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Abstract— This paper proposed an algorithm for logic circuits 

verification using neural networks where a model is built to be 

trained and tested. The proposed algorithm for combinational 

circuits' verification is based on merging two of the well-known 

learning algorithms for neural networks. The first one is the 

Perceptron Convergence Procedure, which is used for learning 

the functions of the standard logic gates in order to simulate the 

whole circuit. While the second is a modified learning algorithm 

of Back-propagation neural networks to be used for the 

verification of the hardware design. The algorithm can predict 

the gates that cause the malfunction in the circuit design. 

This work may be considered as a step toward building 

Distributed Computer Aided Design Environments depending 

on the parallel processing architecture, particularly in the 

Neurocomputer architecture. 

 

Index Terms— Logic Circuit Verification, Neural Network, 

Combination Circuit, Perceptron Convergence, Back-

Propagation. 

 

I. INTRODUCTION 

Using parallel processing systems can help to 

overcome the limitations caused by a single processor 

system [1, 2]. For this reason, many of the Computer 

Aided Design (CAD) researchers are motivated toward 

using the parallel processing systems [3, 4]. 

Neural Networks can be considered as a complete 

different method of parallel processing, which are built 

up of huge interconnections of analog computing 

elements that cooperatively works to establish a solution 

to the problem [5]. 

Human brain is considered by many scientists as the 

last edge of exploration. Although they still lack the 

understanding of how the brain operates, many simplified 

neural network models have been proposed. Desiring to 

achieve human-like capabilities (such as voice 

recognition, medical diagnosis, vision, speech 

understanding, learning, etc.) [2] [6].  In a computer, 

researchers have been working for several years to 

implement neural network models into a new breed of 

computer system. These efforts have been successful, as 

commercial neurocomputers have become available 

recently. [7] 

A neural network can be defined as "A cognitive 

information processing structure based upon models of 

brain function. In a more formal engineering context: a 

highly parallel dynamically system with the topology of a 

directed graph that can carry out information processing 

by means of its state response to continuous or initial 

input".[8] 

Neural networks are constructed of processing 

elements (PEs, or neurons) that are interconnected via 

information channels called interconnects. A neuron is a 

two state processing element. The state 0 or 1, of a 

neuron is its activation value. In our model, the neurons 

are connected by links. Boolean operations are realized 

by specifying the thresholds for the neurons and the 

weights associated with these links. A typical neuron is 

shown in Fig. 1 [9]. 

 
 

The weight ijT characterizes the link connecting 

neuron i to j. iI and iV are the threshold and activation 

value of neuron i. A state of neuron can be determined by 

calculating the weighted sum of the states of all the 

Ti,j Weight=Ti,j 

Neuron i 

Neuron j 

Threshold=Li 

Activation=Vi 

Fig. 1. Typical Neuron. 
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connected neighboring neurons and comparing this sum 

with its threshold. Typically, the neural networks are used 

for two classes of applications. [10] One class is the 

network performs constraint satisfaction tasks involving 

multiple constraints (combinatorial optimization) to find 

a consistent set of states. While in the other, the neural 

network learns from examples. The essential difference 

between the two applications is in the first class the 

network adjusts the states of the neurons to a given fixed 

set of connection strengths, while in the second the 

network adjusts the values of the connection strengths to 

give sample sets of neuron states. In the application of 

neural networks to hardware verification, we require both 

techniques, where the first one is used to verify the 

hardware design, and the other is used to teach the neuron 

the function of logic gates. 

 

II. MODELING LOGIC CIRCUITS BY NEURAL NETWORKS 

We used the Rosenblatt's Perceptron which is one of 

the earliest models of neural networks, to simulate the 

functions of logic gates. The Perceptron structure 

according to Rosenblatt is shown in Fig. 3, where the 

Perceptron has three major parts: the input vector, the 

weighted summation, and the threshold value [10]. 

 
 

The Perceptron can be trained on a sample of 

input/output pairs until it learns to compute the correct 

function of the specified logic gate. This training is done 

by the Perceptron Convergence procedure. This learning 

algorithm is a search algorithm that begins with a random 

initial state and finds a solution state. The search space is 

simply all the possible assignments of real values to the 

weights of the perceptron, and the search strategy used is 

the gradient descent. 

The gradient descent as employed by neural networks 

is a learning strategy which is analogous to the inductive 

techniques in symbolic AI. The perceptron convergence 

procedure, according to Rosenblatt, can guarantee the 

finding of a solution. This procedure is implemented to 

simulate the function of logic gates. 

The process of teaching the perceptron was applied on 

two different computers and the required time and 

number of iterations are shown in Table 1. 

 
Table 1. The required time and iterations for learning process. 

Rate of 

convergence 

Number of 

iterations 

Learning time on 

Dell(N5010) 
i5 CPU Pentium 4 CPU 

75% 45-55 0.30 – 0.35 sec. 1.0 – 1.5 sec. 

90% 85 – 95 0.40 – 0.45 sec. 1.75 – 2.25 sec. 

 

A. Limitations of the Perceptron 

While the convergence procedure guaranteed correct 

classification of linearly separable data, there were 

problems in which it does not supply such data (such as 

XOR problem) [2]. There is no one straight line which 

separates the decision surface of XOR problem as shown 

in Fig. 2(a). 

 

 
 

Other logic gates can be modeled by perceptron 

because their decisions surface are linearly separable as 

shown in Fig. 2(b, c). In order to overcome the problem 

of XOR gate, it can be built from other gates such as 

NAND gates. The main advantage of the perceptron 

model is the self-organization of the neuron and the 

ability to adapt itself for various numbers of inputs. 

Examples of learned perceptrons for the functions of two 

inputs logic gates are shown in Fig. 4. 

 

II. A TECHNIQUE FOR HARDWARE VERIFICATION 

The emergence of neural networks brought about the 

researchers in the field of CAD systems to utilize the 

advantages of neural networks to improve the 

performance of such systems. The main aim of this 

research is to utilize the concepts of neural networks in 

the field of CAD, especially in the area of combinational 

circuit's verification. 

The proposed verification algorithm is an attempt to 

transfer design automation techniques (in particular the 

design verification) from conventional computers to 

neurocomputers. We present the utilization of neural 

networks concepts in a field of hardware verification, in 

W
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Fig. 3. Perceptron Structure. 

Fig. 2. Logic Gates' decision surfaces. 
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order to overcome the difficulties embedded within 

classical verification methods which require a thoroughly 

knowledge of algebra or high order logic to prove the 

correctness of the design. Since most the classical 

methods of formal verification are based on theorem 

proving, and a fully automated theorem proving system is 

very difficult to achieve. 

 
 

The proposed verification algorithm is based on a 

modification of Rumelhart's Back-Propagation neural 

network which is designed for multi-layer feedforward 

nets (i.e. there are no feedback connections). This makes 

the proposed verification algorithm valid only for 

combinational circuits. The advantage given by the 

proposed algorithm is the predication of the component 

that causes the malfunction of the design, which provides 

an extra task over the classical methods of hardware 

verification. 

A. Back-Propagation neural network 

The back-propagation neural network is one of the 

most important historical developments in neuro-

computing. It is a powerful mapping network that has 

been successfully applied to a wide variety of problems 

ranging from credit application scoring to image 

compression [11]. The typical multi-layer feedforward 

neural network is shown in Fig. 5. 

 
Like a perceptron, the learning algorithm of back-

propagation neural network is supervised by a teacher. 

Hence, it begins with a random set of weights, then the 

network adjusts its weights each time it sees an 

input/output pair. Each pair requires two stages: a 

forward pass and a backward pass. The forward pass 

involves presenting a sample input to the network and 

letting activations flow until they reach the output layer. 

During the backward pass, the network's actual output is 

compared to the desired output, and error estimates are 

computed for the output units. The weights connected to 

the output units can be adjusted in order to reduce these 

errors. Then, the error estimates of the output units can be 

used to derive error estimates for the units in the hidden 

layers. Finally, errors are propagated back to the 

connections stemming from the input units. The 

following is the learning algorithm for back-propagation 

neural network: 

 

Algorithm back-propagation (Input-Units A, Hidden-

Units B, Output-Units C) 

{ 

Let jjj oand,h,x , are the activation levels of the 

units in A, B, and C respectively, ij1w , denotes the 

weights connecting Ai to Bj 

ij2w , denotes the weights connecting Bi to Cj 

 

 

C0j:j,B0i:i

1.0random2w

B0j:j,A0i:i

1.0random1w

ij

ij

















 

Initialize the activation levels of the threshold units 

(  ) as constant values. 

   ii y,x :  ii y,x input/output pair and assign 

activation levels for the input units do: 







  




 j

A

0i ij x1w
j

e1

1
h  

: hj is the activation function between Ai to Bi 

Fig. 4. Logic gates simulated Perceptrons. 
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Fig. 5. A typical multi-layer feed-forward neural network. 

Hidden 

Layer 

Output 

Layer 

Input 

Layer 



 Coupling Perceptron Convergence Procedure with  25 

Modified Back-Propagation Techniques to Verify Combinational Circuits Design 

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 06, 22-29 







  




 i

B

0i ij h2w
j

e1

1
o  

: oj is the activation function between Bi to Ci 

Let oj is the network's actual output and yj is the 

desired output 

  
C1j:j

oyo1o2 jjjjj




 

: j2  are the errors in Cj 

 

B1j:j

2w2δh1h1δ ji

C

0i
jjjj




  

: j1  are the errors in Bj 

Let   , be the learning rate which has a function 

similar to the perceptron learning and its reasonable value 

is (0.35). 

C1j:j,B0i:i

h22w jjij

 

 
 

B1j:j,A0i:i

x11w ijij

 

 
 

} 

 

The algorithm above is a generalization of the Least 

Mean Square (LMS) algorithm. It uses a gradient 

technique to minimize a cost function equal to the mean 

square difference between the desired and actual net 

outputs. An essential component of the algorithm is the 

iterative process described in the algorithm that 

propagates the error terms required to adapt weights back 

from nodes in the output layer to the nodes in the lower 

layers. 

Back-propagation suffers from several drawbacks. As a 

biological model, it is implausible; there is no evidence 

that synapses can be used in both directions. Even so, it 

does not seem readily believable that neurons can spread 

signal-activity levels or error signals using linear or 

nonlinear input/output functions depending on the 

direction of movement. 

Nevertheless, from the point view of the computer 

engineering and connectionist modeling, biological 

implausibility is not a fundamental deficiency of back-

propagation. Back-propagation's real limitations are those 

of all gradient-descent techniques, namely the possibility 

of getting stuck in local minima and a slow convergence 

rate. 

B. The proposed algorithm 

The proposed algorithm is based on the idea of 

representing each gate in the combinational circuit under 

consideration by a single perceptron, then connecting 

these perceptrons together in order to construct the multi-

layer network corresponding to the circuit under 

consideration. Then, apply a modified version of back-

propagation algorithm to evaluate the output of the 

network (according to the design specification). We used 

perceptrons in order to eliminate the iterated steps of 

back-propagation algorithm that consumed in learning the 

behavior of the problem. That means if the design 

matches the specification, then only one forward pass will 

be applied for each input/output pair of the design 

specifications. In case of mismatch of the design with its 

specification, at this stage, the design is known to be 

incorrect. The extra task (predication part) over the 

classical verification methods will be performed, which is 

represented by a backward pass, performed in order to 

compute the errors in the neurons of each layer. These 

errors then are sorted in decreasing order, and the neuron 

with the highest error is considered as the most probable 

neuron (component) that causes the malfunction in the 

design. The proposed algorithm is given below: 

 

Algorithm Developed-Advanced-Propagation (Input-

Units A, Hidden-Units B, Output-Units C) 

{ 

1. Let jjj oand,h,x , are the activation levels of the 

units in A, B, and C respectively, ij1w , denotes the 

weights connecting Ai to Bj 

2. ij2w , denotes the weights connecting Bi to Cj 

3. 
 

B0j:j,A0i:i

1.0random1w ij








 

4. 
 

C0j:j,B0i:i

1.0random2w ij








 

5. Initialize the activation levels of the threshold units 

(  ) as constant values. 

6.    ii y,x :  ii y,x input/output pair and assign 

activation levels for the input units do: 

7. 






  




 i

A

1i ij xw
j

e1

1
h  : hj is the activation 

function between Ai to Bi 

8. 






  




 i

B

1i ij hw
j

e1

1
o  : oj is the activation 

function between Bi to Ci 

9. Let oj is the network's actual output and yj is the 

desired output 

10. If (oj = yj) 

11. Continue 

 

12.   
jjjje oyo1oO   

: eO  are the errors in Cj 

 



26 Coupling Perceptron Convergence Procedure with   

Modified Back-Propagation Techniques to Verify Combinational Circuits Design 

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 06, 22-29 

13.   


N

1i
jiejje wOh1hH  

: eH  are the errors in Aj, N is the number of the 

nodes in B 

14. Continue 

15. Ej= max( eO , eH ) 

16. Node (j) has is the most probable neuron that causes 

the malfunction of the design, and so. Terminate to 

redesign. 

} 

 

The proposed algorithm consists of two parts; steps 1-6 

perform the simulation of the circuit under consideration. 

We used the perceptron convergence procedure to 

simulate the functions of standard logic gates, and the 

perceptrons resulting from this simulation could be saved 

in order to be used again in other circuits. Hence, we used 

the perceptron convergence procedure only once, and 

each time we need to simulate the circuit under 

consideration, we have the perceptrons corresponding to 

the gates of this circuit. 

The simulation of logic circuits will be done by 

representing each gate in the circuit by its corresponding 

perceptron (neuron). Thus, a constructed network 

corresponds to the logic circuit under consideration. 

The second part (steps 7 – 14), represents the 

verification part of the simulated circuit. As shown above, 

the verification method is based on the learning algorithm 

of back-propagation neural networks. 

The verification part, in turn, is subdivided into two 

passes: forward pass and backward pass. In the forward 

pass (steps 7-11), an input/output pair, and the activations 

of the neurons will be propagated up to the output layer. 

The formula in step 3 propagates the activations from the 

input layer to the first hidden layer in the network. While 

the formula in step 8, is used to propagate the activation 

from the first hidden layer to the output layer. Notice, 

there is a difference between the formulas of steps 7 and 

8, and the corresponding steps in the back-propagation 

algorithm, which is the addition of the threshold value in 

the proposed algorithm while it is subtracted in the back-

propagation algorithm. This difference comes to increase 

the convergence of the produced output of the simulated 

network to the desired output (logic 1 or logic 0).now, the 

actual output will be computed, which is a real value 

results from the neural network corresponding to the 

circuit under consideration. If this real value is equal or 

greater than (0.5), it will be considered as logic 1, while if 

it is less than (0.5), then it is considered to be logic 0. So, 

if the actual output obtained from the network matches 

the desired output, then another pair will be chosen and 

the above process is repeated again. If the actual output 

does not match the desired one, this means that there is 

no matching between the desired specification of the 

circuit and its actual input/output pattern. Then, there is 

incorrect design to match the specifications. 

In this case we have to perform the backward pass 

(steps 12-16), to compute the errors in the neurons and 

therefore to predict the gate that causes the malfunction in 

the design. The errors in the output layer will be 

computed using the formula in step 12, and then 

computing the errors in all the hidden layers up to the 

input layer using the formula in step 13 (this corresponds 

to error signals' propagation in back-propagation 

algorithm). 

The prediction technique of the gate that causes the 

malfunction in the design will be performed by sorting 

the errors of the network neurons in decreasing order 

(step 15), and the first neuron in the sorted list is the most 

probable neuron (gate) that causes the malfunction in the 

design (the one needed to be changed in the design). 

However, the prediction part of this algorithm is not so 

accurate, but it helps the designer to debug the design in 

less time than the time required without prediction phase. 

The inaccuracy of the prediction comes from the random 

numbers generated in step 1 that simulates the function of 

each logic gate. Simulating these gates by different sets 

of perceptrons (weight vectors and thresholds) will lead 

to different predictions in the design. Some of these sets 

were converged to correct prediction while others were 

diverged from it. 

The complexity time required for this 

algorithm  n2kO , where n represents the number of 

input variables, and  n2 , represents the input/output 

pairs of the design specifications. The constant (k) 

represents the number of iterations performed by the 

algorithm for each input/output pair given to the network. 

Thus, the proposed verification algorithm requires 

exponential time. However, even with this disadvantage, 

the algorithm is still favorable compared with the time 

required in the classical methods of hardware verification 

which deals with theorem proving techniques to prove the 

correctness of the design. 

 

III. TESTING THE ALGORITHM 

For the purpose of testing, two examples are used to 

test the verification performance of the proposed 

algorithm. The first one is the well-known full adder 

circuit, while the second is a combinational circuit that 

performs a particular Boolean expression. 

A. Full adder example 

The correct design of the full adder is shown in Fig. 

7(a), while the incorrect design is shown in Fig. 7(b). The 

corresponding neural network of the incorrect design is 

shown in Fig. 6.Table 2 shows the forward part of the 

verification algorithm to compute the actual output. Table 

3 shows the backward part of the algorithm to compute 

the errors of the neurons in the network. 

The table also shows the sorted list of these neurons 

according to its error's values. 

Notice that the prediction of the component that causes 

the malfunction diverges from the correct prediction (gate 

4). However, the prediction is not so accurate, but it can 

help the designer in case of large circuits since this 

prediction can reduce the debugging time of the 
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malfunction gate by at least 25% of the debugging time 

required by the designer in the classical methods of 

hardware verification. 

 

 
 

 
 

Table 2. The activations of network neurons 

jj o&h  Weighted Sum Neuron 

0.377 
1(3.028)+ 1(-1.866)+1(-1.869)+0.204 

= -0.503 
1 

0.66 
1(3.028)+ 1(-1.866)+ 0.377(-1.869) + 0.204 

= 0.66 
2 

0.66 
1(3.028)+ 1(-1.869)+ 0.377(-1.866)+ 0.204 
= 0.659 

3 

0.654 
1(-2.318)+ 0.66(1.862)+ 0.66(1.858)+ 0.497 

= 0.635 
4 

0.882 
1(3.028)+ 0(-1.866)+ 0.654(-1.869)+ 0.204 

= 2.01 
5 

0.83 
1(3.028)+0(-1.866)+ 0.882(-1.869)+0.204 
= 1.58 

6 

0.59 
1(3.028)+ 0.882(-1.866)+ 0.654(-1.869) 

+ 0.204=0.364 
7 

0.641* 1(3.028)+ 0.83(-1.866)+ 0.59(-1.869) 

+ 0.204= 0.581 
8 

0.707 
1(3.028)+ 0.882(-1.866)+ 0.377(-1.869) 
+ 0.204= 0.88 

9 

(*): the activation value of neuron 8 is 0.641, which is greater than 0.5, 
which corresponds to logic 1. According to the correct design this value 

must be logic 0, which means a value less than 0.5. 

Table 3.The errors in network neurons 

Sorted 

list 

Error values in 

network neurons 
Neuron 

2 0.707(1-0707)(1-0.707)= 0.0607 9 

9 0.641(1-0.641)(0-0.641)= -0.148 8 

1 0.59(1-0.59)[(-0.148)(-1.869)]= 0.0669 7 

3 0.83(1-0.83)[(-0.148)(-1.866)]= 0.039 6 

8 
0.882(1-0.882)[(0.039)(-1.869)+(0.0669)(-1.866) 

+ (0.0607)(-1.866)]= -0.0324 
5 

7 
0.654(1-0.654)[(-0.0324)(-1.869) 

+(0.0669)(-1.866)]= -0.0145 
4 

4 0.66(1-0.66)[(-0.0145)(1.858)]= -0.006045 3 

5 0.66(1-0.66)[(-0.0145)(1.862)]= -0.006058 2 

6 
0.377(1-0.377)[(-0.006058)(-1.869) + 

(-0.006045)(-1.866) +(0.0607)(-1.869)]= -0.0213 
1 

 

B. Boolean expression example 

The second example deals with a combinational circuit 

that performs a particular function defined by the 

Boolean expression:   41132 xx~xxxf  . 

Fig. 8(a, and b) shows the correct and the incorrect 

designs of the circuit. While Fig. 9shows the 

corresponding neural network for incorrect design. Table 

4 shows the forward part of verification algorithm to 

compute the actual output. Table 5, shows the backward 

part of the algorithm to compute the errors of neurons in 

the network. The table also shows the sorted list of the 

neurons according to their error values. The predication 

of the gate that causes the malfunction in this example is 

the gate 1. 

From these two examples, the benefit of this 

verification algorithm is clearly obvious. The proposed 

algorithm can also be used with components other than 

the logic gates if they considered as combinational 

circuits (such as Decoders, Multiplexers, etc.). 
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Sum 

Cout 

 y 
x  

 

 
 

 

 

 

 

(b) 

(a) 

Sum 

Cout 

y 
x 

1 

 

 

  
 

 

 

 



28 Coupling Perceptron Convergence Procedure with   

Modified Back-Propagation Techniques to Verify Combinational Circuits Design 

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 06, 22-29 

 
Hence such components are represented as boxes 

containing the logic gates that produce the functions of 

these components. The prediction part of the algorithm 

will be performed as usual except if the predicted neuron 

is included within the boundaries of a particular 

component, then the whole component will be considered 

as the most probable component that causes the 

malfunction of the design. 

 
 

Table 4. the activations of network neurons 

jj o&h  Weighted Sum Neuron 

0.81 
0(-1.852)+0(-1.86)+1(1.189)+0.262 

=1.451 
1 

0.385 
1(-1.834)+1(1.144)+0.223 

=-0.467 
2 

0.824 
1(1.862)+0.81(1.858)+1(-2.318)+0.497 

= 1.546 
3 

0.249 
0(1.862)+0.385(1.858)+1(-2.318) 
+0.497= -1.106 

4 

0.864* 0.824(1.836)+0.249(1.847)+1(-0.52) 
+0.394= 1.847 

5 

 

Table 5. The errors in network neurons 

Sorted list 
Error values in 

network neuron 
Neuron 

5 
0.864(1-0.864)(0-0.864) 

= -0.1015 
5 

4 
0.249(1-0.249)[(-0.1015)(1.847)] 

= -0.035 
4 

3 
0.824(1-0.824)[(-0.1015)(1.836)] 

= -0.027 
3 

2 
0.385(1-0.385)[(-0.035)(1.858)] 
= -0.0154 

2 

1 
0.81(1-0.81)[(-0.027)(1.858)] 
= -0.0077 

1 

 

IV. CONCLUSIONS 

As a new trend in CAD systems, this work comes out 

with some conclusions: 

1. The verification algorithm is valid for combinational 

circuit only. This is due to the fact that the algorithm is 

based on the learning algorithm for back-propagation 

neural networks which is a feedforward network. 

2. The prediction technique in that is used in the 

algorithm can help the designer to locate the malfunction 

component easily and try to correct the design quickly. 

3. Although the complexity time of the algorithm is 

exponential, it is still work perfect for some small set of 

problems. 

4. The proposed algorithm does not need the classical 

proving theorem to prove the correctness of the hardware 

design. 

5. This work can pave the way to implement First-

Order Predicate Logic as an HDL for the description and 

documentation of the hardware. Also, it can pave the way 

for using Temporal Logic to describe the timing relations 

among hardware modules (sequential circuits). 

6. Finally, this work can be considered as a step toward 

using Distributed CAD environments through the use of 

the parallel processing architecture specially the 

Neurocomputer architecture. 
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