
I.J. Information Technology and Computer Science, 2015, 03, 48-53
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.03.07

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

Database Performance Optimization –A Rough

Set Approach

Phani Krishna Kishore. M
Department of Information Technology, GVP College of Engineering (Autonomous), Visakhapatnam, India

Email:kishorempk73@gvpce.ac.in

Leelarani Ch.1

1Department of Computer Applications, GVP College of Engineering (Autonomous), Visakhapatnam, India

Email: leelaranichilukoti@gmail.com

Aditya. P. V. S. S.2
2Department of Information Technology, GVP College of Engineering (Autonomous), Visakhapatnam, India

Email: adityapvss@gmail.com

Abstract- As the sizes of databases are growing exponentially,

the optimal design and management of both traditional database

management systems as well as processing techniques of data

mining are of significant importance. Several approaches are

being investigated in this direction. In this paper a novel

approach to maintain metadata based on rough sets is proposed

and it is observed that with a marginal changes in buffer sizes

faster query processing can be achieved.

Index Term- Database Management Systems, Rough Sets And

Data Mining

I. INTRODUCTION

In most of the traditional data base management

systems the data is organized in a structured format based

on relational data base model, in which the data is stored

in the form of tables designed and optimized using a

specific normal form. A structured query language is

used to retrieve the relevant information from the data

base. With the rapid changes in the technology and with

the ever growing internet connectivity web based

querying of the data bases has been the order of the day.

The information is being generated from various sources

rapidly; simultaneously the sizes of data bases are

growing exponentially. To handle the data effectively and

in less time, various optimization techniques at various

levels are being implemented [14,15].

As the sizes of data bases are running into terabytes,

better approaches are required to bring in a paradigm

shift in the design of the data base management systems.

In this direction works are initiated by several researchers.

Distributed data bases cater to the need to some extent.

Also in case of data mining concepts, extraction of the

hidden information from huge data bases in real time has

become a challenging task. Developing methods that

unifies and interleaves the traditional data base

management as well as extracting useful information

from the data bases is important. In this direction rough

set theory approach offers a promising frame work. Also

frame works that maintain metadata effectively are

important. There are two approaches, one design of new

mechanism altogether to design, store and retrieve the

data, second designing a mechanism that acts on top of

existing data bases and optimizing the performance. In

the first approach new data bases can be built but

migrating from the existing set up to new mechanisms is

both time consuming and involves financial implications.

The second approach is suited for both existing and new

databases as well. In this direction a novel method is

proposed in the present paper by introducing a layer on

top of the existing data bases that will enhance the

performance and helps the transition from older data

bases into new formats.

A. Related Work

With the exponential growth in the sizes of the data

bases, different methodologies and performance

evaluation of different mechanisms to speed-up the query

processing is gaining importance, as it has commercial

value. With the advent of rough set theory several

researchers had thrown light in this direction. Rayne et al

[1] attempted to evaluate the performance of models

based on rough set theory on very large database. They

have tested using Oracle running on Windows NT and

observed that rough set theory provides a good frame

work for querying on large data bases. Rasha Osman et al

[2] in their work they presented a detailed survey on the

performance of data base design and systems. They

presented a categorization of queuing network

performance models of data base systems available in

literature. Fares N. Almari et al [3] identified the

importance of effective measures to test the performance

of various mechanisms and examined the performance

claims of vendors Oracle VM sever and VMware on the

scalability issues. Taniar [4, 5] in his invited talk he

presented how parallelism is effective in data-intensive

applications and how to develop faster capabilities to

support them in terms of indexing, special algorithms on

parallel systems and object oriented schemes. T.

mailto:leelaranichilukoti@gmail.com

 Database Performance Optimization–A Rough Set Approach 49

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

Kramberger [6] studied measurements of data base

responses on different file systems according to query

load.

Xiaohua Tony Hu, T. Y. Lin, Jianchao Han [7] in their

work proposed a new rough sets model based on data

base systems. They redefined the main ideas of rough set

theory in the context of data base theory and take the

advantage of set-oriented data base operations. They

explored the use of redact and core concepts of rough sets

and observed that their model is scalable and efficient

when compared with the existing models.

Initiatives are taken up for using rough set theory to

model the data bases. Dominik Slezak et al [8] in their

work proposed a new method to represent metadata in

terms of columns and compress the data into knowledge

granules. Based on the query the relevant granules are

decompressed and information is retrieved. To implement

the procedure the existing tools are not suitable and an

exclusive compiler has to be developed.

Dominik Slezak et al [8] also implemented similar

techniques in the name of Bright house for Ad-hoc

queries on warehouses.

Srinvas K G and Jagadish M et al [9] in their work

they propose a hybrid model using rough sets and genetic

algorithms for fast and efficient query answering.

Basically rough sets are used to classify and summarize

data sets and genetic algorithms are used for association

related queries and feedback for adaptive classification.

B. Motivation for the Work

In the present paper, it is proposed to bring a layer that

maintains metadata designed on the rough set theory

frame work so that query processing is much faster with

marginal changes in the buffer sizes, so that all the

existing data bases can be optimized to the new

functionality.

The remaining part of the paper is organized as follows.

In section II, the rough set preliminaries are presented.

In section III the proposed method is illustrated. In III.A,

the step by step process of the implementation of the idea

with an example is described. In III.B, the result analysis

and performance evaluation on a sample data base is

incorporated. In section IV conclusion are given.

II. ROUGH SET PRELIMINARIES

Let U be the Universe and let R be an equivalence

relation defined on U. Let U/R denote the set of all

equivalence classes. For any X U, the lower

approximation, upper approximation are defined by

L(X) = {[x]R / [x]R X},

U(X) = {[x]R / [x]R X} respectively.

The following is an equivalence relation defined

through indiscernibility relation which is being used for

attribute reduction,

INDB= {(xi, xj) U2 / a (xi) = a (xj), aB}, B A.

The equivalence classes are termed as information

granules and the level of granularity determines the

information quality in terms of approximations. The

equivalence relation defined on the data determines the

view on the data base. Different equivalence relations

produce different outputs. Hence selection of equivalence

relation is more important. Data driven or relevant

equivalence classes can be defined to suit the specific

requirements of the real time data bases.

III. PROPOSED METHOD

In the present context, Let D = (T1,T2,…,Tn) be a data

base with tables T1,T2,…,Tn which are designed through

a specified normal form.

Let A= {a1, a2, an} denote the set of all attributes that

appear in all the tables of the data base.

The idea is to discretize ranges of the attributes

through a specific equivalence relation one for each of

the attributes, thus generating information granules. This

can be achieved in several ways. Methods like clustering

with a suitable distance metric, equi-depth or equi-width

binning may be used to generate these information

granules.

Based on the granules produced as described above

metadata is generated for each of the table Ti indicating

the presence of the tuple information for each granule for

each attribute. Views are generated for each of such

metadata item. The advantage with view lies in the fact

that the view definition only resides until it is called, once

it is generated it can be treated as good as a base table.

Updates on views are also possible.

Once a query is entered, it is parsed in the metadata

layer and the suitable ranges of the attributes involved in

the query are identified, and the query is processed only

on the specific granules that contain the information, to

produce the output of the query. The advantages of views

lies in the fact that, as long as the data base is running

views are as good as base tables and on any update,

delete or insert the views will be updated automatically.

Another advantage of the proposed method is that, it

can be used on any existing data base without any

modification to the data base. Only relevant parts of the

tables will be brought to the buffer there by reducing the

processing time.

As mentioned earlier there are various discretization

methods for the attribute ranges. However in the present

case equi-width binning is considered to demonstrate the

discretization. For the attribute ai, let D1= [d1 d2], D2= [d3

d4], Dk-1= [dk-1 , dk] be the discretized intervals, that forms

the partition of the range of the attribute air.

The discretization can be based on equi-depth where

the range of the attribute is divided equally. In this

approach in some ranges the density of tuples may be

more in some it may be sparse. This type of binning is

suitable if the data is evenly distributed.

If the equi-depth discretization is made, where the

ranges are progressively divided by fixing limits on the

number of tuples in each view, the number of views will

be varying dynamically and suitable for static data bases.

50 Database Performance Optimization–A Rough Set Approach

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

Statistical methods, clustering methods can also be

employed based on probability distribution of the

attribute values to optimize the storage.

Given a table T, attribute ‘a’, tuples tn, tm in T, define

the relation,

Ra = {(tn, tm) T2 / di ≤ a (tn), a(tm) ≤di+1

for some 1≤ i ≤ k}.

Clearly R is an equivalence relation. U/Ra denotes the

equivalence classes namely the bands produced by the

partition over the range of the attribute ‘a’. The

equivalence classes represent data tables which are in line

with the original data base design but represents only part

of the table(s). These constitute the data granules.

Given a table T, and given an attribute ‘a’ of T, let the

range of ‘a’ has been divided into k disjoint parts, then

metadata is created in terms of the ranges of ‘a’ and the

set of tuples of T corresponding to each range. For each

such resultant metadata, a view is created. Thus for entire

data base, that is for each of the attribute of each table

corresponding views are created. For a given query, if the

lower approximations in each attribute satisfy the query

requirements, the query is processed on the

corresponding views only in the buffer; otherwise the

output is generated from the upper approximation.

Fig. 1.

A. Process

Input: Database, selected method of partitioning of

attribute values.

Step1: For each attributes ai of each table Tj apply

discretization method and produce sub-ranges.

Step2: Create reference tables for each attribute of

each table Tj containing the sub-ranges and the tuples

present in that range.

Step3: Create views in the data base for each of the

ranges specified in step 2.

Input: Query, Lower approximation, Upper

approximation

Step 4: Identify the ranges of the attribute which are

entirely contained in the ranges specified in the query for

the lower approximation/ Upper approximation.

Step 5: Identify the views as created in step 3 and as

per the ranges identified in step 4.

Step 6: Process the query on the views to get the lower

/ upper approximation.

Consider the following example to understand the

process. Let us consider an example table as follows:

Suppose a query is passed to find whose salary is

greater than 50000 and whose department id is less than

201 then the following values are retrieved,

Table 1. Sample Database

TUPLE

ID

EMP

ID
NAME SALARY

DEPT

ID

JOB

ID

T1 54 Rahul 30000 300 300

T2 01 Tarun 21000 100 200

T3 03 Prannoy 10000 200 100

T4 58 Aditya 58000 100 111

T5 05 Priyan 15010 200 200

T6 28 Praveen 34010 100 300

T7 48 Divya 34010 600 300

T8 13 Harini 33090 400 300

T9 40 Chitti 45000 100 111

T10 56 Prudhvi 56000 200 111

T11 57 Shilpa 47000 500 400

Table 2. Result of the query

TUPLE
ID

NAME SALARY
DEPT

ID

T10 Prudhvi 56000 200

T4 Aditya 58000 100

Table 3. Employee ID Attribute

EMP
ID

TUPLE
ID

1-10 T2.T3.T5

11-20 T8

21-30 T6

31-40 T9

41-50 T7

51-60 T1,T4,T10,T11

Table 5. Salary Attribute

SALARY
TUPLE

ID

10000-20000 T3,T5

20001-30000 T1, T2

30001-40000 T6,T7,T8

40001-50000 T9,T11

50001-60000 T4,T10

 Database Performance Optimization–A Rough Set Approach 51

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

Table 6. Department Attribute

DEPT

ID

TUPLE

ID

0-100 T2,T4,T6,T9

101-200 T3,T5,T10

201-300 T1

301-400 T8

401-500 T11

501-600 T7

Table 7. Name Attribute

NAME TUPLEID

A-C T4,T9

D-F T7

G-I T8

J-L -----------

M-O -----------

P-R T1T3,T5,T6,T10

S-U T2,T11

V-X -----------

Y-Z -----------

Table 4. JobID Attribute

JOB
ID

TUPLE
ID

100-200 T2,T3,T4,T5,T9,T10

201-300 T1,T6,T7,T8

301-400 T11

Lower and upper approximations-approximate

querying:

Suppose a query is given to find employees whose

salary is greater than 10,005 and less than 23,000 then we

have to utilize two equivalence classes, 10,000-20,000

and 20,001-30,000 to retrieve the output of the query. A

new view will be generated from the two equivalence

classes which is the upper approximation. Once the view

is generated, query operations are done on that view

which is now called upper approximation.

From the above table the following metadata can be

created and the corresponding views so that any query

recalls the corresponding views from this metadata.

B. Implementation and analysis

From the above table all the tuples are identified into

the respective ranges and as illustrated below and views

are created correspondingly. For implementing the above

process a sample data base of size 0.83GB is taken with

the schemas as mentioned above with additional tuples.

For different types of queries the performance in terms

of buffer space occupied and the time it takes to compute

are calculated in ordinary (without rough set method) and

using the rough set approach. The following are the

observations.

The program is run on Intel core i5 processor with 4

GB RAM and CPU @ 2.50 GHz running on Microsoft

Windows 7 Professional operating system when all

except vital system services are halted. The SQL 10g

expression edition is used to demonstrate the procedure.

We have considered queries in four different categories

of queries during the implementation; the types of queries

are as follows:

The first 4 queries are simple regular queries. The next

4 queries are conditional queries. The next 4 queries are

nested queries and the remaining are queries that operate

on joins.

Table 8. Buffer Sizes and Time Consumption Analysis

Normal execution Experiment-I Experiment-II Experiment-III

S. No.

Time taken

under

Normal
Execution

Conditions

(Ms.)

Buffer

Utilized

under
Normal

Conditions

(bytes)

Time taken

under
Rough set

Theory

Execution
Conditions

(Ms.)

Buffer

Utilized under

Rough set
Theory

Conditions

(bytes)

Time taken

under Rough

set Theory
Execution

Conditions

(Ms.)

Buffer Utilized
under

Rough set

Conditions
(bytes)

Time taken

under Rough

set Theory
Execution

Conditions

(Ms.)

Buffer Utilized
under

Rough set

Conditions
(bytes)

1 100 5,36,66,144 110 4,89,39,300 82 4,36,12,360 93 4,78,60,448

2 104 6,26,07,528 89 4,76,13,480 83 4,47,11,372 79 4,48,47,504

3 109 5,82,18,328 80 4,91,84,632 91 4,70,68,956 85 4,74,67,232

4 112 6,22,14,312 121 4,63,02,760 90 4,48,42,444 97 4,78,77,260

5 115 6,48,37,908 81 5,00,68,512 95 4,64,79,132 92 5,04,31,452

6 118 6,62,65,044 95 5,33,75,512 96 4,90,50,136 98 5,26,57,964

7 120 6,67,02,672 84 5,38,49,364 94 5,01,13,812 95 5,02,51,656

8 132 5,81,19,168 88 4,79,39,448 87 4,63,64,872 87 4,68,88,344

9 138 6,33,92,248 101 5,29,99,108 90 4,74,94,084 90 4,48,42,444

52 Database Performance Optimization–A Rough Set Approach

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

10 142 6,53,26,416 85 4,91,84,632 80 4,81,00,720 85 4,87,78,916

11 143 6,36,56,104 90 4,89,71,212 100 5,42,42,580 95 4,89,71,212

12 146 6,35,25,032 78 4,69,07,684 78 4,82,10,816 78 4,82,64,748

13 163 6,30,34,368 88 4,93,64,428 83 4,94,98,848 85 4,91,84,632

14 167 6,45,56,796 50 5,10,83,464 41 5,15,57,316 56 5,13,69,784

15 179 6,46,22,332 51 5,06,09,612 66 4,93,96,340 53 5,27,12,416

Total 1988 94,07,44,400 1291 74,63,93,148 1256 72,07,43,788 1268 73,24,06,012

C. Observations

 The total time taken for normal execution of 15 queries

is1988 milliseconds with an average of 132.53

milliseconds.

 The average time taken for rough set based execution

1271.66 milliseconds with an average of 84.77

milliseconds.

 Thus on the average time consumption has been

reduced by 36.037%

 The total buffer utilization for normal execution of 15

queries is 94,07,44,400 bytes with an average of

6,27,16,293.33 bytes per query (59.81Mb)

 The total buffer utilization (average of three runs)

under rough set execution for 15 queries 73, 31,

80,982.66 bytes with an average of 4, 88, 78,732.155

bytes per query (46.61Mb).

 On the average the buffer utilization has been reduced

by 22.06%

Fig 2. Time consumption

Fig 3. Buffer utilizations

The time utilization chart for Normal execution and

with that of rough set based execution is as given below

(Fig 2). The first 4queries are simple regular queries. The

next 4 queries are conditional queries. The next 4 queries

are nested queries and the remaining are queries that

operate on joins.

The buffer utilization chart for Normal execution and

with that of rough set based execution is as given below

(Fig 3). The first 4 queries are simple regular queries.

The next 4 queries are conditional queries. The next 4

queries are nested queries and the remaining are queries

that operate on joins.

It is observed that the buffer allocation starts at

different values for each of the runs. Hence the relative

buffer utilization is observed by subtracting the

subsequent values of buffers from the starting value (i.e.)

with the initial value as reference and observed the

following (Fig 4)

Fig 4. Relative Buffer Utilization

It is observed that the average buffer variations under

rough set implementation are44, 37,225.87 bytes against

90, 50,149.333 bytes, so that Variation in buffer

utilization is observed to be or the order of 50.97%.

Apart from the above observations the following are

also observed.

 When queries are implemented multiple times on same

granules comparatively better space and time

utilization than normal execution is observed.

 Buffer spaces and time consumption are comparatively

higher to that of the other queries based on rough sets

when they are operating for the first time on any view.

 The buffer space and time taken over a period of time

gets stabilized once all the views are generated.

 Database Performance Optimization–A Rough Set Approach 53

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 48-53

IV. CONCLUSION

In this paper an attempt has been made to test the

improvement in performance of the data base querying

using rough set approach in terms of time and the buffer

sizes. It is observed that both buffer sizes, as well as

query operational time showed significant improvement.

As a tradeoff between the space and time, the proposed

new approach is suitable to increase the efficiencies in

terms of the time as well as space.

Another advantage of the method lies in the fact that

the procedure can be implemented on any existing data

base without causing any loss or migration from the

existing as this works a layer above the database.

The increase in the performance with respect to time

can be attributed to the fact that data that is to be brought

into the buffer is less when compared to the data being

used in ordinary approach and also operations take less

time to retrieve from the information available in buffer

when compared with the retrieval from the permanent

storage.

When the views are generated in distributed

environment then Parallelism can also be increased since

queries operating on different ranges of the same attribute

can access the data from the respective views in parallel.

REFERENCES

[1] Rayne Chen, T.Y. Lin, “Supporting rough set theory in

very large databases using Oracle”, RDBMS, 0-7803-

3687-9/9601996 IEEE, pp.332-337Z. Pawlak. Rough sets,

“Theoretical aspects of reasoning about data”, Kluwer,

1991.

[2] Rasha Osman, William J. Knottenbelt, “Database system

performance evaluation models: A survey”, Performance

Evaluation 69 (2012) 471–493.

[3] Fares N. Almari, PavolZavarsky, Ron Ruhl, Dale

Lindskog, Amer Aljaedi, “Performance Analysis of

Oracle Database in Virtual Environments” , Proceedings

of the 26th International Conference on Advanced

Information Networking and Applications Workshops,

2012,pp.1238-1245.

[4] David Taniar, “High Performance Database Processing”,

Proceedings of the 26th IEEE International Conference on

Advanced Information Networking and Applications, 2012,

pp-6.

[5] Taniar, C. H. C. Leung, W. Rahayu, and S. Goel, “High

Performance Parallel Database Processing and Grid

Databases”, John Wiley & Sons 2008.

[6] T. Kramberger, D. Cafuta, I. Dodig, “Database System

Performance in Correlation with Different Storage File

Systems”, MIPRO-2012, May 21-25, 2012, Opatija,

Croatia,913-918.

[7] Xiaohua Tony Hu, T. Y. Lin, Jianchao Han, “A New

Rough Sets Model Based on Database Systems” , Rough

Sets, Fuzzy Sets, Data Mining, and Granular Computing,

Lecture Notes in Computer Science Volume

2639, 2003, pp. 114-121.

[8] Ślęzak D., Wróblewski J., Eastwood V., Synak P, “Bright

house: An Analytic Data Warehouse for Ad-hoc Queries.”

Proc. of VLDB 2008, pp. 1337 - 1345. 2008.

[9] Srinivas K G and Jagadish M, Venugopal K R, L M

Patnaik, “ Data Mining Query Processing Using Sets and

Genetic Algorithms”, Proceedings of the 2007 IEEE

symposium on Computational Intelligence and Data

Mining (CIDM2007).

[10] Altigran S. da Silva, Alberto H. F. Laender, Marco A.

Casanova, “An approach to maintaining optimized

relational representations of entity-relationship

schemas”, Conceptual Modeling - ER '96, Lecture Notes

in Computer Science Volume 1157, 1996, pp. 292-308.

[11] T. Apaydin, G. Canahuate, H. Ferhatosmanoglu,

A.S.Tosun, “Approximate Encoding for Direct Access and

Query Processing over Compressed Bitmaps”,. VLDB

2006: 846-857.

[12] Z. Pawlak. Rough sets: “Theoretical aspects of reasoning

about data”, Kluwer, 1991.

[13] Z. Pawlak, A. Skowron. “Rudiments of rough sets”,

Information Sciences 177(1): 3-27, 2007

[14] Xin Wang, Shuyi Wang, Pufeng Du, Zhiyong Feng,

“CHex: An Efficient RDF Storage and Indexing Scheme for

Column-Oriented Databases”, IJMECS, vol.3, no.3,

pp.55-61, 2011.

[15] Sanjay Kumar Yadav, Gurmit Singh, Divakar Singh Yadav,

“Mathematical Framework for A Novel Database

Replication Algorithm” , IJMECS, vol.5, no.9,pp.1-

10,2013.DOI: 10.5815/ijmecs.2013.09.01

Authors’ Profile

M. Phani Krishna Kishore, Professor,

Department of Information Technology,

Gayatri Vidya Parishad College of

Engineering(Autonomous), Madhurawada,

Visakhapatnam,530048.

Ch. Leela Rani, Graduate Student, Department of Computer

applications, Gayatri Vidya Parishad College of Engineering

(Autonomous), Madhurawada, Visakhapatnam, 530048.

P. V. S. S. Aditya, ,Under Graduate Student,

Department of Information Technology,

Gayatri Vidya Parishad College of

Engineering (Autonomous), Madhurawada,

Visakhapatnam, 530048.

How to cite this paper: Phani Krishna Kishore. M, Leelarani

Ch., Aditya. P. V. S. S.,"Database Performance Optimization–A

Rough Set Approach", International Journal of Information

Technology and Computer Science(IJITCS), vol.7, no.3, pp.48-

53, 2015. DOI: 10.5815/ijitcs.2015.03.07

http://link.springer.com/search?facet-author=%22Xiaohua+Tony+Hu%22
http://link.springer.com/search?facet-author=%22T.+Y.+Lin%22
http://link.springer.com/search?facet-author=%22Jianchao+Han%22
http://link.springer.com/book/10.1007/3-540-39205-X
http://link.springer.com/book/10.1007/3-540-39205-X
http://link.springer.com/bookseries/558
http://link.springer.com/search?facet-author=%22Altigran+S.+da+Silva%22
http://link.springer.com/search?facet-author=%22Alberto+H.+F.+Laender%22
http://link.springer.com/search?facet-author=%22Marco+A.+Casanova%22
http://link.springer.com/search?facet-author=%22Marco+A.+Casanova%22
http://link.springer.com/book/10.1007/BFb0019909
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

