
I.J. Information Technology and Computer Science, 2015, 07, 28-34
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.07.04

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

Great Deluge Algorithm for the Linear Ordering

Problem: The Case of Tanzanian Input-Output

Table

Amos Mathias
Department of Science Mathematics and Technology Education, University of Dodoma, Box 523, Dodoma, Tanzania

Email: ms_mathias@yahoo.co.uk

Allen R. Mushi
Department of Mathematics, University of Dar es salaam, Box 35062, DSM, Tanzania

Email: allenmushi66@gmail.com

Abstract—Given a weighted complete digraph, the Linear

Ordering Problem (LOP) consists of finding and acyclic

tournament with maximum weight. It is sometimes referred to

as triangulation problem or permutation problem depending on

the context of its application. This study introduces an

algorithm for LOP and applied for triangulation of Tanzanian

Input-Output tables. The algorithm development process uses

Great Deluge heuristic method. It is implemented using C++

programming language and tested on a personal computer with

2.40GHZ speed processor. The algorithm has been able to

triangulate the Tanzanian input-output tables of size 79×79

within a reasonable time (1.17 seconds). It has been able to

order the corresponding economic sectors in the linear order,

with upper triangle weight increased from 585,481 to 839,842

giving the degree of linearity of 94.3%.

Index Terms — Optimization, Linear Ordering, Input-Output

Tables, Great Deluge Algorithm

I. INTRODUCTION

Linear Ordering Problem (LOP) involves finding an

acyclic tournament in a complete weighted digraph with

maximum weight. This is equivalent to finding a

permutation of rows and columns (linear order) of the

associated matrix such that the sum of the weights of the

upper triangle is maximized, Mushi [1]. It is one of the

combinatorial optimization problems that are classified

as NP-hard (Non-deterministic Polynomial time)

problems as discussed in Martí and Reinelt [2]. It is so

classified because there is no general deterministic

polynomial time algorithm for its solution that is known

to date, Schiavinotto and Stüzle [3].

Formally, given a complete digraph (,)n n nD V A

with n-nodes and arc weights
ij

x , for all , ni j V (nodes

set) and (,) ni j A (arcs set) defined on a positive weight

function :x A  , find an acyclic tournament nT A

such that the weight (,)() i j T ijx T x is the maximum

possible [2].

The ideas on the solution of LOP existed since 1958,

from the work done by Chenery and Watanable [4].

Since then, it has received considerable attention by

many researchers and hence becoming a problem of

interest to date. LOP is found in a number of applications,

such as Triangulation of Input-Output matrices in

economics, Archaeological seriation, Minimizing total

weighted completion time in one-machine scheduling,

Aggregation of Individual preferences, Grötschel, Junger

and Reinelt [5], ordering of teams in sports tournaments,

Mushi [1] as well as Machine translation, Tromble [6].

A number of algorithms for the LOP solution have

been developed, however each algorithm works with

some weaknesses depending on the level of complexity

of the problem. Grötschel, Junger and Reinelt [5],

introduced an exact algorithm which combines heuristics,

cutting plane and branch and bound techniques basing on

investigations of the LOP polytope. The algorithm was

able to solve up to 60×60 Input-Output tables from the

Linear Ordering Library (LOLIB) instances [7], with

83.185% degree of linearity and running time of 13

minutes and 25 seconds. Likewise, an exact algorithm

focused on cutting plane and branch and bound

procedures has been used to LOP in Mushi [1]. The

approach relaxed integer constraints and solved the

problem as a continuous Linear Programming problem

with normal simplex algorithm and then applying cutting

planes with available facets followed by branch and

bound technique to get integral solution. The algorithm

was able to solve the 41×41 Irish input-output table to

optimality within reasonable time.

As pointed earlier, this is an NP-Hard problem and

therefore no optimal algorithm is known that can solve a

general problem within reasonable time. Consequently, a lot

of effort has been devoted into finding good heuristic

solutions. Although heuristics cannot give a guarantee of

optimal solutions, they have been widely used to give good

solutions within reasonable time. Marti and Reinelt [2]

reports on the development of a heuristic, commonly

referred to as Beckers method, based on calculations of

quotients which were used as basis for ranking the

economic sectors of an input-output table. However, the

authors admit that their algorithm does not necessarily lead

to good approximate solution to their triangulation problem.

mailto:ms_mathias@yahoo.co.uk
mailto:allenmushi66@gmail.com

 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table 29

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

Chanas and Koblański [8] designed a heuristic

algorithm which could determine the solution for both

maximization and minimization of the given problem

criterion function, basing on the resulting permutation by

sorting through insertion and permutation reversals.

Experimental results show that the algorithm was able to

give near optimal solutions in most instances. However,

the method requires the problem to be decomposable into

components, where methods for effective decomposition

are difficult to find.

Garcia et al [9] developed a Variable Neighbourhood

Search (VNS) algorithm. The algorithm combines

various neighbourhoods for effective exploration of

search space. The VNS results competed with well

known heuristics such as Tabu Search but require further

extensive studies. Campos, et al [10] presented meta-

heuristic approaches for LOP, using scatter search

technique. The approach used combined solution vectors

that had proved effective in a number of problem settings,

but was able to match only 30 out of 49 solutions of

world problem instances in the LOLIB.

Recent work includes a publication by Celso and

Mutsunori [11] on local algorithms. They provided

improvements into the local search by introducing two

algorithms namely LIST and TREE for neighbourhood

structure. Computational experiments with random

problems showed good results for sparse instances with

density up to 10%. Even more recent is the 2014

publication by Tao et al [12], on Multi-Parent Memetic

algorithm, denoted by MPM. The algorithm integrates

particular features such as multi-parent recombination

operator, a diversity based parent selection strategy and a

quality-and-diversity based pool updating strategy.

Computation results shows that the MPM is an efficient

algorithm and outperforms previous Memetic algorithm

in detecting lower bounds for challenging instances.

This paper introduces another heuristic algorithm for

the LOP particularly for a triangulation problem using

Great Deluge Algorithm (GDA) described in Doeck [13].

We are interested in the use of GDA particularly for

Tanzanian Input-Output economic tables since the

technique has been effective in other combinatorial

optimization problems, including timetabling, Mushi

[14], [15], Landa-Silva and Obit [16], and Turabie,

Abdullah and McCollum [17]. Other successful

applications include Dynamic Scheduling on Grid

environment problem reported in McMullan and

McCollum, [18].

The paper is organized as follows; first we give a

mathematical formulation of the problem; secondly we

present the Great Deluge Algorithm with the specific

adaptation to the Linear Ordering Problem, including

development of initial solution, selection of moves and

neighbourhood structure. We then provide our analysis

of results as applied to the Tanzanian Input-Output tables;

and lastly we present conclusion and suggest areas for

further research.

II. MATHEMATICAL FORMULATION

The LOP is formulated as a binary Integer

Programming problem. The input-output table decision

variable is defined as follows:-

Let

1 if there is an arc between nodes and

0 Otherwise
ij

(i, j) i j
x


 


(,) ni j A 

Thus, the Linear Programming model as defined by

Marti and Reinelt [2] is:

Maximize (,)
ni j A ij ijw x (1)

Subject to:

 

1, ,

2, , , ,

0,1 , ,

ij ji n

ij jk ki n

ij n

x x i j V

x x x i j k V j k

x i j V

   

     

  

Where ijw represents the actual weights from the

input-output table.

In Graphical representation, we define a digraph

 : ,n n nD V A and find an acyclic tournament nT A

with the linear ordering 1 2, ,...,i i inV V V  that gives the

maximum sum of weights assigned to its corresponding

arcs [2].

The most common exact approach in solving LOP is

the use of a branch and cut algorithm that combines both

cutting planes and branch and bound methods. This is

facilitated by the development of deepest possible cutting

planes known as facets that can prune infeasibilities from

the relaxation of the associated linear programming

problem. The known facets include the 3-dicycles, 3-

fences, Möbius ladders of type M and type M [2].

These facets together with the minimal equation system

give the following Linear Programming relaxation:

Maximize
,

ij ij
i j
i j

c x



 (2)

Subject to:

1, for all 1 ,ij jix x j j n    

0, for all 1 , , ,ijx i j n i j   

() 2, for all 3-dicycles in , nx C C A

() 7, for all 3-Fences (,) in ,nx F D V F D 

2 2

() 8, for all Mobius ladders (,)

 of type or in n

x M D V M

M M D

 

It has been shown in [2] that this problem has
2

n 
 
 

equations, (1)n n non-negativity constraints, 2
3

n 
 
 

 3-

30 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

dicycle inequalities, 120
6

n 
 
 

 3-fence inequalities, and

360
6

n 
 
 

 Möbius ladder inequalities.

Due to this enormous number of constraints, it is

impractical to list all the constraints and solve the linear

program using available computer code. Instead, a

cutting plane algorithm is applied where facets are added

to the problem one at a time until the solution is found or

the problem size has been reduced to an extent that it can

be solved by branch and bound method.

However, this approach has been only successful in

solving specific instances to optimality due to large size

of the problem. The use of heuristics is therefore a

preferred approach when it comes to large problem sizes

and hence the choice of Great Deluge heuristic approach

in this work.

A. Linear Ordering as a Triangulation Problem

As described by Marti et al in [7], given an (n, n)

matrix ()ijC c , the triangulation problem involves the

determination of a simultaneous permutation of the rows

and columns of the matrix C such that the sum of upper-

diagonal entries is as large as possible.

By setting arc weights ij ijw c for the complete

digraph nD , the triangulation problem for C can be

solved as Linear Ordering Problem for nD . Conversely,

a linear ordering problem for nD can be transformed

into a triangulation problem for an (n, n) matrix

()ijC c by setting ij ijc w and the diagonal entries

0iic  .

Example

Consider the following directed compete graph with

weights on arcs (Fig. 1);

Fig. 1. Complete digraph example

The associated matrix is as shown in Table 1;

Table 1. Input-output table example

 1 2 3

1 0 2 3

2 7 0 1

3 8 9 0

Sum of upper weight = 2+3 +1 = 6

An acyclic tournament with the highest weight in this

simple example is achieved by picking arcs with highest

weight which does not violate the acyclic condition and

covers all arcs. The graph below gives the best solution

(Fig. 2);

Fig. 2. Acyclic tournament with highest weight example

Ordering procedure

The first node is the one with no entering arc (i.e. 3);

the last node is the one with no leaving arc (i.e. 1). The

order is therefore: 3, 2, 1 and the associated matrix is as

shown in Table 2;

Table 2. Triangulated Input-Output table example

 3 2 1

3 0 9 8

2 1 0 7

1 3 2 0

Sum of upper weight = 9 + 8 + 7 = 24

Our case study problem is the input-output table for

Tanzanian Economy with 79 sectors of economy and

cannot be solved by such a simple procedure.

Triangulation is an important factor in understanding

complex series of interactions among sectors of any

county’s economy [19].

III. GDA ALGORITHM FORMULATION

One of the main challenges associated with global

heuristic techniques such as Genetic Algorithms, Tabu

Search, Simulated Annealing and many others is the

sheer number of parameters that have to be selected and

their sensitivity towards the choice of the best solution.

Great Deluge algorithm was designed to address this

problem of multiple parameters by minimizing the

number of parameter requirements without jeopardising

the quality of solution. The algorithm was introduced by

Dueck, G. [13] and in general it requires only one

parameter.

The idea is a simulation of an object in a mountainous

space which is under pouring rain. The object wonders

randomly on the space, but there is water level below

which it can’t go because of water. If this level is L, then

the object accepts any area that has a value greater than L.

As time goes on, L rises slowly and finally forced up

onto a peak (and then the rain stops). The idea can easily

be defined for the minimization case as shown in the

pseudo code in Fig 错误 !未找到引用源。 3. This

simulation is compared with the Noah’s Ark and hence

the name Great Deluge.

1 2

3

2

2

7

2

9

2

1

2
8

2 3

2

1 2

3

7

2

8

2

9

2

 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table 31

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

Great Deluge Algorithm

Set the Initial Solution So;

Calculate Initial cost f(So);

Initial Level L = f(So);

Specify input parameter L;

While no further improvement possible {

 Define neighbourhood N(So)

Randomly select a candidate solution

SN(So);

 If f(s) ≤ f(So)

 Accept new solution (So = S);

 Else if f(s) ≤ L)

 Accept new solution (So=S);

 Else

 Reject new solution

 }

 Lower Level L = L - L;

 }

So is the best solution;

End Great Deluge

Fig. 3. Great Deluge Algorithm’s Pseudo-code

In this minimization case the algorithm allows a

reduction in solution values according to their

improvement. However, the approach also accept worse

candidate solution if its value is less than or equal to the

given upper limit L. The main function of L during

search process is to restrict some of the search space and

thereby forces the current solution to escape into the

remaining feasible space. It can be noted that the user

only needs to decide one input parameter i.e. L which

controls the reduction of level L.

Initially, the controlling process is slow, and in this

case the value of L does not exceed the current solution,

but only prohibits the longest backward moves [20]. The

situation progresses until the value of L exceeds the

current solution, and in this lower level, only good

moves are accepted.

A. Initial Solution

Initially, we need a quick feasible solution as an input

to the GDA. The initial solution in this case is easily

found by picking all upper triangle values of the solution

matrix. In this case we are guaranteed that the solution

does not contain any dicycles and covers all nodes of the

associated graph. Therefore the initial solution is set as

 0
0 ijS x Such that:

0 1

0
ij

for all i j
x

otherwise


 


Objective function value for the initial solution is the

sum of the product of weights and the associated binary

values in the solution matrix and is represented by

 
1 1

0
0

0 0

n n

ij ij
i j

f S w x
 

 

  

Where ijw is the weight of arc (i, j) in the input-output

table.

B. Moves and Neighbourhood structure

The algorithm uses swap moves which involve

swapping of arcs in the graph. Two nodes i and j are

selected at random in the current solution and swapped

into j and i in the order. The corresponding binary values

are therefore swapped as well, since only one of the (i,j)

and (j,i) can have a value of 1 at the same time in the

solution. After this choice the algorithm check if there is

violation of constraints. If no violation, the swapping is

confirmed otherwise no swapping is done. The process

continues until a swap with no violation of constraints is

found.

C. Checking violation of constraints

Given the choice of the initial solution, it guarantees

that only one of 1ijx  at the same time, and therefore

the constraint 1, ,ij jix x i j V    is satisfied.

Furthermore, the selection of a swap move guarantees

that the constraint will always be satisfied. The only

constraint to be checked for violation is the dicycle

constraint. Given two nodes say i and j which have

been picked randomly for swapping, and index

 1,2,..., 2k n  is defined and the following is

checked for any violation:

2, , , ,ij jk ki nx x x i j k V j k      . The algorithm

stops once the first violation is detected and returns a

violation indicator; otherwise the swapping process is

confirmed.

D. Increasing level rate ();L

As shown in Fig. 3, Great Deluge algorithm is

designed to accept good solutions but can accept bad

moves only when the function value is greater than a

specified level value (Level). Given an initial solution

 0f S , the increasing level rate is calculated as follows;

0()

mov

f S
L

N
  , where  Nmov is the pre-determined

number of moves and the only input parameter. Initially

Level is assigned the values of the initial solution, it is

then steadily increased by L at each iteration.

IV. ANALYSIS OF RESULTS

The algorithm code was implemented on a C++

programming language and tested on the personal

computer with 2.40GHZ speed processor. It has been

tested on the Tanzanian input-output table. Tanzanian

input-output economic table is classified into 79 main

sectors of economy based on the type of product

produced in each unit according to Tanzanian Central

Bank (CB) data of 1992 [21]. This therefore gives s

79×79 size of a matrix. The algorithm was tested by

different values of  Nmov and the solution obtained

after a number of iterations (MaxIters) as shown in Table

3. The number of MaxIters was varied from 0 to 44,000

with fixed interval of 2,000. The results were recorded

32 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

three times at different number of moves  Nmov i.e.

10,000, 30,000, and 60,000.

Table 3. Algorithm Performance Results

MaxIters S1(10,000) S2(30,000) S3(60,000)

0 585,481 585,481 585,481

2,000 677,018 623,765 608,260

4,000 753,655 682,803 641,191

6,000 802,245 702,740 649,524

8,000 816,925 741,428 664,371

10,000 830,979 778,743 683,898

12,000 838,002 813,608 704,031

14,000 839,256 828,143 727,310

16,000 839,787 831,331 746,432

18,000 839,787 833,948 762,396

20,000 839,827 836,710 779,867

22,000 839,827 838,279 799,089

24,000 839,842 839,657 816,862

26,000 839,842 839,720 825,097

28,000 839,842 839,730 833,667

30,000 839,842 839,842 835,878

32,000 839,842 839,842 838,126

34,000 839,842 839,842 838,168

36,000 839,842 839,842 838,886

38,000 839,842 839,842 839,695

40,000 839,842 839,842 839,838

42,000 839,842 839,842 839,842

44,000 839,842 839,842 839,842

The speed of conversion does not necessarily increase

with the number of moves. As can be seen in Table 3, the

algorithm converged faster with the lower number of

moves (10,000), signifying that there is a threshold of

number of moves that can save time in finding a good

solution. This is clearly demonstrated in Fig. 4, where

both values of Nmov converged to the same solution but

Nmov=10,000 converged faster i.e. at a lower number of

iterations.

Fig. 4. GDA Performance

It was also interesting to note the behaviour of the

solution in relation to changes in the value of levels in

the Great Deluge procedure. A specific case was picked

with the parameters shown in Table 4 and observes all

iterations until convergence to a particular solution.

Table 4. Parameters under a single run

Nmov MaxIters Time (Seconds)

60,000 42,000 1.172

The results are as shown in Fig. 5, where the solution

values are fluctuating above the level line. Initially there

is high fluctuation showing the high acceptance of bad

moves but later the solution stabilizes and finally

converges regardless to the increase the level values.

This clearly demonstrates the expected performance of

Great Deluge and the influence of the level parameter in

the quality of solution.

Fig. 5. Solution-Level relationship

A. Degree of Linearity and Order of sectors

Degree of linearity is an index that shows the extent of

triangulation of the matrix. This is given by

1

1 1

1

n n

ij
i j i

n n

ij
i j i

w

w





  

 



 



 (3)

This is basically the ratio of the sum of the weights

above the diagonal to the sum of all weights in the matrix

(except diagonals). The value of =1 for a perfectly

linear economy, Leontief [22]. The computation of the

degree of linearity () for our solution is shown in Table

5.

Table 5. Measure of Linearity

Sum of I/O table

entries for i j

Sum of I/O table

entries for i j
Degree of

Linearity

839,842 890,629 94.3%

The degree of linearity attained so far (94.3%) shows

how well the input-output table for this particular

problem is triangulated. The original sectors of the

economy in the input-output tables were ordered as

shown in the table 6.

After running the Great Deluge Algorithm the results

are shown in Table 7 where the order has been

completely changed to reflect a maximization of the

upper diagonal entries of the input-output table.

 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table 33

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

Table 6. Prior ordering

Table 7. Post ordering

V. CONCLUSION AND FURTHER RESEARCH

This paper presents a Great Deluge Algorithm as an

approach in solving the Linear Ordering Problem. This is

a case study of Tanzanian input-output table. We have

been able to implement the algorithm and obtain a linear

order with degree of linearity of 94.3%. This

demonstrates that Great Deluge is a good heuristic for

the Linear Ordering problem.

Since the algorithm was tested on a Tanzanian case

study, it is worth testing the performance of the

algorithm on benchmark problems in the LOLIB library

which have been tested with other algorithms and

compare results. However fast the algorithm is, it is still

not guaranteed that the obtained solution is optimal. A lot

of effort has been devoted to development of exact

methods especially in the identification of unique facets

for the problem. It is therefore worth investigating

further the use of exact methods for the Tanzania Input-

output table.

REFERENCES

[1] Mushi Allen Rangia, “The Linear Ordering Problem; An

Algorithm for the Optimal Solution”, African Journal of

Science and Technology, Vol. 6, pp. 51-64, 2005.

[2] Martí R and Reinelt G, “The Linear Ordering Problem,

Exact and Heuristic Methods in Combinatorial

Optimization”, Springer, Applied Mathematical Sciences,

2011.

[3] Schiavinotto T and Stüzle T, “The Linear Ordering

Problem, Instances, Search Space Analysis and

Algorithms”, Journal of Mathematical Modelling and

Algorithms, Vol. 3, pp. 367-402, 2004.

[4] Chenery BH and Watanable T, “International

Comparisons of the Structure of Production”,

Econometrica, Vol. 26, pp. 4, 1958.

[5] Grötschel M, Jünger M and Reinelt G, “A Cutting Plane

Algorithm for the Linear Ordering Problem”, Operation

Research Society of America, Vol. 32, pp. 3206-1195,

1984.

[6] Tromble WR, “Search and Learning for the Linear

Ordering Problem with an Application to Machine

translation”, Johns Hopkins University, USA (PhD thesis),

2009.

[7] Martí, Reinelt and Duarte, “Linear Ordering Problem”,

Optsicom Project: http://www.optsicom.es/lolib/, June

2014.

[8] Chana S, Kobylański P, 1996, “A New Heuristic

Algorithm Solving the Linear Ordering Problem”. Kluwer

Academic Publishers, Vol. 6, pp. 191-205, 1996.

[9] Garcia C, Pérez-Brito D, Campos V and Martí R, 2005,

“Variable Neighborhood Search for the linear ordering

problem”, Elsevier Science Ltd, Vol.33, pp. 3549–3565,

2006.

[10] Campos V, Glover F, Laguna M and Martí R, “An

Experimental Evaluation of Scatter Search for Linear

Ordering Problem”, Journal of Global Optimization, Vol.

21, pp. 397-414, 2001.

[11] Celso S. Sakuraba, Mutsunori Yagiura, “Efficient Local

Search Algorithms for the Linear Ordering Problem”,

International Transactions in Operational Research, Vol.

17, pp 711-737, 2010.

[12] Tao Y., Wang T, Lu Z., Hao J., “A Multi-Parent Memetic

Algorithm for the Linear Ordering Problem”,

arxiv.org/abs/1405.4507v1 [cs.NE] (Submitted to arXiv on

18, May 2014).

[13] Doeck G, “New Optimization Heuristics, The Great

Deluge Algorithm and The Record-to-Record Travel”,

Heidelberg Scientific Centre, Vol. 104, pp. 86-92, 1993.

[14] Mushi Allen Rangia, “Two-Phase Great Deluge Algorithm

for Course Timetabling problem”, International Journal of

Advanced Research in Computer Science, Vol. 2, No.5, pp.

73-83, 2011.

[15] Mushi Allen Rangia, “Non-Linear Great Deluge algorithm

for Tanzanian High Schools Timetabling”, International

http://www.optsicom.es/lolib/

34 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 28-34

Journal of Advanced Research in Computer Science, Vol.

2, No. 4, pp.584-590, 2011.

[16] Landa-Silva D and Obit J, “Great Deluge with Non-linear

Decay Rate for Solving Course Timetabling Problems”,

Intelligent Systems, Vol. 1, pp. 8–18, 2008.

[17] Turabieh H, Abdullah S and McCollum B,

“Electromagnetism-like Mechanism with Force Decay

Rate Great Deluge for the Course Timetabling Problem”,

Springer, UK, 2009.

[18] McMullan P and McCollum B, “Dynamic Job Scheduling

on Grid Environment Using Great Deluge Algorithm”,

Berlin Heidelberg, Springer, Vol. 4671, pp. 283–292, 2007.

[19] Lamel J., Richter J., Teufelsbauer W., “Patterns of

industrial structure and economic development:

Triangulation of input-output tables of ECE countries”,

European Economic Review, Vol. 3, No. 1, pp 47–63,

1972.

[20] Burke E., Yuri b., Newall J., Petrovic, S., “A Time

Predefined Local Search Approach to Exam Timetabling

Problems”, IIE Transactions of Operations Engineering,

Vol. 36 pp 509-528, 2004.

[21] National Bureau of Statistics, “Input-Output Table of

Tanzania for 1992”, Input-output table construction

project, supported by Sida through Statistics Sweden Vol.

2, 1992.

[22] Leontief, Wassily, “Input-Output Economics”, Oxford

University Press, New York, USA, 1986.

Authors’ Profiles

Amos Mathias: A postgraduate student

in the Masters of Science in

Mathematical modeling programme at

the University of Dar es Salaam in

Tanzania. Mathias is also working in

the Department of Science Mathematics

and Technology Education at the

University of Dodoma in Tanzania.

Allen Rangia Mushi: An Associate

Professor of Mathematics from the

Department of Mathematics of the

University of Dar es Salaam in

Tanzania. His area of interest is

Operations Research specifically the

Combinatorial Optimization Problems.

Major research work includes

Timetabling, Linear Ordering,

Resource Leveling in manufacturing industries, Municipal

Solid Waste Disposal models and Graph Theory.

How to cite this paper: Amos Mathias, Allen R. Mushi,"Great

Deluge Algorithm for the Linear Ordering Problem: The Case

of Tanzanian Input-Output Table", International Journal of

Information Technology and Computer Science(IJITCS), vol.7,

no.7, pp.28-34, 2015. DOI: 10.5815/ijitcs.2015.07.04

