
I.J. Information Technology and Computer Science, 2015, 06, 22-29
Published Online May 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.06.03

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

Coupling Perceptron Convergence Procedure

with Modified Back-Propagation Techniques to

Verify Combinational Circuits Design

Raad F. Alwan
Philadelphia University/ Department of Computer Science, Amman, 19392, Jordan

Email: ralwan@philadelphia.edu.jo

Sami I. Eddi
University of Technology/ Department of Computer Science and Information Systems, Baghdad, 10066, Iraq

Email: seddi@yahoo.com

Baydaa Al-Hamadani
Zarqa University/ Department of Computer Science, Zarqa, 13132, Jordan

Email: bhamadani@zu.edu.jo

Abstract— This paper proposed an algorithm for logic circuits

verification using neural networks where a model is built to be

trained and tested. The proposed algorithm for combinational

circuits' verification is based on merging two of the well-known

learning algorithms for neural networks. The first one is the

Perceptron Convergence Procedure, which is used for learning

the functions of the standard logic gates in order to simulate the

whole circuit. While the second is a modified learning algorithm

of Back-propagation neural networks to be used for the

verification of the hardware design. The algorithm can predict

the gates that cause the malfunction in the circuit design.

This work may be considered as a step toward building

Distributed Computer Aided Design Environments depending

on the parallel processing architecture, particularly in the

Neurocomputer architecture.

Index Terms— Logic Circuit Verification, Neural Network,

Combination Circuit, Perceptron Convergence, Back-

Propagation.

I. INTRODUCTION

Using parallel processing systems can help to

overcome the limitations caused by a single processor

system [1, 2]. For this reason, many of the Computer

Aided Design (CAD) researchers are motivated toward

using the parallel processing systems [3, 4].

Neural Networks can be considered as a complete

different method of parallel processing, which are built

up of huge interconnections of analog computing

elements that cooperatively works to establish a solution

to the problem [5].

Human brain is considered by many scientists as the

last edge of exploration. Although they still lack the

understanding of how the brain operates, many simplified

neural network models have been proposed. Desiring to

achieve human-like capabilities (such as voice

recognition, medical diagnosis, vision, speech

understanding, learning, etc.) [2] [6]. In a computer,

researchers have been working for several years to

implement neural network models into a new breed of

computer system. These efforts have been successful, as

commercial neurocomputers have become available

recently. [7]

A neural network can be defined as "A cognitive

information processing structure based upon models of

brain function. In a more formal engineering context: a

highly parallel dynamically system with the topology of a

directed graph that can carry out information processing

by means of its state response to continuous or initial

input".[8]

Neural networks are constructed of processing

elements (PEs, or neurons) that are interconnected via

information channels called interconnects. A neuron is a

two state processing element. The state 0 or 1, of a

neuron is its activation value. In our model, the neurons

are connected by links. Boolean operations are realized

by specifying the thresholds for the neurons and the

weights associated with these links. A typical neuron is

shown in Fig. 1 [9].

The weight ijT characterizes the link connecting

neuron i to j. iI and iV are the threshold and activation

value of neuron i. A state of neuron can be determined by

calculating the weighted sum of the states of all the

Ti,j Weight=Ti,j

Neuron i

Neuron j

Threshold=Li

Activation=Vi

Fig. 1. Typical Neuron.

 Coupling Perceptron Convergence Procedure with 23

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

connected neighboring neurons and comparing this sum

with its threshold. Typically, the neural networks are used

for two classes of applications. [10] One class is the

network performs constraint satisfaction tasks involving

multiple constraints (combinatorial optimization) to find

a consistent set of states. While in the other, the neural

network learns from examples. The essential difference

between the two applications is in the first class the

network adjusts the states of the neurons to a given fixed

set of connection strengths, while in the second the

network adjusts the values of the connection strengths to

give sample sets of neuron states. In the application of

neural networks to hardware verification, we require both

techniques, where the first one is used to verify the

hardware design, and the other is used to teach the neuron

the function of logic gates.

II. MODELING LOGIC CIRCUITS BY NEURAL NETWORKS

We used the Rosenblatt's Perceptron which is one of

the earliest models of neural networks, to simulate the

functions of logic gates. The Perceptron structure

according to Rosenblatt is shown in Fig. 3, where the

Perceptron has three major parts: the input vector, the

weighted summation, and the threshold value [10].

The Perceptron can be trained on a sample of

input/output pairs until it learns to compute the correct

function of the specified logic gate. This training is done

by the Perceptron Convergence procedure. This learning

algorithm is a search algorithm that begins with a random

initial state and finds a solution state. The search space is

simply all the possible assignments of real values to the

weights of the perceptron, and the search strategy used is

the gradient descent.

The gradient descent as employed by neural networks

is a learning strategy which is analogous to the inductive

techniques in symbolic AI. The perceptron convergence

procedure, according to Rosenblatt, can guarantee the

finding of a solution. This procedure is implemented to

simulate the function of logic gates.

The process of teaching the perceptron was applied on

two different computers and the required time and

number of iterations are shown in Table 1.

Table 1. The required time and iterations for learning process.

Rate of

convergence

Number of

iterations

Learning time on

Dell(N5010)
i5 CPU Pentium 4 CPU

75% 45-55 0.30 – 0.35 sec. 1.0 – 1.5 sec.

90% 85 – 95 0.40 – 0.45 sec. 1.75 – 2.25 sec.

A. Limitations of the Perceptron

While the convergence procedure guaranteed correct

classification of linearly separable data, there were

problems in which it does not supply such data (such as

XOR problem) [2]. There is no one straight line which

separates the decision surface of XOR problem as shown

in Fig. 2(a).

Other logic gates can be modeled by perceptron

because their decisions surface are linearly separable as

shown in Fig. 2(b, c). In order to overcome the problem

of XOR gate, it can be built from other gates such as

NAND gates. The main advantage of the perceptron

model is the self-organization of the neuron and the

ability to adapt itself for various numbers of inputs.

Examples of learned perceptrons for the functions of two

inputs logic gates are shown in Fig. 4.

II. A TECHNIQUE FOR HARDWARE VERIFICATION

The emergence of neural networks brought about the

researchers in the field of CAD systems to utilize the

advantages of neural networks to improve the

performance of such systems. The main aim of this

research is to utilize the concepts of neural networks in

the field of CAD, especially in the area of combinational

circuit's verification.

The proposed verification algorithm is an attempt to

transfer design automation techniques (in particular the

design verification) from conventional computers to

neurocomputers. We present the utilization of neural

networks concepts in a field of hardware verification, in

W

n

W1

W2

.

.

.

X

1

X

2

X

n

Output ∑
ᶿ

Fig. 3. Perceptron Structure.

Fig. 2. Logic Gates' decision surfaces.

(0,1)

(1,0) (0,0)

(1,1)

AND

 (c)

Output
0

1
Output

1

(0,1)

(1,0) (0,0)

(1,1)

OR

(b)

0

Output
1

0

(0,1)

(1,0) (0,0)

(1,1)

XOR

(a)

24 Coupling Perceptron Convergence Procedure with

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

order to overcome the difficulties embedded within

classical verification methods which require a thoroughly

knowledge of algebra or high order logic to prove the

correctness of the design. Since most the classical

methods of formal verification are based on theorem

proving, and a fully automated theorem proving system is

very difficult to achieve.

The proposed verification algorithm is based on a

modification of Rumelhart's Back-Propagation neural

network which is designed for multi-layer feedforward

nets (i.e. there are no feedback connections). This makes

the proposed verification algorithm valid only for

combinational circuits. The advantage given by the

proposed algorithm is the predication of the component

that causes the malfunction of the design, which provides

an extra task over the classical methods of hardware

verification.

A. Back-Propagation neural network

The back-propagation neural network is one of the

most important historical developments in neuro-

computing. It is a powerful mapping network that has

been successfully applied to a wide variety of problems

ranging from credit application scoring to image

compression [11]. The typical multi-layer feedforward

neural network is shown in Fig. 5.

Like a perceptron, the learning algorithm of back-

propagation neural network is supervised by a teacher.

Hence, it begins with a random set of weights, then the

network adjusts its weights each time it sees an

input/output pair. Each pair requires two stages: a

forward pass and a backward pass. The forward pass

involves presenting a sample input to the network and

letting activations flow until they reach the output layer.

During the backward pass, the network's actual output is

compared to the desired output, and error estimates are

computed for the output units. The weights connected to

the output units can be adjusted in order to reduce these

errors. Then, the error estimates of the output units can be

used to derive error estimates for the units in the hidden

layers. Finally, errors are propagated back to the

connections stemming from the input units. The

following is the learning algorithm for back-propagation

neural network:

Algorithm back-propagation (Input-Units A, Hidden-

Units B, Output-Units C)

{

Let jjj oand,h,x , are the activation levels of the

units in A, B, and C respectively, ij1w , denotes the

weights connecting Ai to Bj

ij2w , denotes the weights connecting Bi to Cj

 

 

C0j:j,B0i:i

1.0random2w

B0j:j,A0i:i

1.0random1w

ij

ij

















Initialize the activation levels of the threshold units

() as constant values.

  ii y,x :  ii y,x input/output pair and assign

activation levels for the input units do:







  




 j

A

0i ij x1w
j

e1

1
h

: hj is the activation function between Ai to Bi

Fig. 4. Logic gates simulated Perceptrons.

AND

1.862

X

1

1.858

-2.318

0.49

7

X
2

1

NOT

X
1

1.834

1.144

0.223

1

NAND

-1.869

X
1

-1.866

3.028

0.204

X

2

1

NOR

-1.86

X
1

-1.852

1.189

0.262

X
2

1

OR

1.847

X
1

1.836

-0.52

0.394

1

X

2

Fig. 5. A typical multi-layer feed-forward neural network.

Hidden

Layer

Output

Layer

Input

Layer

 Coupling Perceptron Convergence Procedure with 25

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29







  




 i

B

0i ij h2w
j

e1

1
o

: oj is the activation function between Bi to Ci

Let oj is the network's actual output and yj is the

desired output

  
C1j:j

oyo1o2 jjjjj





: j2 are the errors in Cj

 

B1j:j

2w2δh1h1δ ji

C

0i
jjjj






: j1 are the errors in Bj

Let   , be the learning rate which has a function

similar to the perceptron learning and its reasonable value

is (0.35).

C1j:j,B0i:i

h22w jjij

 

 

B1j:j,A0i:i

x11w ijij

 

 

}

The algorithm above is a generalization of the Least

Mean Square (LMS) algorithm. It uses a gradient

technique to minimize a cost function equal to the mean

square difference between the desired and actual net

outputs. An essential component of the algorithm is the

iterative process described in the algorithm that

propagates the error terms required to adapt weights back

from nodes in the output layer to the nodes in the lower

layers.

Back-propagation suffers from several drawbacks. As a

biological model, it is implausible; there is no evidence

that synapses can be used in both directions. Even so, it

does not seem readily believable that neurons can spread

signal-activity levels or error signals using linear or

nonlinear input/output functions depending on the

direction of movement.

Nevertheless, from the point view of the computer

engineering and connectionist modeling, biological

implausibility is not a fundamental deficiency of back-

propagation. Back-propagation's real limitations are those

of all gradient-descent techniques, namely the possibility

of getting stuck in local minima and a slow convergence

rate.

B. The proposed algorithm

The proposed algorithm is based on the idea of

representing each gate in the combinational circuit under

consideration by a single perceptron, then connecting

these perceptrons together in order to construct the multi-

layer network corresponding to the circuit under

consideration. Then, apply a modified version of back-

propagation algorithm to evaluate the output of the

network (according to the design specification). We used

perceptrons in order to eliminate the iterated steps of

back-propagation algorithm that consumed in learning the

behavior of the problem. That means if the design

matches the specification, then only one forward pass will

be applied for each input/output pair of the design

specifications. In case of mismatch of the design with its

specification, at this stage, the design is known to be

incorrect. The extra task (predication part) over the

classical verification methods will be performed, which is

represented by a backward pass, performed in order to

compute the errors in the neurons of each layer. These

errors then are sorted in decreasing order, and the neuron

with the highest error is considered as the most probable

neuron (component) that causes the malfunction in the

design. The proposed algorithm is given below:

Algorithm Developed-Advanced-Propagation (Input-

Units A, Hidden-Units B, Output-Units C)

{

1. Let jjj oand,h,x , are the activation levels of the

units in A, B, and C respectively, ij1w , denotes the

weights connecting Ai to Bj

2. ij2w , denotes the weights connecting Bi to Cj

3.
 

B0j:j,A0i:i

1.0random1w ij









4.
 

C0j:j,B0i:i

1.0random2w ij









5. Initialize the activation levels of the threshold units

() as constant values.

6.   ii y,x :  ii y,x input/output pair and assign

activation levels for the input units do:

7.






  




 i

A

1i ij xw
j

e1

1
h : hj is the activation

function between Ai to Bi

8.






  




 i

B

1i ij hw
j

e1

1
o : oj is the activation

function between Bi to Ci

9. Let oj is the network's actual output and yj is the

desired output

10. If (oj = yj)

11. Continue

12.   
jjjje oyo1oO 

: eO are the errors in Cj

26 Coupling Perceptron Convergence Procedure with

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

13.   


N

1i
jiejje wOh1hH

: eH are the errors in Aj, N is the number of the

nodes in B

14. Continue

15. Ej= max(eO , eH)

16. Node (j) has is the most probable neuron that causes

the malfunction of the design, and so. Terminate to

redesign.

}

The proposed algorithm consists of two parts; steps 1-6

perform the simulation of the circuit under consideration.

We used the perceptron convergence procedure to

simulate the functions of standard logic gates, and the

perceptrons resulting from this simulation could be saved

in order to be used again in other circuits. Hence, we used

the perceptron convergence procedure only once, and

each time we need to simulate the circuit under

consideration, we have the perceptrons corresponding to

the gates of this circuit.

The simulation of logic circuits will be done by

representing each gate in the circuit by its corresponding

perceptron (neuron). Thus, a constructed network

corresponds to the logic circuit under consideration.

The second part (steps 7 – 14), represents the

verification part of the simulated circuit. As shown above,

the verification method is based on the learning algorithm

of back-propagation neural networks.

The verification part, in turn, is subdivided into two

passes: forward pass and backward pass. In the forward

pass (steps 7-11), an input/output pair, and the activations

of the neurons will be propagated up to the output layer.

The formula in step 3 propagates the activations from the

input layer to the first hidden layer in the network. While

the formula in step 8, is used to propagate the activation

from the first hidden layer to the output layer. Notice,

there is a difference between the formulas of steps 7 and

8, and the corresponding steps in the back-propagation

algorithm, which is the addition of the threshold value in

the proposed algorithm while it is subtracted in the back-

propagation algorithm. This difference comes to increase

the convergence of the produced output of the simulated

network to the desired output (logic 1 or logic 0).now, the

actual output will be computed, which is a real value

results from the neural network corresponding to the

circuit under consideration. If this real value is equal or

greater than (0.5), it will be considered as logic 1, while if

it is less than (0.5), then it is considered to be logic 0. So,

if the actual output obtained from the network matches

the desired output, then another pair will be chosen and

the above process is repeated again. If the actual output

does not match the desired one, this means that there is

no matching between the desired specification of the

circuit and its actual input/output pattern. Then, there is

incorrect design to match the specifications.

In this case we have to perform the backward pass

(steps 12-16), to compute the errors in the neurons and

therefore to predict the gate that causes the malfunction in

the design. The errors in the output layer will be

computed using the formula in step 12, and then

computing the errors in all the hidden layers up to the

input layer using the formula in step 13 (this corresponds

to error signals' propagation in back-propagation

algorithm).

The prediction technique of the gate that causes the

malfunction in the design will be performed by sorting

the errors of the network neurons in decreasing order

(step 15), and the first neuron in the sorted list is the most

probable neuron (gate) that causes the malfunction in the

design (the one needed to be changed in the design).

However, the prediction part of this algorithm is not so

accurate, but it helps the designer to debug the design in

less time than the time required without prediction phase.

The inaccuracy of the prediction comes from the random

numbers generated in step 1 that simulates the function of

each logic gate. Simulating these gates by different sets

of perceptrons (weight vectors and thresholds) will lead

to different predictions in the design. Some of these sets

were converged to correct prediction while others were

diverged from it.

The complexity time required for this

algorithm  n2kO , where n represents the number of

input variables, and  n2 , represents the input/output

pairs of the design specifications. The constant (k)

represents the number of iterations performed by the

algorithm for each input/output pair given to the network.

Thus, the proposed verification algorithm requires

exponential time. However, even with this disadvantage,

the algorithm is still favorable compared with the time

required in the classical methods of hardware verification

which deals with theorem proving techniques to prove the

correctness of the design.

III. TESTING THE ALGORITHM

For the purpose of testing, two examples are used to

test the verification performance of the proposed

algorithm. The first one is the well-known full adder

circuit, while the second is a combinational circuit that

performs a particular Boolean expression.

A. Full adder example

The correct design of the full adder is shown in Fig.

7(a), while the incorrect design is shown in Fig. 7(b). The

corresponding neural network of the incorrect design is

shown in Fig. 6.Table 2 shows the forward part of the

verification algorithm to compute the actual output. Table

3 shows the backward part of the algorithm to compute

the errors of the neurons in the network.

The table also shows the sorted list of these neurons

according to its error's values.

Notice that the prediction of the component that causes

the malfunction diverges from the correct prediction (gate

4). However, the prediction is not so accurate, but it can

help the designer in case of large circuits since this

prediction can reduce the debugging time of the

 Coupling Perceptron Convergence Procedure with 27

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

malfunction gate by at least 25% of the debugging time

required by the designer in the classical methods of

hardware verification.

Table 2. The activations of network neurons

jj o&h Weighted Sum Neuron

0.377
1(3.028)+ 1(-1.866)+1(-1.869)+0.204

= -0.503
1

0.66
1(3.028)+ 1(-1.866)+ 0.377(-1.869) + 0.204

= 0.66
2

0.66
1(3.028)+ 1(-1.869)+ 0.377(-1.866)+ 0.204
= 0.659

3

0.654
1(-2.318)+ 0.66(1.862)+ 0.66(1.858)+ 0.497

= 0.635
4

0.882
1(3.028)+ 0(-1.866)+ 0.654(-1.869)+ 0.204

= 2.01
5

0.83
1(3.028)+0(-1.866)+ 0.882(-1.869)+0.204
= 1.58

6

0.59
1(3.028)+ 0.882(-1.866)+ 0.654(-1.869)

+ 0.204=0.364
7

0.641* 1(3.028)+ 0.83(-1.866)+ 0.59(-1.869)

+ 0.204= 0.581
8

0.707
1(3.028)+ 0.882(-1.866)+ 0.377(-1.869)
+ 0.204= 0.88

9

(*): the activation value of neuron 8 is 0.641, which is greater than 0.5,
which corresponds to logic 1. According to the correct design this value

must be logic 0, which means a value less than 0.5.

Table 3.The errors in network neurons

Sorted

list

Error values in

network neurons
Neuron

2 0.707(1-0707)(1-0.707)= 0.0607 9

9 0.641(1-0.641)(0-0.641)= -0.148 8

1 0.59(1-0.59)[(-0.148)(-1.869)]= 0.0669 7

3 0.83(1-0.83)[(-0.148)(-1.866)]= 0.039 6

8
0.882(1-0.882)[(0.039)(-1.869)+(0.0669)(-1.866)

+ (0.0607)(-1.866)]= -0.0324
5

7
0.654(1-0.654)[(-0.0324)(-1.869)

+(0.0669)(-1.866)]= -0.0145
4

4 0.66(1-0.66)[(-0.0145)(1.858)]= -0.006045 3

5 0.66(1-0.66)[(-0.0145)(1.862)]= -0.006058 2

6
0.377(1-0.377)[(-0.006058)(-1.869) +

(-0.006045)(-1.866) +(0.0607)(-1.869)]= -0.0213
1

B. Boolean expression example

The second example deals with a combinational circuit

that performs a particular function defined by the

Boolean expression:   41132 xx~xxxf  .

Fig. 8(a, and b) shows the correct and the incorrect

designs of the circuit. While Fig. 9shows the

corresponding neural network for incorrect design. Table

4 shows the forward part of verification algorithm to

compute the actual output. Table 5, shows the backward

part of the algorithm to compute the errors of neurons in

the network. The table also shows the sorted list of the

neurons according to their error values. The predication

of the gate that causes the malfunction in this example is

the gate 1.

From these two examples, the benefit of this

verification algorithm is clearly obvious. The proposed

algorithm can also be used with components other than

the logic gates if they considered as combinational

circuits (such as Decoders, Multiplexers, etc.).

Sum

Carry

1

1

3.028

-1.869

-1.866

9

0.204

-1.869

3.028

-1.866

8

0.204

1

1

3.028

-1.869

-1.866

7

0.204

3.028

-1.869

-1.866

5

0.204

1

3.028

-1.869

-1.866

6

0.204

1

1

1.862

 1.858

-2.318

4

0.497

1

0

1

1

1

-1.866

-1.869

3.028

1

0.204

-1.866

3.028

-1.869
3

0.204

-1.869

-1.866

3.028
2

0.204

Fig. 6. The corresponding neural network for the incorrect full-adder circuit.

Fig. 7. Full adder circuit. (a) Correct design, (b) incorrect design.

Sum

Cout

 y
x

(b)

(a)

Sum

Cout

y
x

1

28 Coupling Perceptron Convergence Procedure with

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

Hence such components are represented as boxes

containing the logic gates that produce the functions of

these components. The prediction part of the algorithm

will be performed as usual except if the predicted neuron

is included within the boundaries of a particular

component, then the whole component will be considered

as the most probable component that causes the

malfunction of the design.

Table 4. the activations of network neurons

jj o&h Weighted Sum Neuron

0.81
0(-1.852)+0(-1.86)+1(1.189)+0.262

=1.451
1

0.385
1(-1.834)+1(1.144)+0.223

=-0.467
2

0.824
1(1.862)+0.81(1.858)+1(-2.318)+0.497

= 1.546
3

0.249
0(1.862)+0.385(1.858)+1(-2.318)
+0.497= -1.106

4

0.864* 0.824(1.836)+0.249(1.847)+1(-0.52)
+0.394= 1.847

5

Table 5. The errors in network neurons

Sorted list
Error values in

network neuron
Neuron

5
0.864(1-0.864)(0-0.864)

= -0.1015
5

4
0.249(1-0.249)[(-0.1015)(1.847)]

= -0.035
4

3
0.824(1-0.824)[(-0.1015)(1.836)]

= -0.027
3

2
0.385(1-0.385)[(-0.035)(1.858)]
= -0.0154

2

1
0.81(1-0.81)[(-0.027)(1.858)]
= -0.0077

1

IV. CONCLUSIONS

As a new trend in CAD systems, this work comes out

with some conclusions:

1. The verification algorithm is valid for combinational

circuit only. This is due to the fact that the algorithm is

based on the learning algorithm for back-propagation

neural networks which is a feedforward network.

2. The prediction technique in that is used in the

algorithm can help the designer to locate the malfunction

component easily and try to correct the design quickly.

3. Although the complexity time of the algorithm is

exponential, it is still work perfect for some small set of

problems.

4. The proposed algorithm does not need the classical

proving theorem to prove the correctness of the hardware

design.

5. This work can pave the way to implement First-

Order Predicate Logic as an HDL for the description and

documentation of the hardware. Also, it can pave the way

for using Temporal Logic to describe the timing relations

among hardware modules (sequential circuits).

6. Finally, this work can be considered as a step toward

using Distributed CAD environments through the use of

the parallel processing architecture specially the

Neurocomputer architecture.

REFERENCES

[1] Yangdong, D. "GPU Accelerated VLSI Design

Verification". in Proceeding of the IEEE 10th International

Conference on Computer and Information Technology

(CIT), 2010. pp 1213-1218. 2010

[2] Raeisi, D.R. "MODELING AND VERIFICATION OF

DIGITAL LOGIC CIRCUIT USING NEURAL

NETWORKS". in Proceeding of the 2005 IL/IN Sectional

Conference. pp. 2005

[3] Li Da, X., W. Viriyasitavat, P. Ruchikachorn, and A.

Martin," Using Propositional Logic for Requirements

Verification of Service Workflow". IEEE Transactions on

Industrial Informatics, vol. 8 no 3: pp. 639-646.2012

[4] Chang, P.-C., Y.-W. Wang, and C.-Y. Tsai," Evolving

neural network for printed circuit board sales forecasting".

Expert Systems with Applications, vol. 29 no 1: pp. 83-

92.2005

[5] Rabunal, J.R. and J. Dorado, Artificial Neural Networks in

Real-life Applications: Idea Group Inc (IGI) - Technology

& Engineering. 2006,

Fig. 9. The corresponding neural network of the design.

-0.52
1

1.847

1.836

5

0.394 f

X

2

0

X

3

0

X

1

1

1.189

1

-1.86

-1.852

1

0.262

1.144 1

-1.834

2

0.223

X

4

0

-1.862

1

1.858

-2.318

3

0.497

1.862

-2.318

1

1.858

4

0.497

Fig. 8. Structure of function, (a) correct design, (b)

incorrect design.

(b)

(a)

 Coupling Perceptron Convergence Procedure with 29

Modified Back-Propagation Techniques to Verify Combinational Circuits Design

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 22-29

[6] Hosseini, S.B., A. Shahabi, H. Sohofi, and Z. Navabi. "A

reconfigurable online BIST for combinational hardware

using digital neural networks". in Proceeding of the 15th

IEEE European Test Symposium (ETS), 2010. pp 139-144.

2010

[7] Ruehli, A.E. and G.S. Ditlow," Circuit analysis, logic

simulation, and design verification for VLSI". Proceedings

of the IEEE, vol. 71 no 1: pp. 34-48.2005

[8] Hassoun, S. and T. Sasao, Logic Synthesis and Verification,

ed. T.S.I.S.i.E.a.C. Science. Vol. Vol. 654. 2003,

[9] Miller, R.K., Neural Networks. USA: Prentice-Hall Inc.

1990,

[10] Oldroyd, M., Optimisation of Massively Parallel Neural

Networks, ed. F. Corporation. 2004,

[11] Chang, P.-C., C.-H. Liu, and C.-Y. Fan," Data clustering

and fuzzy neural network for sales forecasting: A case

study in printed circuit board industry". Knowledge-Based

Systems, vol. 22 no 5: pp. 344-355.2009

Authors’ Profiles

Raad Alwan is an associated prof. in

Philadelphia University in Jordan. He

completed his undergraduate from the

University of Baghdad, Iraq. He finished his

MSc. and PhD in University College Dublin

and Trinity College Dublin, respectively.

His research interests are algorithm analysis

and design, data mining, logic design, and

information retrieval.

Sami Eddi is an associated prof. in the University of

Technology in Iraq. He completed his MSc degree in Al-

Rafidain college of Sciences. His MSc and PhD degrees were

from the University of Technology, Iraq. His research interests

are computer networking, neural nets, and expert systems.

Baydaa Al-hamadani is an assistance prof.

in Zarqa University in Jordan. She got her

Bachelor degree from the University of

Technology in Iraq in 1994, followed by

MSc. in the same University in 2000. In

2011, she got her PhD from the University

of Huddersfield in the UK from the School

of Computing and Engineering. Her fields

of interest are XML, compressing and

retrieving information, ontology, and Bioinformatics.

How to cite this paper: Raad F. Alwan, Sami I. Eddi, Baydaa

Al-Hamadani,"Coupling Perceptron Convergence Procedure

with Modified Back-Propagation Techniques to Verify

Combinational Circuits Design", International Journal of

Information Technology and Computer Science(IJITCS), vol.7,

no.6, pp.22-29, 2015. DOI: 10.5815/ijitcs.2015.06.03

