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Abstract-The selection of attributes becomes more important, 

but also more difficult, as the size and dimensionality of data 

sets grows, particularly in bioinformatics. Targeted Projection 

Pursuit is a dimension reduction technique previously applied to 

visualising high-dimensional data; here it is applied to the 

problem of feature selection. The technique avoids searching 

the powerset of possible feature combinations by using 

perceptron learning and attraction-repulsion algorithms to find 

projections that separate classes in the data. The technique is 

tested on a range of gene expression data sets. It is found that 

the classification generalisation performance of the features 

selected by TPP compares well with standard wrapper and filter 

approaches, the selection of features generalises more robustly 

than either, and its time efficiency scales to larger numbers of 

attributes better than standard searches. 

 

Index Terms— Feature Selection; Projection Pursuit; 

Dimensionality Reduction; Biomarkers 

 

I. INTRODUCTION 

Feature selection (FS) is the problem of finding a 

subset of features or attributes in a data set for building 

robust data learning models by eliminating ‘noisy’ 

variables, simplifying data collection, or elucidating the 

significant features of the data[1][2]. Its importance has 

grown as the volume and complexity of data grows, and 

as the role of data mining in making use of that data has 

increased. In bioinformatics, for example, feature 

selection techniques are widely used to select genetic 

‘markers’ for types of cancer, based on the differing 

expression levels of individual genes measured using 

DNA microarrays[3]. 

A wide range of FS techniques have been 

demonstrated, but tend to fall into three categories [1][4]: 

Variable Ranking techniques are based on measuring 

how well each individual independent variable 

discriminates the classes in the data. Standard measures 

include the gain in information that the variable carries 

about the classification, the correlation of the variable 

with the classification variable or a chi-squared measure 

of the ratio between intra-class and inter-class variance 

for that variable. Although variable ranking techniques 

are simple and fast, one limitation is that they consider 

only the contribution of individual variables to 

classification, whereas in many real-world examples – 

such as the role of genes in cancer formation -- many 

variables act in combination. 

In Wrapper techniques, combinations of features are 

tested for their ability to classify samples using a 

standard supervised classifier, and a search algorithm -- 

such as hill climbing or genetic algorithm -- is used to 

find the combination of selected features that gives the 

best generalisation performance. Although wrapper 

techniques have the potential to find optimal subsets of 

features, this potential is rarely achieved in practice[5], 

partly due to the large size of the powersets of features to 

search: a typical microarray experiment, for example, 

will measure the expression level of tens of thousands of 

genes [6]. 

Filter techniques select subsets of variables 

independently of any predictor; for example the space of 

features may be reduced by removing those that are 

highly correlated with others, since this will reduce 

redundancy [7]. Filters are typically more efficient than 

wrappers, and so may be more suited than either 

wrappers or variable ranking techniques to problems in 

which there are a very large number of independent 

variables which interact to produce a classification. Many 

hybrid approaches have also been suggested, such as 

using filters to reduce the size of the space that a wrapper 

must search [8]. 

Here we propose a novel form of filter feature 

selection based on projection pursuit (PP). Friedman and 

Tukey introduced the term projection pursuit to describe 

the process of finding interesting linear projections of a 

data set by optimizing some function (the projection 

pursuit index) [9] – for example maximising the 

separation between classes in the data [10]. In the 

original context the projections were used to produce two 

dimensional views of a data set for visualisation purposes; 

but the intuition that we test here is that one effect of 

‘squeezing’ high dimensional data into a lower 

dimensional space whilst maximising the separation 

between classes is to find how the variables in the 

original data can be combined to best classify samples. 

The problem in PP in general is how find a projection 

that maximises the projection pursuit index; in this case 

the separation between classes. It seems that we are back 

with the problem faced by wrapper feature selection 
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techniques of the size of the original data space being an 

obstacle to finding optimal solutions. Previous search 

algorithms employed in PP include simulated annealing 

[10], genetic algorithms [11][12], etc, but we have 

previously demonstrated a novel method, Targeted 

Projection Pursuit (TPP), for efficiently solving the 

projection pursuit problem using a perceptron learning 

algorithm[13], and demonstrated a visualisation tool that 

utilises it [14]. 

Here TPP is adapted to feature selection and tested 

against representative examples of wrapper, filter, and 

variable ranking techniques on a large collection of gene 

expression array data taken the bioinformatics literature. 

Its performance is found to be comparable to wrapper 

techniques and evidence is provided that its choice of 

selected features generalises more robustly, and that the 

algorithm scales to larger numbers of attributes more 

efficiently. 

A. Previous Work 

Projection Pursuit for feature selection has previously 

been applied to the problem of selecting spectral bands 

from remote sensing systems that collect image data in 

possibly hundreds of bands [15],[16]. However in this 

case the projection pursuit algorithm employed relied on 

the ordering of dimensions (ie spectral bands) to reduce 

the size of the search space, by dividing the dimensions 

into subsets of adjacent bands, such that a simple 

gradient descent search algorithm could be employed. 

 

II. TARGETED PROJECTION PURSUIT 

Conventional projection pursuit searches the space of 

all possible projections to find that which maximises an 

index that measures the quality of each resulting view. In 

the case considered here, a suitable index would measure 

the degree of clustering within, and separation between, 

classes of points. Targeted projection pursuit, on the 

other hand, proceeds by hypothesising an ideal view of 

the data, and then finding a projection that best 

approximates that view. 

Suppose X is a nxp matrix that describes n samples of 

p dimensions, and T is a nxm matrix that describes a m-

dimensional target view of those samples where m<<n. 

(when TPP is used for data visualisation then m=2.) We 

require the p×m projection matrix, P, that minimises the 

size of the difference between the view resulting from 

this projection of the data and our target: 

min‖𝐓 − 𝐗. 𝐏‖                                                          (1) 

In the degenerate case, where the view is one-

dimensional and the classification is binary, then this is a 

form of probit regression problem[17], since the points in 

each class would naturally be mapped to the points (0) 

and (1) respectively. But if there are many more classes 

then if the dimensionality of the output space is too low 

then there may not be a projection (and resulting view) 

that adequately separates classes. If the dimensionality is 

too high, approaching the number of input attributes, p, 

then the problem becomes an attribute ranking problem: 

the coefficient of each features would reflect its ability to 

separate classes individually rather than in combination 

with others. 

By forcing the points into a lower-dimensional space 

while trying to maintain separation between classes, TPP 

must find combinations of features that work in 

combination. If the dimensionality is too low there may 

not be a separated solution. If the dimensionality is too 

high then that separated solution may not survive when 

the number of features are reduced. 

Thus, given the dimensionality of the output space, our 

algorithm must find both an optimal target view, T, and 

projection P, are unknown. Here we describe an iterative 

algorithm for finding both: 

1. Start with an initial random projection and find the 

resulting initial view, 

2. Find a new target view based on the current view, 

by using a attraction-repulsion algorithm to better 

separate points into classes, 

3. Use a perceptron learning algorithm to find a new 

projection that minimises eqn 1 

4. Repeat steps 2 to 4 until the projection (and 

resulting view) converges. 

5. Select the features with the largest components in 

the resulting projection. 

Suppose the data 𝑿  is comprised of samples 

partitioned into 𝑘 classes, such that 𝑥𝑖,𝑗  is the row of 𝑿 

made up of the 𝑗th sample of the 𝑖th class. Given a initial 

projection, 𝑷0, and initial view, 𝑽0 = 𝑿𝑷0, a target, 𝑻1, 

is then derived from the current view, 𝑽0 , by using a 

simple repulsion-attraction model: the centroid of each 

class of points within the view is moved away from every 

other with a velocity inversely proportional to their 

separation, and each point is moved towards the centroid 

of its class. If the centroid of each class within the view is 

𝑣̅𝑖
0, the mean of 𝑣𝑖,𝑗

0 = 𝑥𝑖,𝑗. 𝑷0, the image of 𝑥𝑖,𝑗 under 𝑷0, 

then the new centroid for the 𝑖th class is given by 

𝑡𝑖̅
1 = 𝑣̅𝑖

0 + 𝑘0 ∑
(𝑣̅𝑖

0−𝑣̅𝑗
0)

|𝑣̅𝑖
0−𝑣̅𝑗

0|
𝑗 .                                            (2) 

And the new target for the 𝑗th sample in the 𝑖th class 

𝑡𝑖,𝑗
1 = 𝑣𝑖,𝑗

0 + 𝑘1(𝑡𝑖̅
1 − 𝑣𝑖,𝑗

0 )                                          (3) 

The new targets for each point 𝑡𝑖,𝑗
1  together form new 

target matrix, 𝑻1, which is then ‘pursued’. That is, a new 

projection, 𝑷1 , and view, 𝑽1 = 𝑿𝑷1 , is found that 

minimises |𝑿𝑷1 − 𝑻1| , using a perceptron learning 

algorithm[13].This process is then iterated until a 

convergence condition is met; in this case that the net 

movement as a result of projection pursuit is below a 

threshold. 

| 𝑷𝑛+1–𝑷𝑛 |

|𝑷𝑛+1|
<  𝜃                                                            (4) 

Since the complexity of the repulsion-attraction 

algorithm is linear and that of the perceptron algorithm is 

polynomial [18], then this suggests that feature selection 

based on targeted projection pursuit that will be more 

efficient than wrapper approaches.  The reason why TPP 
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is potentially so efficient is that it exploits the linearity of 

the projections being searched: 

Conventional projection pursuit searches the space of 

all possible projections from an n dimensional data space 

to a (typically) 2 dimensional view space; that is, a 2n 

search space. Targeted Projection Pursuit, on the other 

hand, postulates an ideal targeted view and then uses the 

linearity of the mapping to find a projection that best 

matches that target. Given a problem involving both hard 

and soft constraints, most search algorithms explore the 

space of solutions that meet the hard constraints 

attempting to optimise the soft constraints. TPP on the 

other hand, finds a solution that optimises the soft 

constraint (the ideal) view and then finds the closest 

matching solution to it that also meets the hard constraint. 

In addition, it is found in practice that the TPP class 

separation algorithm converges very quickly: there was 

no significant increase in feature selection accuracy in 

allowing the algorithm to run for more than 10 cycles. An 

example of a projection produced by TPP is show in 

figure 1. 

 

 

Fig. 1. A Projection of Data16 found by TPP showing the separation 

between classes (T) and after selection of the top 10 features (B) 

III. EXPERIMENT 

The aims of the experiments were to compare the 

performance of TPP with other feature selection 

techniques, to determine the optimal dimensionality of 

the output space, and to compare the time efficiency of 

the algorithm with other techniques. 

Methods 

TPP was tested against a range of other feature 

selection representing the major approaches to the 

problem. Five features were selected in each case: 

IG: Information Gain is a standard, robust, and 

efficient attribute ranking approach that selects features 

based on the information they carry about the 

classification; as originally used by Quinlan in the ID3 

classifier [19]. 

FCBF: a filter method that improves on IG by 

removing redundant features based on their correlations 

with others [20]. 

Greedy: a wrapper algorithm that uses a steepest 

ascent hill search to incrementally amend the subset of 

features selected [21]. 

TPP: As defined above, using a two-dimensional 

output space. 

The quality of the resulting dimensionally reduced data 

sets were tested using a support vector machine classifier, 

chosen because of its known suitability to this task [22-

24]. The data mining package Weka [21] contains all 

algorithms used, apart from TPP which is made available 

in an extended version of the package on the associated 

website, along with all data used. 

In each case a number of features are selected and the 

resulting dimensionally-reduced data used to construct 

sets to test and train classifiers using a 10-fold testing 

regime. Two feature selection and training regimes were 

used. In the first, the training data is used to select 

features and then a classifier is trained on just those 

features of that same training data, and tested on the 

dimensionally reduced testing set. This models the 

process in which a labelled data set is used to produce 

both a list of features and a classifier trained on those 

features, which can then be applied to other unlabelled 

samples. However in this case only the generalisation 

performance of the feature-selected classifier is tested, 

not the generalisation performance of the feature 

selection processes itself. 

As Wessels argues [25], the relatively small sample 

size and high dimensionality of most microarray data sets 

makes it imperative to ensure that the feature selection 

process is unbiased to ensure an accurate comparison 

between techniques. And so in the second training regime, 

features are selected using a distinct subset of the data 

from that used to train, and that used to test the 

generalisation performance of, the classifier. Thus, in the 

10-fold classification testing regime used here, for each 

fold the original data set is divided into three subsets with 

45% used to select features, 45% is then dimensionally 

reduced based on those selected features and used to train 

the classifier, and the remaining 10% is dimensionally 

reduced and used to test the generalisation performance 

of the classifier. This is more representative of the 
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‘biomarker’ use case, in which the purpose of feature 

selection is to produce a list of genes, for example, that 

most reliably indicate a diagnostic class: a population 

would then be assayed using just these biomarkers and 

that data subsequently used to train a classifier to be used 

in automated diagnosis. 

A. Data 

Each feature selection and classification technique was 

applied to each of the 27 data sets collated by Song et al , 

containing gene expression levels of cancers of a range of 

diagnostic classes. The data sets contain between 33 and 

295 samples, with between 80 and 54614 gene 

expression levels measured per sample, of 2 to 5 

diagnostic classes. The dimensionality of each data set 

was reduced to 100 attributes using IG ranking to 

eliminate noise and to give a ‘level playing field’ for each 

feature selection technique (since there was insufficient 

computing power available to apply wrapper techniques 

such as Greedy to the original data). This data was 

selected since it seemed preferable to use a larger number 

of data sets reflecting one specific, and extremely 

important, application of feature selection, rather than a 

disparate collection of less relevant data sets. In addition, 

relatively few of the standard data sets in the UCI 

repository, for example, are high dimensional enough to 

make feature selection on this scale a realistic task, with 

typically less than 50 attributes per data set rather than 

the hundreds or thousands in the data sets studied here. 

 

IV. RESULTS 

The classification generalisation error using features 

selected by each method under each testing scheme are 

shown in Table 1 along with the Friedman mean rank and 

the Wilcoxon signed-rank test of significance of the 

difference of the performance with the next-worse 

method. Under the first scheme, the performance of TPP 

was intermediate between the wrapper (Greedy) and filter 

(FCBF) methods, all of which outperformed the ranking 

method (IG) – though the difference between the filter 

and ranking methods was not significant. However under 

the second testing scheme, which emphasised the 

generalisation performance of the feature selection 

process, TPP outperformed the other methods suggesting 

that wrapper selection can suffer from a version of over-

fitting in this context. 

 
Table 1. Performance of each feature selection technique under testing scheme 

Testing Regime Scheme 1 Scheme 2 

Feature Selector Greedy TPP FCBF IG TPP Greedy IG FCBF 

Mean Generalisation Error 15.86 21.72 23.95 25.33 25.05 28.23 28.01 30.01 

Mean Rank 1.21 2.50 3.09 3.20 2.26 2.50 2.54 2.70 

Significance of difference - .000 .046 .594 - .001 .656 .024 

 
Table 2. Effect of Dimensionality of Output Space on Performance of 

TPP Feature Selection, by number of classes. 

Number of classes 
(data sets) 

Number of output dimensions 

1 2 3 4 5 

2 classes (14) 19.65 18.97 20.23 18.13 22.40 

3 classes (4) 21.10 18.54 18.87 22.57 18.13 

4 classes (7) 33.98 31.07 32.67 30.53 24.81 

5 classes (2) 26.11 28.71 27.03 24.81 26.52 

All (27) 24.06 22.77 23.76 22.41 22.70 

 

 

Fig. 2. Effect of Dimensionality of Output Space on Relative 
Performance of TPP Feature Selection, by number of classes 

Table 2 and Figure 2 show the effect of output 

dimensionality on feature selection using TPP, broken 

down by the number of labelled classes in each data set. 

(In Figure 2 the error rates are scaled relative to the 

performance for D=1 in order to show the effect of 

output dimensionality more clearly.) It was thought that 

higher numbers of output dimensions would better suit 

data sets with more classes, however the evidence is not 

clear. If we ignore the case of five classes (for which 

there were only two data sets available), then in each case 

the technique performed better with a two-dimensional 

output space than a single dimension; then deteriorated 

with three dimensions. Moreover the improvement from 

one to two dimensions was less for the case of 2 class 

data sets than those with more classes. There was no 

clear pattern for output spaces of more than three 

dimensions. This would suggest that a two-dimensional 

output space is the best compromise between class 

separation and generalisation performance for feature 

selection problems with low numbers of classes, though 

more experimental work would be required to prove this. 

Table 3 and Figure 3 show the effect of output 

dimensionality on feature selection using TPP, broken 

down by the number features selected. The consistent 

improvement from one to two dimensions is clear, but 

adding more dimensions has a mixed effect. However, in 

all of the higher-dimensional cases the improvement in 
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performance when selecting more features is greater than 

selecting fewer. This may indicate that higher-

dimensional output spaces force less selectivity in the 

combinations of features selected. 

 
Table 3. Effect of Dimensionality of Output Space on Performance of 

TPP Feature Selection, by number of features selected. 

Number of 
features selected 

Number of output dimensions 

1 2 3 4 5 

5 26.51 25.09 26.58 24.78 25.11 

10 21.61 20.44 20.94 19.96 20.20 

All 24.06 22.77 23.76 22.41 22.70 

 

 

Fig. 3. Effect of Dimensionality of Output Space on Relative 

Performance of TPP Feature Selection, by number of features selected 

 

 

Fig. 4. Relative efficiency of Greedy and TPP algorithms 

 

Figure 4 shows the relative time efficiency of the 

Greedy and TPP search algorithms against the number of 

attributes in the data, calculated using the elapsed 

computation. Versions of a single data set (data1) were 

produced, ranging from 20 to 200 attributes, and the 

elapsed training time for each algorithm was found 

(2.7GHz AMD 64bit processor, Windows 7, Weka 

implementation). Greedy is more efficient for lower 

dimensions (N<100), but TPP appears to scale more 

efficiently, suggesting that it may be more suitable for 

searching very high dimensional spaces. 

 

V. CONCLUSIONS 

The selection of combinations of features to classify a 

data set involves two problems: the size of the power set 

of features to search, and ensuring that the choice of 

features generalises: it is always possible to find features 

that correlate with labelled classes, but this is no 

guarantee that the same correlations will persist in 

unlabelled cases. Targeted Projection Pursuit exploits the 

linearity of projections to reduce the search problem and 

the evidence suggests that the selection of features may 

generalise more robustly that standard wrapper or filter 

techniques and will scale more efficiently to very high 

dimensional data. However more work is required to 

investigate the effect of output dimensionality and the 

number of classes and selected features on feature 

selection generalisation performance. 
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