed fuzzy model with inputs i.e. Controllability,

Observability, Built in Test Capability, Understandability

and Complexity to predict software testability as output

given in Fig. 4.

Fig. 4. Software Testability Model with 5 inputs, 1 output, 243 rules

All inputs are categorized into membership function i.e.

low, medium and high and the software testability as

output is categorized as very low, low, medium, high and

very high. Triangular membership function is used to

categorize the inputs and output scaled between [0 1]

scale as follows:

For inputs, Low [0 0.185 0.37], Medium [0.31 0.495

0.68], High [0.63 0.815, 1] and For output, Very Low [0

0.1171 0.2341], Low [0.192 0.317 0.422], Medium

[0.382 0.4985 0.6151], High [0.5732 0.6907 0.8082],

Very High [0.7685 0.8842 1]

All 243 rules created and inserted in rule base, which

represents all possible combinations of inputs i.e. 3^5

(243) sets. Some of the proposed rules are as follows:

Rule 1: If Controllability is high and Obsesrvability is

high and BIT Capability is high and Understandability is

high and Complexity is high then Testability is very low.

Rule 2: If Controllability is high and Obsesrvability is

high and BIT Capability is low and Understandability is

low and Complexity is low then Testability is low.

 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software 23

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

Rule 3: If Controllability is medium and Obsesrvability

is medium and BIT Capability is medium and

Understandability is medium and Complexity is medium

then Testability is medium.

Rule 4: If Controllability is low and Obsesrvability is

low and BIT Capability is low and Understandability is

high and Complexity is low then Testability is high.

Rule 5: If Controllability is low and Obsesrvability is

low and BIT Capability is low and Understandability is

low and Complexity is high then Testability is very high.

High testability signify the high testing effort and cost

which may lead to further higher maintainability and

maintenance cost too. Details about the proposed fuzzy

system are provided in Table 4.

Table 4. Details of the System used

Membership function for Controllability as input 1 in

fuzzy logic tool is shown in Fig. 5.

Fig. 5. Membership Function

All 243 rules are created a rule base is made which

represents all possible combinations of inputs i.e. (243)

sets as shown in Fig. 6.

Fig. 6. Proposed Fuzzy Model Rule Base

Using a rule viewer shown in Fig. 7, testability is

measured using five values of input factors.

Testability can be examined by some changes in the

above rule viewer are shown in Fig. 8, which reflects the

change in output. That is, for a set of inputs [0.8, 0.8, 0.8,

0.8, 0.2], the output is 0.117 which is the best result for

testability.

Fig. 7. Rule Viewer

Fig. 8. Rule Viewer with changed values

VI. DISCUSSION OF RESULTS

This paper discusses testability in relation to AO

Software. It identifies the factors which affecting

testability and sets up a relationship on these factors for

testability. Proposed model based on five factors:

Controllability, Observability, Built in Test Capability,

Understandability and Complexity for accessing Software

Testability levels using AI techniques by Fuzzy Logic.

Some values assumed for Controllability,

Observability, Built in Test Capability, Understandability

and Complexity is taken as inputs and triangular

membership function is used to defined in MATLAB in

order to predict the Testability as output.

Proposed model categorized inputs as low, medium

and high and testability as a output which is categorized

as very low, low, medium, high, and very high. Total 243

rules are created based on expert advise and inserted in

the rule base, which represents all the probable

combinations of inputs i.e. (243) sets. Using rule viewer,

testability can be determined by the proposed testability

model using fuzzy logic.

For inputs [0.5, 0.5, 0.5, 0.5, 0.5]

 For Triangular Membership Functions (trimf), the

testability is determined by taking all five values of

input factors is 0.499 which is medium as shown in

rule 3.

But for different inputs that is,

24 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

 For a set of inputs [0.8, 0.8, 0.8, 0.8, 0.2], the output is

0.117 i.e. Very Low which means best testability.

Rule-2 shows software testability value low & Rule-1

shows testability very low. This is shown in Fig. 9.

Fig. 9. Output for Software Testability

It has been identified based on expert advice and

judgment that for best Testability of software, its

Controllability, Observability, Built in Test Capability,

and Understandability should be High whereas

Complexity should be Low. Best testability is the ability

of AO software to validate modified software where less

testing efforts are required.

A three-dimensional plot is given in Fig. 10 that

represents the surface view which mapped from

controllability and observability factor on input axex (X

and Y) to testability on output axes (Z). As similar to Fig.

10, more 3D figures can be drawn by considering another

set of inputs and outputs (testability).

Fig. 10. Surface view w.r.t. inputs Controllability and Observability and

output as Testability

A. Defuzzification

Defuzzification is a technique to produce a quantitative

solution in fuzzy system. The fuzzy output needs to

convert in a scalar quantity output. This process is called

defuzzification.

One of the defuzzification technique is center of

gravity also known as centroid method. In this

implementation COG method is used for the aggregated

output of 243 rules. COG method using (1), is applied on

the output for testability as shown in Fig. 11.

Fig. 11. Defuzzification of Software Testability

It is the most accurate technique for defuzzification

and formula is

Ax
x

A

 



 (1)

x*=0.0833 / 0.1666

x*=0.4997

Where x* is the defuzzified output, A shows the area

of segment and x̅ is the corresponding centroid. The

testability for the inputs appeared above is 0.499 that is

same as evaluated above. Hence our proposed fuzzy

model is validated against the COG method by

defuzzification and same result has been achieved for

software testability.

VII. CONCLUSION AND FUTURE PROSPECTS

Present work adopts fuzzy inference system for the

assessment of testability of AO Software. It is less

dependent on historical data and fuzzy model can be built

little data which is the major advantage of this approach.

Fuzzy helps in automate the process of identifying the

testability using metrics. The result shows that suggested

model can also be used to predict testability of aspect-

oriented software system, which helps in reducing efforts

needed in development and improve the quality of the

system.

Software Testability is widely used now a day. It has

great potential to improve and maintain software systems.

In future prospects, Neural Network, Support Vector

Machine may be used to predict testability. The main aim

of this paper is to estimate testability for AO software

because it can help in reducing the maintenance efforts

and cost too. Software professionals may also use this

approach to measure testability of AO software and

forecast the testing and maintenance efforts, cost too.

ACKNOWLEDGMENT

We would like to thank the faculty of Amity University

for helping us in refining the objective and Amity

University for providing us research environment and

facilities. We also like to extend our thanks to Dr. Arun

Sharma, Professor, CSE, K.I.E.T. Ghaziabad for his

valuable suggestions.

 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software 25

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

REFERENCES

[1] Bruntink Magiel, Deursen Arie Van, “Predicting Class

Testability using Object-Oriented Metrics”, Published in

Proceedings 4th IEEE International Workshop on Source

Code Analysis and Manipulation, pp. 136-145, Chicago, IL,

US, September 2004.

[2] ISO 9126, International Organization for standardization.

[3] IEEE Standard Glossary of Software Engineering

Terminology, IEEE, 1990.

[4] Mary Jean Harrold, “Testing: a Roadmap”, Published in

Proceeding’s of the Conference on The Future of Software

Engineering, pp. 61-72, Limerick, Ireland, 2000.

[5] Voas Jeffrey M., Miller Keith W., “Improving the

Software Development Process using Testability

Research”, at NASA-Langley Research Center, pp. 114-

121, IEEE Software, 1992.

[6] Jungmayr Stefen, “Reviewing Software Artifacts for

Testability”, at FernUniversität Hagen, Praktische

Informatik III, Feithstrasse 142, D-58084 Hagen,

EuroSTAR, Barcelona, Spain, 1999.

[7] SantAnna C., Garcia A., Chavez C., Lucena C., Staa A.

von, “On the Reuse and Maintenance of Aspect Oriented

Software: An Assessment Framework”, Published in

Proceedings of XVII Brazilian Symposium on Software

Engineering, PUC-Rio, Computer Science Department,

TecComm, 2003.

[8] Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J.,

Griswold W.G., “An Overview of AspectJ”. Published in

Proceedings of the 15th European Conference on Object

Oriented Programming, Springer, Heidelberg, Berlin, pp.

327–353, 2001.

[9] Santos R.P., Costa H.A.X., Parreira Júnior P.A., Amâncio

A.F., Resende A.M.P., Werner C.M.L., “An Approach

Based on Maintainability Criteria for Building Aspect-

Oriented Software Implementation Model”, INFOCOMP

Journal of Computer Science, Special Edition, pp. 11-20,

2009.

[10] Zhao Jianjun, “Measuring Coupling in Aspect Oriented

Systems”, Published in Proceedings 10th International

Software Metrics Symposium, Information Processing

Society, Japan, 2004.

[11] Zhao Jianjun, Xu Baowen, “Measuring Aspect Cohesion”,

Published in Proceedings of International Conference on

Fundamental Approaches to Software Engineering, pp.54-

68, Springer-Verlag, Barcelona, Spain, 2004.

[12] Ceccato Mariano, Tonella Paolo, “Measuring the Effects of

Software Aspectization”, Published in WCRE: 1st

Workshop on Aspect Reverse Engineering, 2004.

[13] Chidamber S.R., Kemerer C.F., “A Metrics Suite for

Object Oriented Design”, Software Engineering, IEEE

Transactions, Vol. 20, No. 6, 476–493, 1994.

[14] Zhang Charles, Jacobsen Hans-Arno, “Quantifying

Aspects in Middleware Platforms in AOSD”, Published in

Proceedings of the 2nd International Conference on Aspect

Oriented Software Development, ACM Press, pp. 130–139,

New York, NY, USA, 2003.

[15] Tsang Shiu Lun, Clarke Siobhán, Baniassad Elisa, “Object

Metrics for Aspect Systems: Limiting Empirical Inference

based on Modularity”, Technical report, Distributed

Systems Group, Dublin, Ireland, 2000.

[16] Mulo Emmanuel, “Design for Testability in Software

Systems”, Master’s Thesis, submitted to Delft University

of Technology, Netherland, 2007.

[17] Wang Yingxu, “Design for Test and Software Testability”,

University of Calgary, 2003.

[18] Pan Nankai, Song Eunjee, “An Aspect-oriented Testability

Framework”, ACM, RACS’12, San Antonio, TX, USA,

2012.

[19] Bach James, “Heuristics of Software Testability”, Satisfice,

Inc., Version 2.2, 2013.

[20] Basili V., Briand L., Melo W., “A Validation of Object-

Oriented Design Metrics as Quality Indicators”, IEEE

Transactions on Software Engineering, Vol. 22 No. 10, pp.

751-761, 1996.

[21] Khan R.A., Mustafa K., “Metric based Testability Model

for Object-Oriented Design (MTMOOD)”, ACM

SIGSOFT Software Engineering Notes, Vol. 34, No. 2,

2009.

[22] Shaheen Muhammad Rabee, Bousquet Lydie du, “Survey

of Source Code Metrics for Evaluating Testability of

Object-Oriented Systems”, ACM Transactions on

Computational Logic, 2010.

[23] Nazir Mohd, Khan Raees A., “Software Design Testability

Factors: A New Perspective”, Published in Proceedings of

the 3rd National Conference on Computing for Nation

Development, 2009.

[24] Abdullah, Srivastava Reena, Khan M.H., “Testability

Estimation of Object Oriented Design: A Revisit”,

IJARCCE, Vol. 2, Issue 8, 2013.

[25] Binder Robert V., “Design for testability in object-oriented

systems,” Communications of the ACM, vol. 37, No. 9, pp.

87-101, 1994.

[26] Bruce W.N. Lo, Shi Haifeng, “A Preliminary Testability

Model for Object-Oriented Software”, published in

Proceeding of International Conference on Software

Engineering, IEEE, Education Practice, pp. 330-337, 1998.

[27] Morris Stephen B., “Design Patterns in Java: The

Observer”, Pearson Education, InformIT, 2007.

[28] Jungmayr Stefen, “Testability during Design”, Published in

Proceedings of the GI Working Group Test, Analysis and

Verification of Software, Softwaretechnik-Trends,

Potsdam, pp. 10-11, 2002.

[29] Gao Jerry, Shih Ming-Chih, “A Component Testability

Model for Verification and Measurement”, published in

Proceedings of the 29th Annual International Computer

Software and Applications Conference, IEEE Computer

Society, pp. 211–218, 2005.

[30] Voas Jeffrey M., Miller Keith W., “Software Testability:

The New Verification,” IEEE Software, vol. 12, pp. 17-28,

1995.

[31] Bache Richard, Mullerburg Monika, “Measures of

Testability as a basis for Quality Assurance”, Software

Engineering Journal, vol. 5, no.2, pp. 86-92, 1990.

[32] P.K. Singh, O.P. Sangwan, “Aspect Oriented Software

Metrics Based Maintainability Assessment: Framework

and Model”, published in proceeding's of Confluence-2013,

The Next Generation Information Technology Submit, 26th

-27th September, Amity University, Noida, India 2013.

[33] Bruntink Magiel, Deursen Arie van, “An Empirical Study

into Class Testability,” Journal of Systems and Software,

vol. 79, pp. 1219-32, 2006.

[34] Freedman Roy S., “Testability of Software Components”,

IEEE Transactions on Software Engineering, vol. 17, no.6,

pp.553-564, 1991.

[35] Boxall M.A.S., Araban S., “Interface Metrics for

Reusability Analysis of Components”, Published in

Proceedings of Australian Software Engineering

Conference, pp. 40-46, Melbourne, Australia, 2004.

[36] P.K. Singh, O.P. Sangwan, Arun Sharma, “A Systematic

Review on Fault Based Mutation Testing Techniques and

Tools for Aspect-J Programs”, published in proceeding's of

3rd IEEE International Advance Computing Conference,

26 An Assessment of Software Testability using Fuzzy Logic Technique for Aspect-Oriented Software

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 18-26

IACC-2013 at AKGEC Ghaziabad, India, February 22-23,

2013.

[37] Piveta Eduardo Kessler, Moreira Ana, Pimenta Marcelo

Soares, Araújo João, Guerreiro Pedro, Price R. Tom, “An

empirical study of aspect-oriented metrics”, Journal of

ELSEVIER, Science of Computer Programming 78, pp.

117–144, 2012.

[38] Malla Prakash, Gurung Bhupendra, “Adaptation of

Software Testability Concept for Test Suite Generation”,

Phd Thesis Submitted to School of Computing Blekinge

Institute of Technology, SE-37179, Karlskrona, Sweden,

2012.

[39] Jungmayr Stefen, “Improving Testability of Object

Oriented Software”, Dissertation.de-Verlag im Internet

GmbH, Berlin, 2004.

[40] Bruntink Magiel, “Testability of Object-Oriented Systems:

a Metrics-based Approach”, Master Thesis Submitted to

University of Amsterdam, Software improvement group,

2003.

[41] Nazir Mohd, Khan Raees A., Mustafa Khurram, “A

Metrics Based Model for Understandability

Quantification”, Journal of Computing, volume 2, issue 4,

2010.

[42] Kumar Avadhesh, “Analysis and Design of Metrics for

Aspect-Oriented Systems”, Phd Thesis Submitted to

School of Mathematics and Computer Applications,

Thapar University, Patiala, Punjab, India, 2010.

[43] Burrows Rachel, Ferrari Fabiano Cutigi, Garcia Alessandro,

Taïani François, “An Empirical Evaluation of Coupling

Metrics on Aspect-Oriented Programs”, ACM, WETSoM,

Cape Town, South Africa, 2010.

[44] Saraiva Juliana, Barreiros Emanoel, Almeida Adauto,

Lima Fl ávio, Alencar Aline, Lima Gustavo, Soares Sergio,

Castor Fernando, “Aspect-Oriented Software Maintenance

Metrics: A Systematic Mapping Study”, Published in

Proceedings of the EASE - Published by the IET, 2012.

[45] Huang Rui, Li Mingyu, Li Zhang, “Research of Improving

the Quality of the Object-Oriented System”, International

Journal of Information and Education Technology, Vol. 3,

No. 4, 2013.

[46] Aopmetrics project. http://aopmetrics.tigris.org/

[47] Coady Y., Kiczales G., “Back to the Future: A Retroactive

Study of Aspect Evolution in Operating System Code”,

Published in proceedings of the 2nd International

Conference on Aspect Oriented Software Development,

ACM Press, pp. 50–59, New York, NY,USA, 2003.

[48] Fenton N.E., Pfleeger S.L., “Software Metrics: A Rigorous

and Practical Approach”, Published by Course Technology,

1998.

[49] Sivanandam, S.N., Sumathi, S., Deepa, S.N., “Introduction

to Fuzzy Logic using MATLAB”, Springer, Heidel-berg,

2007.

[50] MacDonell S.G., Gray A.R., Calvert J.M., “Fuzzy Logic

for Software Metric Practitioners and Researchers”,

Published in Proceedings of the 6th International

Conference on Neural Information Processing ICONIP,

Perth, pp. 308-313, 1999.

[51] Ryder J., “Fuzzy Modeling of Software Effort Prediction”,

Published in Proceedings of IEEE Information Technology

Conference, pp. 53-56, Syracuse, New York, 1998.

[52] http://www.mathworks.in/help/fuzzy/building-systems-

with-fuzzy-logic-toolbox-software.html (last accessed on

12/02/14).

[53] P.K. Singh, O. P. Sangwan, A. Pratap, A. P. Singh, An

Analysis on Software Testability and Security in Context

of Object and Aspect Oriented Software Development,

International Journal of Security and Cybercrime, Romania,

Vol. 3, Issue 1, pp. 17-28, 2014.

Authors’ Profile

Pradeep Kumar Singh is M.Tech (CSE) from GGSIPU Delhi

and pursuing his PhD. from Gautam Buddha University, Greater

Noida, India. Currently, he is working as Assistant Professor in

Amity University Uttar Pradesh, Noida, India. He is member of

ACM, CSI and many professional bodies. He has published 10

papers in International Conferences and Journals of repute. His

major area of Interest includes Software Engineering, Object

Oriented Software Engineering, Aspect Oriented Software

Engineering.

Dr. Om Prakash Sangwan is M.Tech (CSE) and PhD.

Currently, he is associated with Gautam Buddha University,

Greater Noida. Uttar Pradesh, India. He is Senior Member of

ACM, CSI, IEEE and many professional bodies. He has filled

two Patents and published 35 papers in International Journals.

His major area of Interest includes Software Engineering,

Aspect Oriented Software Engineering, Soft Computing.

Amar Pal Singh is a M.Tech.(CSE) student from Amity

University Uttar Pradesh, Noida, India. His interests include

Software Engineering, Soft Computing Techniques.

Amrendra Singh is a student of M.Tech. (CSE) from Amity

University Uttar Pradesh, Noida, India. His interests include

Software Engineering, Soft Computing Techniques.

How to cite this paper: Pradeep Kumar Singh, Om Prakash

Sangwan, Amar Pal Singh, Amrendra Pratap,"An Assessment

of Software Testability using Fuzzy Logic Technique for

Aspect-Oriented Software", International Journal of Information

Technology and Computer Science(IJITCS), vol.7, no.3, pp.18-

26, 2015. DOI: 10.5815/ijitcs.2015.03.03

