
I.J. Information Technology and Computer Science, 2015, 03, 54-59
Published Online February 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.03.08

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

Investigating into Automated Test Patterns in

Erratic Tests by Considering Complex Objects

Akram Hedayati
1

Mazandaran University of Science and Technology, Iran

Email: akrm.hedayati@gmail.com

Maryam Ebrahimzadeh
2
, Amir Abbaszadeh Sori

3

Mazandaran University of Science and Technology2, Amirkabir University of Technology3

Email: mary.ebrahimzade@gmail.com, Email :a.abbaszadeh.s@aut.ac.ir

Abstract- Software testing is an important activity in software

development life cycle. Testing includes running a program on

a set of test cases and comparing seen results with expected

results. Automated testing encompasses all automation efforts

across software testing lifecycle, with focus on automating

system testing efforts and integration. Automated testing brings

plenty of benefits that speeding up test running time, increasing

accuracy of testing process and minimizing costs in different

parts of system are three superior features of it. Maintenance

and development of test automation tools are not as easy as

traditional testing due to unexplored issues which need more

examinations. Automated test patterns have been presented to

mitigate some problems happening by automated testing and

improve efficiency. This paper aims to investigate into

automatic testing and automated test patterns. Also,

demonstrates behaviour of applying an automated test pattern

on a complex object. Results show during choosing an

automated pattern to run, we should consider test structure

especially level of test object complexity otherwise

inconsistency may happen.

Index Term- Test, Erratic Test, Fixture, Fixture Fresh Pattern,

Automated Testing, Automated Test Pattern

I. INTRODUCTION

Each software product has its own particular

audiences. For instance, a computer game software

targets different range of users from users of a banking

software. Therefore, an organization which is in charge

of writing a software product should evaluate and assure

whether or not that software is acceptable for its

stakeholders. On the other side, quality of software is

becoming dominant success criterion in the software

industry [1]. Software testing is a set of striving for such

assessments including quality of software and has

become an essential part of an agile process[2]. Software

testing is very labor intensive and expensive, roughly,

half of the cost of a software system development is

spent on testing process [3-5]. Software automated

testing is popular research problem in the computer

application research area and is becoming the most

disputed subject in software industry. Two main factors

including increased complexity of systems and short

product release schedules make task of testing process

challenging [6, 7]. To clarify, take into account this fact

that there are many systems and projects that are

developed in a distributed manner at different places in

the world. They are frequently updated and need to be

tested at various integration levels. It is not an odd

occasion if you figure out there are more than thousands

of entities, components, requirements, test cases and

subsystems in subject of change and upgrade [8].

In fact, this large amount of numbers is so common

phenomenon in new era of software and technology. To

make our discussion more specific, in each section, there

would be large number of test cases that should be run

for each iteration or release. In a perfect test execution

situation, every test cannot be executed on a daily basis

because of complexity of the systems under test and

execution time of the test cases. The complexity in terms

of large sizes and internal dependencies of industrial

systems are affecting all aspects of software

development and test. To overcome these issues and

have efficient tests, demand for automated tasting and

test management are arising [8]. If the testing process be

automated, cost of development dramatically can be

reduced. On the other side, developing test data is one of

the problematic issues. Test data generation refers to

define set of input data which satisfy testing criterion. In

this regards, there are some tools for this aim that help

programmers and developers to generate test data[9].

Writing and maintaining a good test code needs a lot of

efforts[10] [11]. For example ,adding a parameter to a

constructor class indicates revisiting and updating all

tests that created an instance of that class[11]. Another

survey indicate that test code should be treated with the

same importance as application code and considers the

following features: 1-tests should have a clean design

that facilitates code reuse without duplication. 2- tests

should be easily adaptable to modifications in the

application3- tests should be easy to create. 4- tests

should have a low maintenance cost[12]. Cost of

updating existing tests along with cost of writing

automated tests are two main part of software cost[11].

Examinations show that in comparison with past,

complexity and size of software product are

continuously increasing [10].One of the main purpose of

designing test patterns is reducing test programming. By

reducing test programming time, test engineers are given

 Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects 55

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

this opportunity to focus more on other specific aspects

of tests rather than spending much time on coding. As a

result, efficiency would be improved [11] . Automated

testing is intended to reduce test execution effort, time

and increase accuracy of validation.

There are many issues regarding automated unit and

acceptance tests in agile software development, but in

recent 10 years they have attracted more attention in

software companies [11]. The larger scale, the more

efforts required to assure product quality, even in a case

that automated testing tools are used because test

patterns need to be input manually. This process requires

huge amounts of man-hours specifically when product

types vary, have a lot of subsystem or test patterns need

to be modified for associated signal changes[10]. An

important point is that typical development and test

cycles must be considered from various point of view of

software quality assurance in order to be aligned with

business process testing software. In automated testing,

monitoring processes including quality assurance,

maintainability, optimization, accuracy, modularity,

context, synchronization, documentation should be done

[13].

The rest of this paper is arranged as follows: section 2

gives brief information about background of automated

testing. Section 3 introduces specific description of

major concepts in automated testing. In following,

related work is presented in section 4. Section 5 presents

our investigation of applying one type of automated test

pattern on erratic test and demonstrates how potential

problem happens. A summary of conclusion is given in

section 6 as well.

II. BACKGROUND

A. Automated Testing

Bertolino [14] identifies test automation this

way: ”far-reaching automation is one of the ways to

keep quality analysis and testing in line with the growing

quantity and complexity of software”. Karhu et al. [15]

note that ”automated software testing may reduce costs

and improve quality because of more testing in less time,

but it causes new costs in, for example, implementation,

maintenance, and training”. They continue by stating

that ”automated testing systems consist of hardware and

software and suffer from the same issues as any other

systems”. In software testing, automation includes

development and execution of test scripts in order to

measure validity of requirements by using automated

testing tools [16].

In some methods of writing automated unit testing,

test cases are written after code therefore these unit tests

are put under software configuration management

together with production code. In test-driven

development (TDD), programmers write test cases first

then implement code which successfully passes the test

case[2]. Automated test reduces the cost of running tests

by means of fully automated tests, repeatable tests and

robust tests. Automated test significantly avoids

happening defects by emphasis on repetitive regression

testing. Consequently, reduces costs of removal of added

new defects [17].

In comparison with traditional test, automated unit

testing has 5 main advantages such as speed, accuracy,

precision, efficiency, skill-building which are

abbreviated as SPAES. Speed means thousands of test

cases can be performed with very high speed. Precision

exists in automated test because the result of automated

test is the same whenever it is running while in

traditional test, results in each running time may have

differences. Accuracy is another advantage that says

there is no human error in automated testing. Automated

test can be run for long time continuously and we call

this feature as efficiency[18] .

Automated testing offers numerous benefits to any

software organization, including finding defects cost-

effectively early in the development cycle, providing

rapid feedback,and giving developers the courage to

refactor their code[12] .

When tests are supposed to run for several times, it

seems automated test is a good option to use but some

paradoxes are raising here [16]. One of those paradoxes

happens when automated test makes no change in data

or running paths. On the other hand, we encounter bug

reduction. In this case, it is a crucial issue that this bug

reduction does not guarantee the reduction of total

number of bugs in considerable system[17]. Improving

capability of test depends on error detection and

correction, therefor by adding new changes they can be

modified and improved. [17]

Automated data are changing in each running time of

automated tests. During these tests, developers should

measure and evaluate consistency of automated code and

structures by appropriate and consistent tools. For this

purpose, automated testing tools are designed and used

to provide more precise results, enhance product quality,

increase testing productivity and speed test execution up

[19]. Code analysis tools, test management tools,

functional testing tools (also called capture/playback

tools), detecting memory leaks tools and generating test

data tools are tools which are broadly used for

aforementioned goals [18]. For example, automated

recorded test includes tools which let make a

documentation of all user interaction with tested

application and software and store them in file or

database for future use [17] . When tests lack organized

structures and have low quality, tests are not as efficient

as expected. Furthermore, if tests after run phase, cannot

not detect any error, it does not mean considerable

system is free error, it could be consequence of

incomplete and defective tests. Additionally, when

system is subject to change, maintenance of automated

test data files becomes harder.[16]. Test maintenance is

costly in case of playback methods. Even though a minor

change occurs in GUI, the test script has to be

rerecorded or replaced by a new test script.

One of challenges in testing process is that as

applications changes over time, tests become more

difficult to maintain. Design patterns help us minimize

maintenance costs by making tests easier to update and

56 Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

more adaptable to application changes [12]. By using

principles of development and design of applications,

automated test development can become a well factored

art form that is adaptable to application changes. This

adaptability results in lowered maintenance costs and

easier test creation [12]. Maintenance problems can be

addressed by using design patterns and treating test code

with the same importance as application code[12].

B. Test Automation Manifesto

Test automation manifesto indicates principles that

result in automated tests that are easier to write, read,

and maintenance [11]. Principles of the manifesto

including bunch of questions about basic foundation of

tests, integrating new behaviours of test, distinguishing

components which can be designed automatic, which

kind of automatic test is applicable, etc [11]. The

answers of these primary questions are proposed as “test

automation manifesto”. Based on this manifesto, the

most important qualities to consider into automated

testing is demonstrated as follows:

Concise: the simplest possible form and yet

comprehensive. Self-checking: reporting tests results

without human interpretation. Repeatable: tests run

many consecutive times with no human intervention.

Robust: the test results are independent of changes in

external environment. Sufficient: tests verify all the

requirements of the software being tested. Necessary: all

contributing things to have desirable test behaviours

should be included in it. Clear: every statement is easy to

understand. Efficient: tests run in a reasonable amount of

time. Specific: each test failure refers to a specific piece

of malfunction. Independent: each test can be run by

itself or in any order with other set of tests. Maintainable:

tests are easy to understand, modify, upgrade and extend.

Traceable: to and from the code it tests and to and from

the requirements.[11]

III. TERMINOLOGY

In this part, we identify several major concepts in

inspecting automated test code together two kind of test

in software testing.

A. Fixture

Technically, fixture is an instance of associated

testcase class used as pre-conditions of the test. Test

runtime environment is central part of system, interacts

with other parts in order to manage, schedule and run

tests in an appropriate manner. In addition, provides

suitable user interfaces (UI) for creating and running

tests.

Every test consists of four distinct phases that are run

in sequence: fixture setup, exercise SUT, result

verification, and fixture teardown[17]. In the first phase,

system under test (SUT) and every required thing are

created and put into a state which is required to run the

SUT. Another term, we set up the test fixture. In

exercise SUT phase, the test is run and we interact with

the SUT. In third phase, required actions are done in

order to see expected results and behaviours are

observed or not. In last phase, the test fixture is torn

down to put the world back into the state in which has

been found it [2, 17].

B. Smell

An automated test is a program that checks another

program. Consequently, it is vulnerable to the same

design problems as application code. These

vulnerabilities, often referred as code smells. Another

words, a smell is a symptom of an underlying problem in

code. Generally speaking, smells are described as a set

of problems in test codes. Developers use them as

checklists to analyse test codes [2].

Code smells include test code duplication, tight

coupling between the application and tests, and long test

methods [12] . There are three common kinds of smells.

First, code smell refers to obvious problems while

reading or writing test code. Second, behaviour smells

are smells we encounter while compiling or running tests

and are much harder to ignore. Meanwhile developers

automate, maintain and run tests, code and behaviour

smells are typically paid attention [17]. a lot of

examinations and experiences show that main root

causes of behaviour smells are slow tests, erratic tests,

fragile tests, assertion roulette, manual intervention [17].

The third kind of smells is projects smell that inspects

test smells from project manager or customer point of

view because they are indicators of the overall health of

a project [17] .

C. Debt

Debt is generally considered as a bad state. Project

debt arises when a job is not delivered in due time or is

not done as enough. Test debt: most projects are in test

debt. They test too little and infrequently also. Moreover,

prevents happening errors and build quality in them are

not done regularly[17]. Automation debt is another sort

of debt which even more projects are in automation debt.

Due to little automated testing, they have to spend lots

efforts on manual testing methods. Technical test debt is

another state which most projects consider automated

testing are in this state because their tests need a lot of

efforts related maintenance issues [17].

D. Pattern

The next term which is described here is pattern. A

“pattern” is a recurring solution to a recurring

problem.in another way, they are set of periodic

solutions for upcoming problems of automatic tests [17].

E. Slow Test

Slow tests are kind of tests which take long enough to

run. This explains why when test developers make a

change to the SUT, they don't execute tests every time.

Slow test reduces productivity and cause a lot of explicit

and implicit cost into system and project [17]. The

causes of slow tests could be either in the way we built

the SUT or the way tests are coded. Main root cause of

slow tests is that many tests are interacting with

databases to write in or read from it in order to setup a

 Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects 57

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

fixture or verify results. Running these tests with slow

components take about 50 times longer to run than if the

same test is supposed to run against in-memory data

structures. A possible solution is replacing the slow

components with a test double[17] . Another factor

which makes slow test is general fixture. Because each

time a fresh fixture is built, each test is constructing a

large general fixture and it includes many more objects.

Consequently, it takes longer than usual to construct. To

reduce this time and avoid rebuilding it for each test, we

can use the general fixture as a shared fixture but unless

we make this shared fixture immutable. On the other

hand, this is likely to lead erratic tests and so should be

avoided. Another way is reducing the number of fixtures

being set up by each test. Also, tests need a long delay to

ensure consistency and synchronization between

underlying processes or threads of system to lunch, run

and verify. As a result, in a big scale, these waiting times

in each test, significantly slows down overall execution

time .to address this problem, maybe we are obliged to

avoid asynchronicity in tests by testing the logic

synchronous. Another state which slow test happens is

when there so many tests to run regardless of how fast

they execute. Also, we may have many overlaps between

them. To take over this state, if possible, we can break

system into a number of fairly independent subsystems

or components along with subset suite of suitable cross-

section of tests to run by a logical schedule [17].

F. Erratic Test

Results of some tests depend on some factors such as

who is running them or when tests are run. As a result,

they provide different outcomes, pass or fail. There are

some tests that if run for several times, provide different

results and behave erratically. The results are affected by

external factors including environment, who is running

them or when tests are run. Maybe it sounds logical to

remove the failing tests from the test suites but this leads

lost test. On the other side, keeping the erratic tests may

either interfere with other issues which the same tests are

expected to detect and obscure resolving errors or even

cause additional failures than expected. [17] there are

many ways which cause erratic tests. Hence, they are a

little hard to trouble shoot. Interacting tests, unrepeatable

test, test run war, nondeterministic test and resource

optimism are some sort of test that their performances

provide erratic test.

Interaction among tests may cause erratic tests. In this

case, if many tests run in sequence and use same objects,

even if one test fails, consecutive failures or cascading

errors will happen in other tests for no evident reason,

because they depend on other tests‟ side effects. [17] as

fig (1) shows in execution of a sequence of tests, test 2

failure may leave processobject1 in state that causes test

n to fail.

Unrepeatable test is referred to tests that their results

at first run time are different via results of subsequent

test runs. They affect each other results to some extent.

[17]

The next cause is test run war. In this state, if many

test runners use some shared external resource such as a

database, object, file, random results may happen and we

call it a test run war [17]. As we can see in fig (2), while

many parallel test runners are using processobject1, test

1 may fail whereas test 2 pass it successfully at the same

time.

Non deterministic tests are tests which are dependent

on non-deterministic inputs. These tests pass at some

times, but if they run at another time, they face failure.

This is due to lack of date and time control [17].

Resource optimism describe tests which their results

depend on where or where they are run so we have

nondeterministic results. Based on some non-ubiquitous

external resources tests either fail or pass[17].

Fig. 1. interacting tests- cascading errors

Fig. 2. test run war- run-time behaviour of executing multiple tests at

the same time

IV. RELATED WORKS

G.meszaros is one of experts in agile software

development specifically in automated test patterns and

test code designs. He has invented effective mechanisms

to facilitate writing and running of tests in terms of test

automation framework and automated test patterns in

order to achieve automated testing benefits[17] [11] .

Shared test fixture pattern and fresh fixture pattern are

two type of automated patterns which are used for

solving stated problems of slow tests and erratic tests

respectively [17] . In following, we describe these

patterns.

A. Shared Test Fixture

To run an automated test, we need a text fixture that is

completely deterministic and well understood. Setting up

a fresh fixture as explained before, may take long time

58 Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

than usual especially when we are dealing with complex

system state stored in a test database.

In this pattern, a standard fixture is created, a shared

fixture is a fixture which is created by one test and is

reused by other tests simultaneously. Even, it can be

either a prebuilt fixture that is reused by one or several

tests in many test runs. Additionally, that fixture lasts

longer than a single testcase object. By employing this

way, many tests reuse the same standard test fixture

between themselves more and more without tearing

down and recreating it. Shared test fixture pattern by

reducing fixture setup overhead helps to improve test run

times in slow tests [17] . On other hand, it is obvious that

if results of test depend on outcomes of other tests,

shared test fixture bring about interaction among tests

that may cause erratic tests. Also, we should consider

shared fixture in order to be applicable for all tests, is

bound to be more complicated than the minimal fixture

needed for a single test. Greater complexity causes

another type of text named fragile fixture. Other

disadvantages of this pattern is elaborated in [17].

B. Fixture Fresh Pattern

Fixture fresh pattern is used for avoiding erratic tests.

Every test needs a test fixture. Fixture defines state of

test runtime environment before running time. Making

decision upon using prebuilt fixture or creating a new

one is one of key test automation decisions. In this

approach, only a single run of a test will use fixture and

it will be torn down after finishing. Hence, tests are

completely independent. Fixtures which are left over by

other test runs are not used by other tests. In [17] it is

mentioned that whenever we want to avoid

interdependencies among tests, it is the right time to use

fixture fresh pattern but in next section, we want to

describe a condition that it is impossible to take

advantage of the pattern on it.

V. RESEARCH METHODOLOGY

In previous sections, we went through different kind

of tests such as slow tests and erratic tests and elaborated

how automated test strategy patterns mitigate the effect

of those tests. Furthermore, previous studies demonstrate

that whenever we want to avoid interdependencies

between tests, we are allowed to use fresh fixture pattern

and no other limited condition mentioned. In this part,

we want to add a significant criterion while making

decision upon using fresh fixture pattern for tests.

Regarding our finding, if we cannot modify slow and

complex tests in erratic tests by using simple objects or

smaller codes, applying fresh fixture pattern may result

in interacting tests, test run war or other issues we

encountered in erratic tests. Consequently, tests fail. Due

to these observations, we claim that considering

structure of test code is a determining factor in choosing

pattern.

Here, we want to establish validity of our claim by

Reductio Ad Absurdum proof method in mathematical

logic. This proof is represented as set of true statements

or premises which are built upon axioms or theories, we

notate premises as s, along with preposition we want to

prove, p.

If s ∪ {p} ├ f then s├ ⌐p (1)

If s ∪ { ⌐p}├ f then s├ p (2)

Based on notations number 1 or 2 , we bring into

account p, or the negation of p, with s. By further

examination, if above predicate result in logical

contradiction f, then we can conclude that the statements

in s lead negation of p, or p itself, respectively.

According to what was said, our statement says our

erratic test has one or more complex objects, and we

want to prove fresh fixture pattern for this test is not

possible. For proof, the claim is negated to assume fresh

fixture pattern is acceptable for this object. As we

described earlier, in fresh fixture pattern each test creates

its fixture and tears it down after single run and fixture is

rebuilt for different times. Since each test fixture is

initialized in each runtime, in turn it implies process of

fixture setup is not time-consuming. If fixture setup

process be time-consuming result in tests take a long

time to do. As a result, it contradicts one of the main

benefits of automated tests, reducing runtime and

increasing speed, as we introduced before. As a result,

when we suppose fixture setup process does not take

long time, it indicates that the same test including the

fixture is not slow. This means that test does not include

any complex databases or codes while this statement

results in contradiction to first proposition. The

contradiction means that it is impossible for an object to

be both complex and simple at the same time.

Consequently, it follows that the assumption fresh

fixture pattern is usable for complex tests must be false

and hence proving the claim.

An example of a complex object is shown in fig (3).as

seen, a number of tests are supposed to run. Nested loops

and databases through object make it complex. While

test 1 is inserting a variable into database, test 2 is

updating the same database. Both want to access same

resource simultaneously thus this coincidence makes test

2 failure. According to fixture fresh pattern, each test

uses a single fixture for single runtime. If each test has

fixture setup time and its process takes longer than

expected, this significantly slows automated testing

process down and brings further potential problems.

Another word, speed falls and time ups.

Fig. 3. an example of complex object using fixture fresh pattern

 Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects 59

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 03, 54-59

Fig. 4. pseudo code of a complex object

We have shown above explanation by piece of pseudo

code as shown in fig (4). Suppose plenty of tests are

scheduled to run. Also have interactions among each

other and their results affect other test results and since

fixture should be built for any test, each fixture setup

needs a lot of time. This condition negates reducing time

in automated testing and states there is no possibility to

run fixture fresh pattern in test complex objects.

VI. CONCLUSIONS

When we introduce automation, we create more

software that must be coded, debugged, and maintained.

In spite of benefits of automated testing, more time is

added to test schedule for automation activities that if

carefully not managed, we will encounter a negative

return in automation investment. Automated test patterns

has been developed as solutions to mitigate potential

caused problems and reduce costs of implementation.

Based on our examination, we conclude each automated

pattern is not applicable for any kind of test. Making

decision on using an appropriate automated pattern

needs an exhaustive investigation that embrace all

properties of test such as level of test complexity,

contributed objects, number of running time of each

single test, test interactions.

REFERENCES

[1] L. J. Osterweil, et al., "Strategic directions in software

quality," presented at the ACM Computing Surveys, 1996.

[2] F. Lanubile and T. Mallardo, "Inspecting Automated Test

Code:A Preliminary Study," Springer, pp. 115-122, 2007.

[3] D. Alberts, "The economics of software quality

assurance," presented at the AFIPS : AFIPS Joint

Computer Conferences, 1976.

[4] G. J. Myers, Art of Software Testing: Wiley 1979.

[5] M. J. Harrold, "Testing: A roadmap," presented at the

International Conference on Software Engineering, 2000.

[6] S. Jinhui, et al., "Research progress in software testing,"

presented at the Acta Scientiarum Naturalium

Universitatis Pekinensis, 2005.

[7] G. Todd, et al., "An empirical study of regression test

selection techniques," ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 10, pp.

184-208, 2001.

[8] S. Eldh, et al., "Towards Fully Automated Test

Management for Large Complex Systems," presented at

the International Conference on Software Testing,

Verification and Validation, 2010.

[9] B. korel, "Automated Software Test Data Generation,"

IEEE Transactions on Software Engineering vol. 16, pp.

870-879 1990.

[10] T. Kataoka, et al., "Test Automation Support Tool for

Automobile Software," SEI TECHNICAL REVIEW, pp.

79-83, OCT 2013.

[11] G. Meszaros, et al., "The Test Automation Manifesto," in

Extreme Programming and Agile Methods, Xp/Agile

Universe 2003. vol. 2753, ed: Springer, 2003, pp. 73-81.

[12] M. Rybalov, "Design Patterns for Customer Testing "

presented at the Pacific Northwest Software Quality

Conference 2004.

[13] L. G. Hayes, The Automated Testing Handbook: Software

Testing Institute, 2004.

[14] A. Bertolino, "Software Testing Research: Achievements,

Challenges,Dreams," presented at the IEEE Computer

Society, Washington, DC, USA, 2007.

[15] K. Karhu, et al., "Empirical Observations on Software

Testing Automation," presented at the International

Conference on Software Testing Verification and

Validation, Denver, CO, 2009.

[16] S. A. Adnan, "Continuous Integration and Test

Automation for Symbian Device Software," Bachelor,

Helsinki Metropolia University of Applied Sciences,

Helsinki 2010.

[17] G. Meszaros, XUnit test patterns : refactoring test code,

2007.

[18] J. D. McCaffrey, .NET Test Automation Recipes: A

Problem-Solution Approach. NY, 2006.

[19] E. Dustin, Effective software testing : 50 specific ways to

improve your testing: Addison-Wesley Longman

Publishing, 2002.

Authors’ Profiles

Akram Hedayati: Born in 1988, she holds a Bachelor's degree

in Computer engineering from Ferdowsi University of

Mashhad, Iran, in 2010. She also obtained a Master„s degree in

Information Technology Engineering majoring in Management

Information Systems at Mazandaran University of Science and

Technology, Iran, in 2013. Her research interests include

Information Systems, Enterprise Architecture and Software

Engineering.

Maryam Ebrahimzadeh: She received her M.Sc. degree of

Information Technology Engineering at Mazandaran

University of Science and Technology, Iran, in 2013. She

received her B.Sc. degree in Computer Engineering from the

same university. Her research focus is on Information Systems.

Amir Abbaszadehsouri: Born in 1990, Mazandaran, Iran. He

received Bachelor‟s degree in Software Engineering from

Technical and Vocational University, Tehran, Iran, in 2012 and

Master‟s degree in Computer Networks from Amirkabir

University of Technology (Tehran Polytechnic). His current

research interests include Computer Networks, Multimedia

Software and Future Tech.

