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Abstract—Given a weighted complete digraph, the Linear 

Ordering Problem (LOP) consists of finding and acyclic 

tournament with maximum weight. It is sometimes referred to 

as triangulation problem or permutation problem depending on 

the context of its application. This study introduces an 

algorithm for LOP and applied for triangulation of Tanzanian 

Input-Output tables. The algorithm development process uses 

Great Deluge heuristic method. It is implemented using C++ 

programming language and tested on a personal computer with 

2.40GHZ speed processor. The algorithm has been able to 

triangulate the Tanzanian input-output tables of size 79×79 

within a reasonable time (1.17 seconds). It has been able to 

order the corresponding economic sectors in the linear order, 

with upper triangle weight increased from 585,481 to 839,842 

giving the degree of linearity of 94.3%.  

 

Index Terms — Optimization, Linear Ordering, Input-Output 

Tables, Great Deluge Algorithm  

 

I.  INTRODUCTION 

Linear Ordering Problem (LOP) involves finding an 

acyclic tournament in a complete weighted digraph with 

maximum weight. This is equivalent to finding a 

permutation of rows and columns (linear order) of the 

associated matrix such that the sum of the weights of the 

upper triangle is maximized, Mushi [1]. It is one of the 

combinatorial optimization problems that are classified 

as NP-hard (Non-deterministic Polynomial time) 

problems as discussed in Martí and Reinelt [2]. It is so 

classified because there is no general deterministic 

polynomial time algorithm for its solution that is known 

to date, Schiavinotto and Stüzle [3].  

Formally, given a complete digraph ( , )n n nD V A  

with n-nodes and arc weights
ij

x , for all , ni j V  (nodes 

set) and ( , ) ni j A  (arcs set) defined on a positive weight 

function :x A  , find an acyclic tournament nT A

such that the weight ( , )( ) i j T ijx T x is the maximum 

possible [2].  

The ideas on the solution of LOP existed since 1958, 

from the work done by Chenery and Watanable [4]. 

Since then, it has received considerable attention by 

many researchers and hence becoming a problem of 

interest to date. LOP is found in a number of applications, 

such as Triangulation of Input-Output matrices in 

economics, Archaeological seriation, Minimizing total 

weighted completion time in one-machine scheduling, 

Aggregation of Individual preferences, Grötschel, Junger 

and Reinelt [5], ordering of teams in sports tournaments, 

Mushi [1] as well as Machine translation, Tromble [6].  

A number of algorithms for the LOP solution have 

been developed, however each algorithm works with 

some weaknesses depending on the level of complexity 

of the problem. Grötschel, Junger and Reinelt [5], 

introduced an exact algorithm which combines heuristics, 

cutting plane and branch and bound techniques basing on 

investigations of the LOP polytope. The algorithm was 

able to solve up to 60×60 Input-Output tables from the 

Linear Ordering Library (LOLIB) instances [7], with 

83.185% degree of linearity and running time of 13 

minutes and 25 seconds. Likewise, an exact algorithm 

focused on cutting plane and branch and bound 

procedures has been used to LOP in Mushi [1]. The 

approach relaxed integer constraints and solved the 

problem as a continuous Linear Programming problem 

with normal simplex algorithm and then applying cutting 

planes with available facets followed by branch and 

bound technique to get integral solution. The algorithm 

was able to solve the 41×41 Irish input-output table to 

optimality within reasonable time.  

As pointed earlier, this is an NP-Hard problem and 

therefore no optimal algorithm is known that can solve a 

general problem within reasonable time. Consequently, a lot 

of effort has been devoted into finding good heuristic 

solutions. Although heuristics cannot give a guarantee of 

optimal solutions, they have been widely used to give good 

solutions within reasonable time. Marti and Reinelt [2] 

reports on the development of a heuristic, commonly 

referred to as Beckers method, based on calculations of 

quotients which were used as basis for ranking the 

economic sectors of an input-output table. However, the 

authors admit that their algorithm does not necessarily lead 

to good approximate solution to their triangulation problem.  
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Chanas and Koblański [8] designed a heuristic 

algorithm which could determine the solution for both 

maximization and minimization of the given problem 

criterion function, basing on the resulting permutation by 

sorting through insertion and permutation reversals. 

Experimental results show that the algorithm was able to 

give near optimal solutions in most instances. However, 

the method requires the problem to be decomposable into 

components, where methods for effective decomposition 

are difficult to find.  

Garcia et al [9] developed a Variable Neighbourhood 

Search (VNS) algorithm. The algorithm combines 

various neighbourhoods for effective exploration of 

search space. The VNS results competed with well 

known heuristics such as Tabu Search but require further 

extensive studies. Campos, et al [10] presented meta-

heuristic approaches for LOP, using scatter search 

technique. The approach used combined solution vectors 

that had proved effective in a number of problem settings, 

but was able to match only 30 out of 49 solutions of 

world problem instances in the LOLIB.  

Recent work includes a publication by Celso and 

Mutsunori [11] on local algorithms. They provided 

improvements into the local search by introducing two 

algorithms namely LIST and TREE for neighbourhood 

structure. Computational experiments with random 

problems showed good results for sparse instances with 

density up to 10%. Even more recent is the 2014 

publication by Tao et al [12], on Multi-Parent Memetic 

algorithm, denoted by MPM. The algorithm integrates 

particular features such as multi-parent recombination 

operator, a diversity based parent selection strategy and a 

quality-and-diversity based pool updating strategy. 

Computation results shows that the MPM is an efficient 

algorithm and outperforms previous Memetic algorithm 

in detecting lower bounds for challenging instances.  

This paper introduces another heuristic algorithm for 

the LOP particularly for a triangulation problem using 

Great Deluge Algorithm (GDA) described in Doeck [13]. 

We are interested in the use of GDA particularly for 

Tanzanian Input-Output economic tables since the 

technique has been effective in other combinatorial 

optimization problems, including timetabling, Mushi 

[14], [15], Landa-Silva and Obit [16], and Turabie, 

Abdullah and McCollum [17]. Other successful 

applications include Dynamic Scheduling on Grid 

environment problem reported in McMullan and 

McCollum, [18].  

The paper is organized as follows; first we give a 

mathematical formulation of the problem; secondly we 

present the Great Deluge Algorithm with the specific 

adaptation to the Linear Ordering Problem, including 

development of initial solution, selection of moves and 

neighbourhood structure. We then provide our analysis 

of results as applied to the Tanzanian Input-Output tables; 

and lastly we present conclusion and suggest areas for 

further research.  

 

II.  MATHEMATICAL FORMULATION  

The LOP is formulated as a binary Integer 

Programming problem. The input-output table decision 

variable is defined as follows:- 

Let  

1  if there is an arc  between nodes  and 
 

0   Otherwise                                               
ij

(i, j) i j
x


 


 

( , ) ni j A   

Thus, the Linear Programming model as defined by 

Marti and Reinelt [2] is:  

Maximize ( , ) 
ni j A ij ijw x                                          (1) 

Subject to:  

 

1, ,

2, , , ,

0,1 , ,

ij ji n

ij jk ki n

ij n

x x i j V

x x x i j k V j k

x i j V

   

     

  

 

Where ijw  represents the actual weights from the 

input-output table.  

In Graphical representation, we define a digraph 

 : ,n n nD V A  and find an acyclic tournament nT A  

with the linear ordering 1 2, ,...,i i inV V V   that gives the 

maximum sum of weights assigned to its corresponding 

arcs [2].  

The most common exact approach in solving LOP is 

the use of a branch and cut algorithm that combines both 

cutting planes and branch and bound methods. This is 

facilitated by the development of deepest possible cutting 

planes known as facets that can prune infeasibilities from 

the relaxation of the associated linear programming 

problem. The known facets include the 3-dicycles, 3-

fences, Möbius ladders of type M and type M [2]. 

These facets together with the minimal equation system 

give the following Linear Programming relaxation:  

Maximize 
,

ij ij
i j
i j

c x



                                                     (2) 

Subject to:  

1,  for all 1 ,ij jix x j j n    
 

0,  for all 1 , , ,ijx i j n i j   
 

( ) 2,  for all 3-dicycles  in , nx C C A
 

( ) 7,  for all 3-Fences ( , ) in ,nx F D V F D 
 

2 2

( ) 8,  for all Mobius ladders ( , )

                  of type  or  in n

x M D V M

M M D

 

 

It has been shown in [2] that this problem has 
2

n 
 
 

 

equations, ( 1)n n  non-negativity constraints, 2
3

n 
 
 

 3-
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dicycle inequalities, 120
6

n 
 
 

 3-fence inequalities, and 

360
6

n 
 
 

 Möbius ladder inequalities.  

Due to this enormous number of constraints, it is 

impractical to list all the constraints and solve the linear 

program using available computer code. Instead, a 

cutting plane algorithm is applied where facets are added 

to the problem one at a time until the solution is found or 

the problem size has been reduced to an extent that it can 

be solved by branch and bound method.  

However, this approach has been only successful in 

solving specific instances to optimality due to large size 

of the problem. The use of heuristics is therefore a 

preferred approach when it comes to large problem sizes 

and hence the choice of Great Deluge heuristic approach 

in this work.  

A. Linear Ordering as a Triangulation Problem  

As described by Marti et al in [7], given an (n, n) 

matrix ( )ijC c , the triangulation problem involves the 

determination of a simultaneous permutation of the rows 

and columns of the matrix C such that the sum of upper-

diagonal entries is as large as possible.  

By setting arc weights ij ijw c  for the complete 

digraph nD , the triangulation problem for C can be 

solved as Linear Ordering Problem for nD . Conversely, 

a linear ordering problem for nD  can be transformed 

into a triangulation problem for an (n, n) matrix 

( )ijC c  by setting ij ijc w  and the diagonal entries

0iic  . 

 

Example 

Consider the following directed compete graph with 

weights on arcs (Fig. 1);  

 
Fig. 1. Complete digraph example 

 

The associated matrix is as shown in Table 1;  

Table 1. Input-output table example 

 1 2 3 

1 0 2 3 

2 7 0 1 

3 8 9 0 

 

Sum of upper weight = 2+3 +1 = 6 

An acyclic tournament with the highest weight in this 

simple example is achieved by picking arcs with highest 

weight which does not violate the acyclic condition and 

covers all arcs. The graph below gives the best solution 

(Fig. 2);  

 
Fig. 2. Acyclic tournament with highest weight example 

 

Ordering procedure  

The first node is the one with no entering arc (i.e. 3); 

the last node is the one with no leaving arc (i.e. 1). The 

order is therefore: 3, 2, 1 and the associated matrix is as 

shown in Table 2;  

Table 2. Triangulated Input-Output table example 

 3 2 1 

3 0 9 8 

2 1 0 7 

1 3 2 0 

 

Sum of upper weight = 9 + 8 + 7 = 24  

 

Our case study problem is the input-output table for 

Tanzanian Economy with 79 sectors of economy and 

cannot be solved by such a simple procedure. 

Triangulation is an important factor in understanding 

complex series of interactions among sectors of any 

county’s economy [19].  

 

III.  GDA ALGORITHM FORMULATION  

One of the main challenges associated with global 

heuristic techniques such as Genetic Algorithms, Tabu 

Search, Simulated Annealing and many others is the 

sheer number of parameters that have to be selected and 

their sensitivity towards the choice of the best solution. 

Great Deluge algorithm was designed to address this 

problem of multiple parameters by minimizing the 

number of parameter requirements without jeopardising 

the quality of solution. The algorithm was introduced by 

Dueck, G. [13] and in general it requires only one 

parameter. 

The idea is a simulation of an object in a mountainous 

space which is under pouring rain. The object wonders 

randomly on the space, but there is water level below 

which it can’t go because of water. If this level is L, then 

the object accepts any area that has a value greater than L. 

As time goes on, L rises slowly and finally forced up 

onto a peak (and then the rain stops). The idea can easily 

be defined for the minimization case as shown in the 

pseudo code in Fig 错误 !未找到引用源。 3. This 

simulation is compared with the Noah’s Ark and hence 

the name Great Deluge.  
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Great Deluge Algorithm  

Set the Initial Solution So; 

Calculate Initial cost f(So); 

Initial Level L = f(So);   

Specify input parameter L;  

While no further improvement possible { 

 Define neighbourhood N(So) 

Randomly select a candidate solution 

SN(So);  

 If f(s) ≤ f(So)  

  Accept new solution (So = S);  

 Else if f(s) ≤ L) 

  Accept new solution (So=S);   

 Else  

  Reject new solution  

  } 

 Lower Level L = L - L; 

 }  

So is the best solution;  

End Great Deluge  

Fig. 3. Great Deluge Algorithm’s Pseudo-code 

 

In this minimization case the algorithm allows a 

reduction in solution values according to their 

improvement. However, the approach also accept worse 

candidate solution if its value is less than or equal to the 

given upper limit L. The main function of L during 

search process is to restrict some of the search space and 

thereby forces the current solution to escape into the 

remaining feasible space. It can be noted that the user 

only needs to decide one input parameter i.e. L which 

controls the reduction of level L. 

Initially, the controlling process is slow, and in this 

case the value of L does not exceed the current solution, 

but only prohibits the longest backward moves [20]. The 

situation progresses until the value of L exceeds the 

current solution, and in this lower level, only good 

moves are accepted. 

A. Initial Solution  

Initially, we need a quick feasible solution as an input 

to the GDA. The initial solution in this case is easily 

found by picking all upper triangle values of the solution 

matrix. In this case we are guaranteed that the solution 

does not contain any dicycles and covers all nodes of the 

associated graph. Therefore the initial solution is set as 

 0
0 ijS x  Such that: 

0 1

0
ij

for all i j
x

otherwise


 


 

Objective function value for the initial solution is the 

sum of the product of weights and the associated binary 

values in the solution matrix and is represented by 

 
1 1

0
0

0 0

n n

ij ij
i j

f S w x
 

 

    

Where ijw  is the weight of arc (i, j) in the input-output 

table. 

B. Moves and Neighbourhood structure  

The algorithm uses swap moves which involve 

swapping of arcs in the graph. Two nodes i and j are 

selected at random in the current solution and swapped 

into j and i in the order. The corresponding binary values 

are therefore swapped as well, since only one of the (i,j) 

and (j,i) can have a value of 1 at the same time in the 

solution. After this choice the algorithm check if there is 

violation of constraints. If no violation, the swapping is 

confirmed otherwise no swapping is done. The process 

continues until a swap with no violation of constraints is 

found. 

C. Checking violation of constraints  

Given the choice of the initial solution, it guarantees 

that only one of 1ijx   at the same time, and therefore 

the constraint 1, ,ij jix x i j V    is satisfied. 

Furthermore, the selection of a swap move guarantees 

that the constraint will always be satisfied. The only 

constraint to be checked for violation is the dicycle 

constraint. Given two nodes say i and j  which have 

been picked randomly for swapping, and index 

 1,2,..., 2k n   is defined and the following is 

checked for any violation: 

2, , , ,ij jk ki nx x x i j k V j k      . The algorithm 

stops once the first violation is detected and returns a 

violation indicator; otherwise the swapping process is 

confirmed.  

D. Increasing level rate ( );L  

As shown in Fig. 3, Great Deluge algorithm is 

designed to accept good solutions but can accept bad 

moves only when the function value is greater than a 

specified level value (Level). Given an initial solution

 0f S , the increasing level rate is calculated as follows;  

0( )

mov

f S
L

N
  , where  Nmov is the pre-determined 

number of moves and the only input parameter. Initially 

Level is assigned the values of the initial solution, it is 

then steadily increased by L at each iteration.  

 

IV. ANALYSIS OF RESULTS  

The algorithm code was implemented on a C++ 

programming language and tested on the personal 

computer with 2.40GHZ speed processor. It has been 

tested on the Tanzanian input-output table. Tanzanian 

input-output economic table is classified into 79 main 

sectors of economy based on the type of product 

produced in each unit according to Tanzanian Central 

Bank (CB) data of 1992 [21]. This therefore gives s 

79×79 size of a matrix. The algorithm was tested by 

different values of  Nmov  and the solution obtained 

after a number of iterations (MaxIters) as shown in Table 

3. The number of MaxIters was varied from 0 to 44,000 

with fixed interval of 2,000. The results were recorded 
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three times at different number of moves  Nmov  i.e. 

10,000, 30,000, and 60,000.  

 
Table 3. Algorithm Performance Results 

MaxIters S1(10,000) S2(30,000) S3(60,000) 

0 585,481 585,481 585,481 

2,000 677,018 623,765 608,260 

4,000 753,655 682,803 641,191 

6,000 802,245 702,740 649,524 

8,000 816,925 741,428 664,371 

10,000 830,979 778,743 683,898 

12,000 838,002 813,608 704,031 

14,000 839,256 828,143 727,310 

16,000 839,787 831,331 746,432 

18,000 839,787 833,948 762,396 

20,000 839,827 836,710 779,867 

22,000 839,827 838,279 799,089 

24,000 839,842 839,657 816,862 

26,000 839,842 839,720 825,097 

28,000 839,842 839,730 833,667 

30,000 839,842 839,842 835,878 

32,000 839,842 839,842 838,126 

34,000 839,842 839,842 838,168 

36,000 839,842 839,842 838,886 

38,000 839,842 839,842 839,695 

40,000 839,842 839,842 839,838 

42,000 839,842 839,842 839,842 

44,000 839,842 839,842 839,842 

 

The speed of conversion does not necessarily increase 

with the number of moves. As can be seen in Table 3, the 

algorithm converged faster with the lower number of 

moves (10,000), signifying that there is a threshold of 

number of moves that can save time in finding a good 

solution. This is clearly demonstrated in Fig. 4, where 

both values of Nmov converged to the same solution but 

Nmov=10,000 converged faster i.e. at a lower number of 

iterations.  

 
Fig. 4. GDA Performance 

 

It was also interesting to note the behaviour of the 

solution in relation to changes in the value of levels in 

the Great Deluge procedure. A specific case was picked 

with the parameters shown in Table 4 and observes all 

iterations until convergence to a particular solution.  

Table 4. Parameters under a single run 

Nmov MaxIters Time (Seconds) 

60,000 42,000 1.172 

 

The results are as shown in Fig. 5, where the solution 

values are fluctuating above the level line. Initially there 

is high fluctuation showing the high acceptance of bad 

moves but later the solution stabilizes and finally 

converges regardless to the increase the level values. 

This clearly demonstrates the expected performance of 

Great Deluge and the influence of the level parameter in 

the quality of solution.  

 
Fig. 5. Solution-Level relationship 

 

A. Degree of Linearity and Order of sectors  

Degree of linearity is an index that shows the extent of 

triangulation of the matrix. This is given by 

1

1 1

1

n n

ij
i j i

n n

ij
i j i

w

w





  

 



 



    (3) 

This is basically the ratio of the sum of the weights 

above the diagonal to the sum of all weights in the matrix 

(except diagonals). The value of =1 for a perfectly 

linear economy, Leontief [22]. The computation of the 

degree of linearity () for our solution is shown in Table 

5.  

 
Table 5. Measure of Linearity 

Sum of I/O table 

entries for i j  

Sum of I/O table 

entries for i j  
Degree of 

Linearity 

839,842 890,629 94.3% 

 

The degree of linearity attained so far (94.3%) shows 

how well the input-output table for this particular 

problem is triangulated. The original sectors of the 

economy in the input-output tables were ordered as 

shown in the table 6.  

After running the Great Deluge Algorithm the results 

are shown in Table 7 where the order has been 

completely changed to reflect a maximization of the 

upper diagonal entries of the input-output table.  
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Table 6. Prior ordering 

 
 

Table 7. Post ordering 

 
 

V. CONCLUSION AND FURTHER RESEARCH 

This paper presents a Great Deluge Algorithm as an 

approach in solving the Linear Ordering Problem. This is 

a case study of Tanzanian input-output table. We have 

been able to implement the algorithm and obtain a linear 

order with degree of linearity of 94.3%. This 

demonstrates that Great Deluge is a good heuristic for 

the Linear Ordering problem.  

Since the algorithm was tested on a Tanzanian case 

study, it is worth testing the performance of the 

algorithm on benchmark problems in the LOLIB library 

which have been tested with other algorithms and 

compare results. However fast the algorithm is, it is still 

not guaranteed that the obtained solution is optimal. A lot 

of effort has been devoted to development of exact 

methods especially in the identification of unique facets 

for the problem. It is therefore worth investigating 

further the use of exact methods for the Tanzania Input-

output table.  
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