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Abstract— The subject of extracting multiple speech signals 

from a single mixed recording, which is referred to single 

channel speech separation, has received considerable attention 

in recent years and many model-based techniques have been 

proposed. A major problem of most of these systems is their 

inability to deal with the situation in which the signals are 

combined at different levels of energies because they assume 

that the data used in the test and training phase have equal levels 

of energies, where, this assumption hardly occurs in reality. Our 

proposed method based on MIXMAX approximation and sub-

section vector quantization (VQ) is an attempt to overcome this 

limitation. The proposed technique is compared with a 

technique in which a gain adapted minimum mean square error 

estimator is derived to estimate the separated signals. Through 

experiments we show that our proposed method outperforms 

this method in terms of SNR results and also reduces 

computational complexity. 

 

Index Terms— Single Channel Speech Separation, Vector 

Quantization, MIXMAX Approximation, Gain Estimation, 

Source Estimation 

 

I. INTRODUCTION 

Speech signals are seldom available in pure form for 

speech processing applications, and are often corrupted 

by acoustic interference like background noise, distortion, 

simultaneous speech from another speaker etc. In such 

scenarios, it becomes necessary to first separate the 

speech from the background. In particular, the task of 

separating overlapping speech from multiple speakers, 

called speech separation, is especially challenging since it 

involves separating signals having very similar statistic 

and acoustic characteristics. The separation problem has 

attracted immense research effort in the past two decades, 

more so for the case when the mixture is available only 

from a single channel and multi-channel approaches 

cannot be used. This single channel situation is called the 

single channel speech separation problem and the two 

speaker case can be formulated as z(t) = x(t) + y(t) , 

where x(t) is the speech signal of speaker one and y(t) is 

the speech signal of speaker two. Many techniques have 

been proposed to solve this problem. These approaches 

are mainly divided into two categories: source driven [1-4] 

and model-based methods [9-15]. 

As a major example for the first group, computational 

auditory scene analysis (CASA) has widely been studied 

[1]. Generally speaking, CASA-based methods aim at 

segregating audio sources based on possible intrinsic 

perceptual acoustic cues from speech signals [2]. For 

CASA systems, a reliable multi-pitch tracking component 

is critical to find pitch trajectories of two interfering 

speech signals [5]. The CASA methods are fast and could 

be implemented in real time. There are, however, 

challenges that limit the pitch tracking performance for a 

mixture [2]: (1) Most existing pitch estimation methods 

perform reliably only with clean speech signals that have 

a single pitch track or harmonically related sinusoids [6] 

with almost no background interference [7]. (2) It is 

possible to perform a reliable pitch estimation using a 

mixture of a dominant (target) and a weaker (masking) 

signal as long as the pitches of the masking and target 

speech are different in a short frame [3]. A high similarity 

between the interference and target pitch trajectories 

results in performance degradation of CASA methods [8]. 

(3) Because of energetic masking defined in [8], the 

weaker signal frames are masked by the stronger ones 

complicating the pitch estimation. Accordingly, at target-

dominant time-segments, it is possible to accurately track 

the pitch contour of only the dominant (target) signal. (4) 

Pitch tracking performance has not been promising for 

scenarios where the underlying signals include mixtures 

of unvoiced and voiced frames and as a result, the 

separated speech signals include severe cross-talks [4]. 

Model-based single channel speech separation is 

commonly referred to as the techniques which use the 

trained models of the individual speakers to separate the 

sources from a single recording of their additive mixture. 

The most prominent models are vector quantization (VQ) 

[9], [13], Gaussian mixture models (GMM) [11], [12] and 

Hidden Marcov models (HMM) [14]. Given the 

individual speakers' models, an estimation technique is 

applied to estimate the sources. In most recent proposed 

model-based single channel speech separation techniques, 

it is assumed that the test speech files are recorded at a 

condition similar to that of the training phase recording. 

This assumption is not, however, realistic and highly 

limits the usefulness of these techniques. Therefore, it is 

of great importance to consider situations in which the 

test speech files are mixed at an energy ratio different 

from that of the training speech files. In these situations, a 

desired technique is one that first estimates the gains 

associated with the individual speakers. 

In [15], a technique is proposed in which, it is shown 

that gains of the speech signals can be expressed in terms 

of a signal-to-signal ratio (SSR) and using this relation a 

gain adapted minimum mean square error (MMSE) 

estimator is derived to estimate the sources. Following 



 Single Channel Speech Separation Using an Efficient Model-based Method 43 

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 03, 42-47 

that, the patterns of the speakers and SSR which best 

model the observed signal in an MMSE sense are 

obtained. However this method sounds efficient to gain 

estimation, but it results long time processing in practice. 

In our proposed method we take the superiority of VQ 

which is simplicity computation to separate the speech 

signals [13]. In this paper we introduce sub-section VQ 

and use it instead of conventional VQ to achieve high 

accuracy in estimating gains and speech signals. 

The rest of this paper is organized as follows. In 

section II, preliminary definitions are described where we 

express the sources-observation relation in the feature 

space and also the relation between speakers’ gains and 

energies of the underlying signals. In section III, we give 

a description of training phase. In this section we 

introduce sub-section VQ method and show how it is 

applied in separation process. In section IV, details are 

given on how the gains of the speakers are estimated and 

how the estimated gains are applied to estimate the 

sources. Experimental results are reported in section V 

where the proposed technique is compared with a gain 

adapted MMSE estimator [15]. Finally, conclusions are 

given in section VI. 

 

II. PRELIMINARY DEFINITIONS 

A. Gain-SSR Relation 

In gain adapted methods, the relation between 

observation signal and the two sources is supposed to be 

z(t) = gxx(t) + gyy(t)       t = 0,1, … , T − 1 (1) 

where gx  and gy , which are positive parameters, are 

speakers’ gains and it’s supposed that these speech 

signals have equal power before gain scaling, G0
2 =

1

T
∑ x2(t)t =

1

T
∑ y2(t)t . In [15] the speakers’ gains are 

obtained in terms of SSR (signal to signal ratio), square 

root of power of the observation signal and G0
2 

gx ≈
gz

G0
√1 + 10

−SSR
10

   and    gy ≈
gz

G0
√1 + 10

SSR
10

 
(2) 

where gz
2 =

1

T
∑ z2(t)t  is power of the observation 

signal and SSR=10 log10
gx

2

gy
2 . Also, ax and ay are defined 

as 

ax = log10 gx     and    ay = log10 gy (3) 

which will be used in gain estimation and source 

estimation process. 

B. Sources-Observation Relation 

Log magnitude of discrete furrier transform was 

selected as our feature. Let x(l)  l = 0,1, … , L − 1 be the 

samples of some speech signal segment (frame), possibly 

weighted by some window function, and let X(ej2πd/L) 

denote the corresponding short time furrier transform. 

X (e
j2πd

L ) = ∑ X(l)e−
j2πld

L

L−1

l=0

       d = 0,1, … , D − 1 (4) 

Let X  denote the D dimensional, log spectral vector 

(feature vector) with dth component, X(d), defined by 

X(d) = log10|X(ej2πd/L)|      d = 0,1, … , D − 1 
(5) 

The relations between x[l], |X(ej2πd/L)|,  X(ej2πd/L) 

and X(d) are shown in Fig. 1. 

 

Fig. 1. Feature extraction 

 

Let xr  and yr  be the L-dimensional vectors of the rth 

frames for the speech signals of speaker one and two in 

the time domain, respectively and zr  be the 

corresponding frame of the observation signal. We next 

form the following vectors as the feature vectors 

according to Fig. 1 

Xr = log10(|FD(xr)|) 

 

(6) 

Yr = log10(|FD(yr)|) 
 

(7) 

Zr = log10(|FD(zr)|) (8) 

where Xr , Yr , and Zr  denote the D -dimensional log 

spectral vectors of speaker one, speaker two, and the 

mixed signal, FD(∙) denotes the D-point discrete Fourier 

transform, and |∙| denotes the magnitude operator. 

The relation between feature vectors of the observation 

signal and the sources can be obtained using MIXMAX 

approximation [16] 

Ẑr = MIXMAX(Xr + ax, Yr + ay) = [max(Xr(1) +

ax, Yr(1) + ay) , … , max(Xr(d) + ax , Yr(d) +

ay) , … , max(Xr(D) + ax, Yr(D) + ay)]T 

(9) 

This relation is used in the separation process to 

estimate the sources. 

 

III. MODELING THE SOURCES 

A. VQ Modeling 

VQ is referred to the techniques in which a set of 

available data vectors Ф = {φm}, m = 1,2, … , M  are 

partitioned into a number of clusters Vn , n = 1,2, … , N 

such that Ф = ⋃ Vn
N
n=1  and ⋂ Vn

N
n=1 = ∅ . Every cluster 

Vn is represented by a vector called a codevector cn and 

the set of all codevectors is called a codebook C = {cn, 
n = 1,2, … , N}. In this paper we use LBG algorithm for 

VQ [17]. In this algorithm, clustering is performed in a 

way two optimality criteria which are: 

nearest neighbor condition 

Vn = {φm: ‖φm − cn‖2 < ‖φm − cn′‖2,   n ≠ n′} (10) 

|∙| 


 

DFT log10  X(𝑑) {𝑥(𝑙)}𝑙=0
𝐿−1 

𝑋(𝑒𝑗2𝜋𝑑/𝐿)  𝑋(𝑒𝑗2𝜋𝑑/𝐿)  
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and centroid condition 

cn =
∑ φmφm∈Vn

∑ 1φm∈Vn

           n = 1,2, … , N (11) 

are met. In VQ modeling, a codebook is obtained for 

every speaker using training feature vectors of that 

speaker. 

B. Sub-section VQ Modeling 

In this method, training log spectral vectors for each 

speaker are divided into four sub-sections and for every 

sub-section, a VQ model is obtained. Also, log spectral 

vector of observation ( Zr ) is divided into four sub-

sections such that Zr = [Z1
r; Z2

r ; Z3
r ; Z4

r]. We assume Xr =
[X1

r ; X2
r ; X3

r ; X4
r ]  and Yr = [Y1

r; Y2
r; Y3

r; Y4
r]  in which, Xk

r ,
k = 1,2,3,4 is the kth sub-section vector of Xr  and also, 

Yk
r, k = 1,2,3,4  is the k th sub-section vector of  Yr . 

According to (9) we have 

Ẑk
r = MIXMAX(Xk

r + ax, Yk
r + ay)      k = 1,2,3,4 (12) 

Sub-section VQ models are used to estimate the gains 

and the sources. 

 

IV. ESTIMATING THE SOURCES 

The single channel speech separation presented in this 

paper involves three stages. In the first stage, the 

speakers' gains are estimated. In the second stage, the 

estimated gains of the speakers are used to estimate the 

sub-section feature vectors of each speaker and in the 

third stage, time domain signal of each speaker is 

obtained from feature vectors of the associated speaker. 

Fig. 2 illustrates our proposed gain adapted single 

channel speech separation method. As the figure shows, 

Zr indicates the feature vector of the observation signal, 

Ck
x  , k = 1,2,3,4 is the codebook of speaker x in the kth 

sub-section, Ck
y

  , k = 1,2,3,4 is the codebook of speaker y 

in the kth sub-section and X̂ is estimated feature vector of 

speaker x. 

A. Gain Estimation 

As the Fig. 2 shows, the gains of the speakers are 

estimated in the first sub-section. In order to estimate the 

gains, we estimate the SSR. For a given SSR, ax and ay 

are obtained using (2) and (3). Let c̃1i,j

mix  be MIXMAX 

estimator of two arbitrary codevectors in the first sub-

section, that is, 

c̃1i,j

mix = MIXMAX (c1i

x + ax, c1j

y
+ ay) (13) 

where c1i

x  and c1j

y
 are two arbitrary codevectors of 

speaker x and speaker y, respectively. All pairs of 

codevectors {c1i

x , c1j

y
} are compared to find the minimum 

mean square error (MMSE) compared to the observation 

signal's feature vector Z1
r . SSR which minimizes the 

MMSE for all frames is selected as the estimated SSR 

 

 

 
Fig. 2. Schematic of our proposed gain adapted single channel speech 

separation system 

 

SSR∗ = arg min
SSR 

∑ min
i,j

(∑ (Z1
r(d)

dr

− c̃1i,j

mix(d))
2

) 

(14) 

We defineQ(SSR) = ∑ min
i,j

(∑ (Z1
r(d) − c̃1i,j

mix(d))
2

d )r . 

Unlike the Q(SSR) defined in [15], it can be shown that 

our proposed Q(SSR) is a convex function. Here we give 

a brief description to prove it: using (13), (3) and (2), 

Z1
r(d) − c̃1i,j

mix(d) can be written as 

Z1
r(d) − max (c1i

x (d) + log10 (
gz

G0
) −

1

2
log10 (1 +

10
−SSR

10 ) , c1j

y (d) + log10 (
gz

G0
) −

1

2
log10 (1 + 10

SSR

10 )).  

Both −
1

2
log10 (1 + 10

−SSR

10 )  and −
1

2
log10 (1 +

10
SSR

10 ) are concave functions. So, both functions in max 

function argument are concave functions. Max of two 

concave functions is a concave function and when it’s 

multiplied by a negative number, it becomes convex. So, 

Z1
r(d) − c̃1i,j

mix(d) is a convex function. Since power two 

of a convex function, summation of a number of convex 

functions and min of a number of convex functions are all 

convex functions, we deduce that Q(SSR) =

∑ min
i,j

(∑ (Z1
r(d) − c̃1i,j

mix(d))
2

d )r  is a convex function. 

More information about convex functions can be found in 

[18]. 
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As we proved above, Q(SSR) is a convex function, so 

it has a global minimum, mathematically Q(SSR∗) <
𝑄(SSR), ∀SSR ≠ SSR∗. To find SSR∗, we can use a very 

efficient iterative quadratic optimization algorithm 

presented in [19] and used in [15]. In this algorithm, three 

points are selected  

{(SSRι, Q(SSRι)), (SSRc, Q(SSRc)), (SSRr, Q(SSRr))} 

and they are updated each iteration to obtain a 

quadratic function of the form  f(x) = ax2 + bx + c . 

Update of the points is performed usingx∗ = −
b

2a
, the 

value that minimizes f(x) , and Q(x∗). For initialization 

we regard: SSRι ← SSRmin, SSRr ← SSRmax, and SSRc ← 

an arbitrary value between SSRmin  and SSRmax . The 

algorithm iterates until reaching a value of SSRc  that 

Q(SSRι) ≥ Q(SSRc) ≤ Q(SSRr). In experiments, we can 

see that for SSR > 18 dB the signal with higher energy 

which is called target signal, completely masks the signal 

with lower energy known as interference signal. So we 

can set SSRmin = 0 dB and SSRmax = 18 dB. Now, using 

the estimated SSR (SSR∗) we obtain the estimated gains 

of the sources (gx
∗  and gy

∗ ) from (2). The estimated gains 

are used in the next subsection to estimate the feature 

vectors. 

B. Source Estimation 

Using the estimated gains of the sources, we obtain ax
∗  

and ay
∗  from (3) and use them to form the MIXMAX 

estimator of two arbitrary codevectors of the speaker one 

and speaker two in the kth sub-section 

c̃ki,j

mix = MIXMAX (cki

x + ax
∗ , ckj

y
+ ay

∗ ) (15) 

Then in each sub-section, for each frame we select the 

optimal codevectors that cause minimum mean square 

error (MMSE) between the feature vector of the 

observation signal and the MIXMAX estimator 

{i∗, j∗} = arg min
i,j

(∑ (Zk
r(d) − c̃ki,j

mix(d))
2

d
) (16) 

Then, we use a simple soft mask filter to estimate log 

spectral vectors of speaker x  and speaker y . In this 

method, the dth component of the estimated log spectral 

vector in the kth sub-section for speaker x is given by 

X̂k
r (d)

= {
Zk

r(d) − ax
∗       cki∗

x (d) + ax
∗ > ckj∗

y
(d) + ay

∗  

cki∗
x (d)               cki∗

x (d) + ax
∗ < ckj∗

y
(d) + ay

∗  
 

(17) 

Similarly, the estimation of Yk
r(d) is given by 

Ŷk
r(d)

= {
Zk

r(d) − ay
∗          ckj∗

y
(d) + ay

∗ > cki∗
x (d) + ax

∗  

ckj∗

y
(d)                 ckj∗

y
(d) + ay

∗ < cki∗
x (d) + ax

∗  
 

(18) 

 

Then, the estimated sub-section vectors of each 

speaker are combined to obtain the entire feature vector 

of each speaker, X̂r = [X̂1
r ; X̂2

r ; X̂3
r ; X̂4

r ] , Ŷr =

[Ŷ1
r; Ŷ2

r; Ŷ3
r; Ŷ4

r]. 

C. Synthesizing Estimated Speech Signals 

Here, the reverse of what we do for feature extraction 

is applied to the estimated log spectral vectors of each 

speaker to obtain time domain signals: 

The estimated log spectral vectors of each frame 

(X̂r and Ŷr ) are transformed to the spectral domain and 

combined with the phase of the observed signal. Then, a 

D-point inverse DFT is applied to transform the vectors to 

the time domain. Mathematically, the procedure is 

expressed by 

x̂r = FD
−1 (10X̂r

exp [(−1)
1
2 FD(zr)])         (19) 

and 

ŷr = FD
−1 (10Ŷr

exp [(−1)
1
2 FD(zr)])         (20) 

where   denotes the phase operator, exp[∙]  denotes 

the exponential function, and FD
−1(∙)  represents the D -

point inverse Furrier transform  and x̂  and ŷ  are the 

estimated frames of signals in the time domain. Finally 

the inverse transformed vectors are multiplied by a Hann 

window and then the overlap-add method is used to 

recover the sources in the time domain. 

 

V. EXPERIMENTAL RESULTS 

Our proposed method is evaluated in this section and 

it’s compared with the method presented in [15] which is 

a gain adapted MMSE estimator. The database we use for 

our experiments is presented in [20]. In our experiments, 

the sampling rate of the signals is decreased to 8 kHz 

from the original 25 kHz. In the test phase, to obtain 

mixed signals with different SSRs we select 10 pairs of 

speech files randomly that are not used in the training 

phase and mix them at SSRs equal to 0, 6, 12 and 18 dB. 

In the mixed signal, the speech signal that has higher gain 

is the target signal and the signal with lower gain is the 

interference signal. In both training and test phases, 

frames of the speech files are obtained using a hamming 

window whose length is 50 ms and it’s frame shift equals 

20 ms. In the phase of reconstructing separated speech 

files, a Hann window is used in overlap add method. To 

obtain feature vectors of them, a 512 point discrete furrier 

transform is applied to them and after taking log 

magnitude of them and discarding their symmetric 

portions, 257 dimensional feature vectors are obtained. 

Afterward, we select 128 codevectors as the size of the 

codebook. In order to generate sub-section VQ models, 

training feature vectors of each speaker are divided into 4 

sub-sections, 65-point log spectral vectors for first sub-

section and 64-point log spectral vectors for other sub-

sections, and a VQ model is obtained for every sub-

section. 

The similarity between the original signal and the 

estimated signal of speaker x is measured by signal-to-

noise ratio (SNR) which is defined as follows 
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SNRx = 10 log10 [
∑ (x(t))2

t

∑ (x(t) − x̂(t))2
t

] (21) 

where x(t)  and x̂(t)  are the original and estimated 

speech signals respectively. 

Our experiments include two stages: in the first stage, 

in order to show the effectiveness of our proposed VQ 

based gain estimation approach in the first sub-section, 

we select 20 pairs of speech files randomly and mix them 

at random integer SSRs within the interval [0, 18] dB. 

Then we estimate the SSR for each mixture using (14) 

and compare it with the actual SSR. We also keep 

tracking of the number of iterations performed in the 

quadratic optimization algorithm to reach estimated SSR 

( SSR∗ ). Our experimental results of this stage are 

presented in Table 1. This table includes 4 columns. The 

first column determines the number of the mixture. The 

second column gives us the actual SSR of the 

corresponding mixture. The third column gives us the 

estimated SSR of the corresponding mixture and the forth 

column reports the number of iterations at which the 

quadratic optimization algorithm is reached to the 

corresponding estimated SSR. As it can be seen from the 

table, our proposed gain estimation approach estimates 

the SSR with reasonable accuracy and these estimated 

SSRs are reached with only one or two iterations for most 

of the cases. 

 
Table 1. Experimental results of our proposed gain estimation method 

performed on 20 randomly selected pairs of speech files and mixed at 
random integer SSRs within interval [0, 18] dB 

mixture SSRactual SSR∗ Itr 

1 7 6.0204 1 

2 12 11.0332 3 

3 5 5.6115 1 

4 1 1.5112 1 

5 10 8.7727 2 

6 9 8.5915 1 

7 6 7.5366 2 

8 2 2.2444 1 

9 15 15.1206 2 

10 4 3.4199 1 

11 8 7.8029 2 

12 13 12.5192 1 

13 17 16.4497 1 

14 2 2.8750 2 

15 11 11.9618 3 

16 5 4.4533 1 

17 3 4.0130 1 

18 9 8.1751 1 

19 14 12.2161 3 

20 7 5.8547 1 

 

In the second stage of our experiments, we try to show 

the effectiveness of the entire gain adapted single channel 

speech separation system we proposed. For this purpose, 

we select 10 pairs of speech files randomly that are not 

included in the training phase and mix them at SSRs 

equal to 0, 6, 12 and 18 dB. Fig. 3 and Fig. 4 show 

averaged SNR results versus SSR for separated target and 

interference speech signals respectively, for: our 

proposed method (◊ line), the method presented in [15] 

which is a gain adapted MMSE estimator (□ line), our 

proposed method without gain adaptation (Δ line), and 

MMSE estimator (ο line). As the figures show, our 

proposed method outperforms the gain adapted MMSE 

estimator for both target and interference signals and also 

it can obviously be seen that when gain estimation is not 

included in that methods, separation performance greatly 

degrades which signifies importance of gain estimation in 

model-based methods. Our proposed method has much 

lower computational complexity with respect to gain 

adapted MMSE estimator, because both gain estimation 

and source estimation phases in our method deal with 

fewer parameters. 

 

Fig. 3. averaged SNR versus SSR for separated target speech files 
obtained from our proposed method (a), gain adapted MMSE estimator 

(b), our proposed method without gain estimation (c) and MMSE 

estimator (d 
 

 

Fig. 4. averaged SNR versus SSR for separated interference speech files 
obtained from our proposed method (a), gain adapted MMSE estimator 

(b), our proposed method without gain estimation (c) and MMSE 

estimator (d) 
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VI. CONCLUSIONS 

Gain difference between speakers causes improper 

performance of model-based single channel speech 

separation methods. In this paper we proposed a new VQ-

based method to compensate this difference. In our 

proposed method, separation process is performed at the 

sub-section levels, gains of the speakers are estimated in 

the first sub-section and the estimated gains are used to 

estimate the feature vectors of the speakers in each sub-

section. Experimental results show that our proposed 

method outperforms the gain adapted MMSE estimator 

presented in [15]. 
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