
I.J. Information Technology and Computer Science, 2015, 07, 35-47
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.07.05

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

Flexible Self-Managing Pipe-line Framework

Reducing Development Risk to Improve Software

Quality

Nitin Deepak
Research Scholar, Bhagwant University, Ajmer, Rajasthan, India

Email: nitin.d12@gmail.com

Shishir Kumar
Jaypee University of Engineering & Technology, Guna, M.P., India

Email: dr.shishir@yahoo.com

Abstract— Risk identification and assessment in today’s sce-

nario play a vital role in any software/web application devel-

opment industry. Many process models deliver the process

related to development life cycle, but the risk assessment at an

early stage is still an issue and is a significant subject for re-

search. In this paper, an approach based on MVC architecture

by embedding spiral process, which is verified and validated by

V-shape model is proposed. By using this approach develop-

ment efficiency will increase due to less burdened working

team(s), reduces stressful maintenance effort that causes reduc-

tion in risk factors because of beautifully distributed human

effort to improve software quality. Besides, the efficiency of

our approach is manifested by the preliminary experiment.

Index Terms— Risk, Software Risk, Software Risk Manage-

ment, Software Quality, Software Process Model, Process

Models, Design Pattern.

I. INTRODUCTION

This paper starts with the introduction towards risk and

risk management and continues with some process mod-

els sharing their merits and de-merits, then from these

process models it is intimated why specific few process

models were taken for the proposed framework introduc-

ing the architecture or discipline steps during SDLC of

planning of software development to reduce risk and im-

prove software quality and all evidenced via preliminary

experimentation and analysis.

To improve the software quality one must reduce risk

factors at various stages, which can be measured via var-

ious parameters. Many studies and implementations are

keen to work on improving quality to reduce risk, some

proven ones that are being used (brief given ahead) in our

framework.

This paper introduces the theoretical process model for

disciplined architecture of software development maturi-

ty to improve the team efficiency on individual (team

member(s)) specialization, which also ease the tedious

maintenance work and reduces risk at early development

phase, thus improves software quality at par.

A. Risk

All activities in any organization or group entail some

uncertainties. Due to internal or external factors that pro-

duces an uncertain environment while achieving their

objectives and these uncertainties impact on the organiza-

tion’s objectives certainly is Risk.

B. Risk Management

Aiming constant handling of discovering & detecting

risk and taking appropriate action to minimize can be

termed managing risk.

AS/NZS ISO 31000:2009 introduces some principles

of risk management [1]:

 Build and defend ethics.

 Should be the fundamental element of the whole

development process.

 Should be an integral part of decision making.

 Precisely demonstrate potential uncertainties.

 Should be organized, configured and on-time.

 Should be in shape.

 Should consider human values and culture.

 Should involve and transparent between individuals

to any level of communication.

 Should be open, iterative and dynamic to any

change.

 Should be the part of continuous improvement pro-

cess.

Almost every enterprise/ organization should work on

a framework of Risk Management endlessly [1].

And to identify the risk efficiently one need to segre-

gate the objective into three categories [1]:

 Objective Related to Strategy: Comes under the su-

pervision of senior executives within an organiza-

tion, which are responsible for providing strategic

decisions.

 Objective Related to Operations: Comes under the

middle level managers of an organization those are

responsible for aligning the strategic objectives.

 Line Objective: These are the actual line manager

who comes into action in the development of prod-

uct/ software.

36 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

C. Process Model

Software process life cycle model is either a descrip-

tive or prescriptive characterization of how software is or

should be developed. A descriptive model describes the

history of how a particular software system was devel-

oped. A prescriptive model prescribes how a new soft-

ware system should be developed.

To make the team more disciplined and less confuse

there will be need to put the schedule in black & white

and create standards to move forward in meeting objec-

tives efficiently [2].

Standards should be general to different types of soft-

ware(s) having differences to the situations or require-

ments.

These general standards also termed as models or

named process models to move ahead on the project effi-

ciently and effectively. Any impasse is not in the show

due to prior chosen process model as per the requirement,

size or category of the project.

There are various process models like [2]: waterfall

model, iterative model, incremental model, prototyping

model, spiral model, V-shaped Model etc. with due dis-

cipline it enhances the capacity and capability of team.

 Waterfall Model

A chronological development approach which empha-

sizes the flow towards the downwards direction through

the phases of requirement analysis → design → imple-

mentation → integration → and maintenance.

This model [Fig.1.] accentuates planning at early

phases and also anticipates not incorporating any changes

in-between. Design is like flowing water in a downward

direction so no chance of moving backward or upward.

Fig. 1. Waterfall Model

Steps included in the waterfall model detailed below:

1). Requirement & Analysis: Establishing the expecta-

tions for software and its functionality. Also analysis to

be done for hidden, missed or incomplete requirement to

make all specific and documented for further develop-

ment & understanding, which should be un-doubtful at

all levels.

2). Design: Framework should be the outcome of this

stage/ phase, which defines the external interfaces and

tools used in the project, can be determined by the de-

signer.

3). Detailed Design: Analysis on design defined earlier

and assesses the software components to be developed

and prepare a specification for how each component is

implemented.

4). Coding & Testing: Implements the detailed design

specification and determines whether the software meets

the specified requirements and finds any errors present in

the code.

5). Deployment & Implementation: After surviving in

all testing phases and levels software is deployed at client

sites and instructs them to use as per requirement and

finally implemented.

6). Maintenance: Modifications & enhancement is now

the motive whenever required to make software more

robust and efficient.

It has some merits, i.e. reinforces better discipline: de-

fine before design, design before code etc. and works

well on matured products and in weak teams.

Some de-merits, i.e. unrealistic to expect entire re-

quirements very early in the project, difficult to integrate

risk management, difficult to make changes to documents,

“swimming up streams”.

 Iterative Waterfall Model

The problems with the waterfall model, initiate the

demand of new methods of developing systems, which is

more flexible than the traditional waterfall model. In Iter-

ative waterfall model development, the project can be

developed in parts that results faster development and

product can be seen earlier and as per the feedback the

process can be repeated in newer versions [Fig.2.].

This modified version has the most attractive aspect is

that it enables the phases to overlap when needed, unlike

in a pure waterfall model where no overlapping was al-

lowed.

It also has some benefits like the work well with ma-

ture products and in weak teams and one more advantage

is that it allows overlapping unlike the pure waterfall

model.

But still some de-merits as like no scope of the chang-

ing requirement, no customization and above all no risk

management to improve quality.

Fig. 2. Iterative Waterfall Model

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 37

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

 Incremental Process Model

As the name suggests, incremental means builds are on

an incremental basis and evolution of software comes

with an every incremental build with some enhancement

and modification as required [Fig.3.].

In this model requirements were set of priorities and

develop the system in groups. Each release has some

added on features than previous ones until all the compo-

nents have been implemented [17].

It also has some benefits like: generates working soft-

ware quickly, more flexible, easier to test and debug be-

cause of less code/ modules at a time etc.

Very experienced team is needed for planning & de-

sign, the cost is high, involves rigidity in each phase of

an iteration and change in requirement is almost not pos-

sible etc are some drawbacks of this process model.

Fig. 3. Incremental Process Model

 Prototyping Process Model

Instead of cementing a requirement at early phase be-

fore design or implementation, this prototyping process

model gives the opportunity to understand the require-

ment completely.

A prototype is a dummy implementation to understand

the proposed system easily and client is also involved

easily to make the prototype as good as needed [3].

Fig. 4. Prototyping Process Model

The major strength of prototyping is the involvement

of the client in developing a prototype model of an actual

product, which increases the quality of the product as the

generated prototype is much nearer to the actual require-

ment of the client. Finally, after the acceptance of the

prototype the development begins with the iterative pro-

cess model.

Prototype modeling flavor enhances the capability of

iterative process modeling.

 Spiral Process Model

Improvement in software/ design/ development/ pro-

cess quality is an un-ending race since web/ software

application comes into existence. In the step of improv-

ing software quality in software development life cycle

phases Sir Barry Boehm introduces the Risk Assessment

& a Management aspect in his spiral analysis [4].

Fig. 5. Spiral Process Model

A process model having radial dimension in shape

named spiral model [Fig.5.] enhances SDLC by fusion of

risk analysis at every phase in four divisions’ viz.

 Determining the objectives, alternatives and con-

straints and obtaining commitment,

 Identify & resolve risks by evaluating & identifying

alternatives,

 Development & verification of the suggested alter-

native, and

 Design a plan to move ahead.

These four divisions/ segregation helps in making de-

velopment easy and risk-considerable at an early stage.

 V-shaped Process Model

For verification & validation activities V-shaped pro-

cess model [Fig.6] is only the model to be used, which is

more disciplined and rigid in approach. To use this model,

there is a need to collect functional and non-functional

requirements at earliest.

1). Verification phase of V-Model proceeds with the

sequence of

a) Requirement analysis: It includes collection of func-

tional & non-functional requirements as per the

need of the user.

b) Functional specification: It specifies the entire

above un-structured requirement collected informal

document. And similarly testing team works out the

system test plan.

c) High-level design: Preparation of abstract design for

the solution as per the specified requirement.

d) Detailed design/ program specification: All the

codes and module design completed along with all

codes and algorithms.

2). Validation phase serializes the testing as below:

 Unit testing: It tests the detailed design and all the

modules individually.

38 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

 Integration testing: It tests integrated stubs of all the

modules as per the high level design structure.

 System testing: It tests the whole system as per the

functional specification.

 User acceptance testing: It entertains the user in

testing for acceptance testing.

Fig. 6. V-Shape Process Model

It encourages the disciplined software development for

sure. It somehow rigid in its process, but easy to use and

appreciates whenever requirement completes before de-

sign [8]. It works well for small projects.

This model is suggested for large projects on the con-

dition that if follows the approach of CBSE and for every

component development one can use V-Model for sim-

plicity, reliability, and re-usability thus improves the

quality.

II. CBSE

Component based software engineering (CBSE) is

based on reusability of software components written in

the discipline of software engineering emerged due the

unsuccessful object oriented architecture for reusability.

Object classes are more detailed than abstraction of com-

ponents. And abstraction provides a much better oppor-

tunity to be reusable, which appreciates COTS for better

reusability [6]. Components of-the-Shelf (COTS) base

development is much beneficial as reducing cost, less

time to develop and market.

CBSE approach reduces development time and it in-

creases quality as it exhibits performance, reliability and

usability in comparing to the traditional approach of

software development [7].

CBSE approach follows the following steps in soft-

ware development [7]:

a) Identify & choose the prospective components for

reusability.

b) Assurance for usable components.

c) Adjust components as per requirement.

d) Assimilate the components to form sub-systems to a

new system.

This proven approach can be used in making software

development more maintainable and flexible to attach

and detach components.

III. MVC

Model-View-Controller (MVC) is now the well-known

architecture implementing user-interfaces. In 1970’s

Smalltalk (a programming language) firstly defined the

concept of MVC. From that time onwards the MVC de-

sign pattern was becoming routine specifically in object

oriented systems [11].

Technology related to re-usability is a common issue

among developers and planners. MVC provides compo-

nent reusability aspect referring sphere definite packages

[12].

As is said this system is self-managing, an automatic

and it includes some benefits among itself [13]:

 Possesses configuration: The system of MVC con-

figures itself with the environment because of its

self-configuring behavior.

 Possesses robustness: It shields the rest of the sys-

tem from its flawed activity.

 Possesses optimization: Because of having own

configuring, own robustness it automatically have

its own optimal to proficiently make best use of the

possessions to best meet the needs of its ambiance

and users.

 Possesses protection: It monitors and anticipates the

type of attacks like cross-side scripting, unauthor-

ized access, etc. and use appropriate measures to

neutralize the attack.

Experiencing different/ traditional architectures for

software and web-development, but MVC architecture is

an eye opening architecture, which enhances the capacity,

fresh-up the mind due to its disciplined framework.

Work Segregation is the best aspect of the MVC

framework. As team can be best escorted by making

them (Model, View & Controller) separate [13].

IV. PERCEPTION ON SOFTWARE QUALITY

Usage of software(s) since 10 years increased radically,

especially in communication, to reduce manual intrusion

to evaluate better accuracy, to lessen the time consump-

tion etc. usage of software(s) like: E-mail systems (rediff,

g-mail, hot-mail), e-ticketing reservation (in railways,

airways and now roadways also), e-billing, social media

(facebook, we-chat, what’s up) etc.

Due to considerable increment in usage of software(s)

[15], there is a keen need to maintain & improve software

quality. Therefore, emphasis should be made on better

process development of software(s), means, needs to re-

tain, maintain & improve software quality on pre-defined

attributes like: reliability, modifiability, traceability,

portability etc.).

Software quality needs to be analyzed again & again

by researchers and also analyzed many times in the past.

After studying various software factors, software quality

may be defined as the “combination of understanding &

performance of data modeling, creating business logic,

designing an innovative layout separately and finally

control and monitor the relationship among them by val-

idating and verifying with the specified requirements”.

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 39

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

V. CLASS OF SOFTWARE

Class can be Organic, Semi-detached and embedded as

Berry Boehm described in the book title “Software Engi-

neering”.

Organic: miniature range software(s) in this category

comes into action, in which experienced developers in

this category needed. For e.g., website to any compa-

ny/organization etc., web-application, means product line

software(s) comes into this category. This type of soft-

ware/ application acting as a pillar in the e-information

world needs quality to be maintained [17], but, here it is

needed to extend the types of projects to 2-50 KLOC to

2-99 KLOC.

Semi-Detached: Mid range software(s) in this category

comes into action, in which average previous experience

on similar projects is needed. For e.g., utility software(s)

like compilers, databases or editors etc. can be developed

in this category. Project size could be 50-300 KLOC.

Embedded: This category deals with larger projects,

real time systems, complex interfaces. And very little

previous experience is needed, but highly specialized

types of developers required. For e.g., ATMs, Air Traffic

Control etc. be developed in this kind. Project size is

normally over 300 KLOC.

This paper emphasizes on organic class of software(s)

where up to 2-99 KLOC can be extended. As in this cat-

egory most of the customized product line packages were

developed in this modern world specifically.

VI. PURPOSE OF MVC

Major causes due to which this architecture is so effi-

cient are:

1) Emphasizes on objects while planning automation

rather on irrelevant processes: Firstly, making a sto-

ry board is easy for any software development pro-

ject and MVC emphasizes on objects to be mapped

conceptually with the user’s and developer’s brain

rather focusing on detailed architecture [19].

2) Divide ‘n’ Rule: As this says is so popular in nega-

tive sense, but positively it encourages the efficien-

cy of the leader to project, direct n monitor the

whole task easily and effectively without burdening

the team(s).

3) Independence: Team members are independent to

each other due to the distribution of their independ-

ent tasks, which lead towards at higher success ratio.

4) Ensuring Responsibility: Disciplined distribution

positively emphasizes the individual responsibility.

5) Easy Maintenance: Again disciplined distribution &

management, maintenance response efficiently and

in time services.

Most motivational aspects of MVC are that this pattern

is popularly used in web design as an HTML file serves

as the model, containing the text to be shown on a

webpage, a CSS file contains a description or view of the

page’s layout, and the browser serves as the controller,

rendering the HTML and CSS data as the webpage

viewed [18].

This web design still exists in the modern era techno-

logical world. Updating and enhancement incorporates

the same pattern efficiently, thus showing low risk archi-

tecture stay alive in the latest technology.

This design pattern ensures reduced software risk as of

the above causes and thus improves the software quality.

VII. PURPOSE FOR SPIRAL MODEL

Spiral technique beautifully mingles iterative devel-

opment with the disciplined & controlled aspects of the

waterfall model, which also permitted for incremental

releases for further refinement via each time around the

spiral [4].

Some factors analyzed from literature survey are the

fair enough reasons to pick the spiral process model to

choose for research:

A. Success Ratio is high

Ratio of success is high because of analysis, involve-

ment in depth.

B. Overlapped phases

This is also an advantage as because of overlapping of

phases means whenever needed team can proceed on and

from any phase to modify/ enhance the product at the

worst from maintenance phase, in-fact.

C. Risk Involvement

The foremost aspect of spiral model is to identify, as-

sessment and resolution of risk factor(s).

D. Changes are easy to incorporate

As because of the prototype development of each

phase and documentation is disciplined then changes in

the same system is easy to incorporate.

E. User Involvement

User involvement at every stage for prototyping is one

of the best aspects of spiral model. In fact client knows

the outcome at the very early stage.

F. Flexible

Regular feedback from the user periodically and the

changes don’t come as a last minute surprise. Changes

are easily accommodated.

G. Risk Assessment and Reduction

Risks are assessed and actions are put to reduce the

key risks.

H. Reusability

If the prototype is operationally useful and robust

enough to serve as a low-risk base for future product evo-

lution, then the option of writing specified would be ad-

dressed but not exercised.

VIII. PROPOSING A SELF-MANAGING PIPE-LINE FRAME-

WORK OR MODEL TO REDUCE RISK AND IMPROVE SOFT-

WARE QUALITY

40 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

A. Project initiates with requirement elicitation and anal-

ysis

Commencement of project comprises the start-up

phase of the project. This is the phase where the problem

should be defined clearly to what needs to be accom-

plished and why it’s of great interest to the busi-

ness/clients. Most project failures make their root cause

in poor or mismanaged expectations of project venture-

holders because the project business context was not def-

inite, communicated, and understood by all venture-

holders and team members. Therefore, trying to gather

and analyze the complete and clear requirements at earli-

est. And finally document/ specify the whole requirement

as SRS.

B. Plan the project

Planning of the project doesn’t mean for only sched-

ules and budget, but also involves the effort to be made

to successfully complete the project.

The planning phase answers the questions:

a. What work must be done to complete the task?

b. Feasibility (technical & economical) of the project

as per the requirement.

c. Distribution planning as per business logic, data

modeling and layout processing.

d. Who is responsible for the work assigned?

e. Deadline of the work done to be decided as per the

requirement and budget.

f. Risk Assessment & Management Activity.

The planning phase motive is to achieve practical, at-

tainable, schedule, predictable, flexible and communica-

ble development:

a. PRACTICAL: capacity of the project should be

consistent with resources, capability, time and allo-

cation.

b. SCHEDULE: Reasonable time allocations for tasks

and proper sequencing of work.

c. FLEXIBILITY: Recognition of key risks and con-

tingency plan for managing risk that materializes.

g. COMMUNICATION: Definite pathways to com-

municate between teams, decision making authority

and accountability.

C. Use-case modeling

User classes and use case diagrams should be prepared

to represent the interaction between actors and models for

better understanding.

Use case diagrams are used to gather the requirements

of a system, including internal and external influences.

These requirements are mostly design requirements. So

when a system is analyzed to gather its functionalities use

cases are prepared and actors are identified [17].

D. Activity diagram

An action is the fundamental unit of executable func-

tionality in an activity. An action may have sets of in-

coming and outgoing activity edges that specify control

flow and data flow from and to other nodes. The se-

quencing of actions is controlled by control edges and

object flow edges within activities, which carry control

and object events respectively [17] [20].

E. Distribution process

This process is to deliver the SRS, use-case model(s)

and activity diagram(s) to the respective teams’ viz. busi-

ness logic team, data modeling team and interaction logic

team.

These documentation(s) helps them to proceed further

with some facts:

1) Fetches the detail for their own specialization.

2) Sync with the uniform plan of action.

3) Help to develop further specifications.

F. The simultaneous derived spiral processes

Database Spiral Process Modeling [Fig.8.]: This de-

rived process model is to develop and produce risk free

data modeling having some disciplined steps:

i. Prepare some suggestive designs like: External &

physical view of database used in the project, and

Modeling class and its methods.

ii. Verify & validate the above database designs &

classes for better alternative as per the documenta-

tion(s) provided.

iii. Prepare the test-data for testing the proposed data-

base and analyze the risk and try to correct the

same or go to step {b} and have another alternative.

iv. Develop the final prototype of database for ac-

ceptance testing tested by the core team & prepare

the final database design to be delivered.

Each of the above phases should revolve sequentially

around below aspects:

1. Determine the objectives, alternatives and con-

straints & obtaining commitments in maintain de-

signing database.

2. Identifying & resolve risks by evaluating & identi-

fying alternatives.

3. Development & verification of the suggestive alter-

natives.

4. Plan for the next phase.

Business Logic Spiral Process Model [Fig.9.]: This de-

rived process model is to identify the controlling class

and methods used to control and manage the communica-

tion pathway(s) between interaction process & data

modeling process efficiently having:

i. Prepare some suggestive pathways or methods for

controlling the interaction between data-modeling

and interaction logic.

ii. Verify & validate the suggestive pathways for bet-

ter alternative as per the documentation(s) provid-

ed.

iii. Prepare the test-data for testing as per the activity

cycle mentioned in activity diagram(s).

iv. Develop the final prototype of controlling methods

for acceptance testing & finally prepare the final

controlling class of business logic design.

Each of the above phases should revolve sequentially

around below aspects:

1. Determine the objectives, alternatives and con-

straints & obtaining commitments in controlling the

whole scenario.

2. Identifying & resolve risks by evaluating & identi-

fying alternatives.

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 41

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

3. Development & verification of the suggestive alter-

natives.

5. Plan for the next phase.

Interaction Spiral Process Model [Fig.10.]: This de-

rived process model is to identify the layout & interactiv-

ity platform that deals with the outside world for sincere

inputs and maximum required outputs from and to the

user by following the below steps:

i. Plan and prepare some suggestive layouts and in-

teractions as per the scope of the requirement and

user.

ii. Verify & validate these above layouts and interac-

tions as per the documentation(s) provided.

iii. Prepare the test-data for testing as per the activity

cycle mentioned in activity diagram(s).

iv. Design & develop the final prototype of layout &

interactions for acceptance testing & prepare the

final prototype to be implemented.

Each of the above phases should revolve sequentially

around below aspects:

1. Determine the objectives, alternatives and con-

straints & obtaining commitments for visual appear-

ances & interactions.

2. Identifying & resolve risks by evaluating & identi-

fying alternatives.

3. Development & verification of the suggestive alter-

natives.

6. Plan for the next phase.

Verification & Validations phase between data model-

ing & business logic: In this phase V-shape derived pro-

cess helps in identifying the correct association between

data modeling & business logic by verification and vali-

dation (testing). They both moves sequentially as:

Verification Phase-

b. Specify all the methods in data modeling class and

business logic class.

c. Prepare all the state, structured charts and for all the

methods and E-R diagrams for the database.

d. Convert all the structured charts to detailed algo-

rithms and pseudo code.

e. Implement Coding.

Validation Phase-

Develop individual stubs for each level testing viz. unit,

integrated & system testing. It flows as below:

Fig. 7. Self-Managing Pipe-line Framework/ Model

42 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

Fig. 8. Database Spiral Process Model

Fig. 9. Business Logic Spiral Process Model

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 43

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

Fig. 10. Interaction Spiral Process Model

Table 1. Maintenance Chart

Maintenance Chart

Error(s) Data Modeling Business Logic Interaction Logic Correction

Unknown data item?? √ X X X

File not found!! X X √ DONE

Source not included!! X √ X DONE

a. Now start with unit testing between the detailed de-

sign of data modeling and business logic.

b. Then move with integrated testing between the high

level design of data modeling and business logic.

c. Finally, system testing between the functional speci-

fication of data modeling and business logic.

Verification & Validation phase between business log-

ic & Interaction logic: In this phase another V-shape de-

rived process helps in identifying the correct association

between business logic & interaction logic by verification

and validation (testing). They both move sequentially as:

Verification Phase-

a. Specify all the methods in business logic class & in-

teraction layouts methods.

b. Prepare all the state, structured charts and for all the

methods in business logic and layouts methods.

c. Convert all the structured charts to detailed algo-

rithms and pseudo code.

Validation Phase-

Develop individual stubs for each level testing viz. unit,

integrated & system testing. It flows as below:

a. Now start with unit testing between the detailed de-

sign of business logic and interaction design.

b. Then move with integrated testing between the high

level design of business logic & interaction design.

c. Finally, system testing between the functional speci-

fication of business logic design and interaction de-

sign.

G. System testing plan after the development and assem-

bling the whole project

Finally test the whole system by different testing teams

for data modeling, business logic & interaction logic

team.

Business logic/ controlling team will ensure the error

correction/ maintenance, distribution by labeling in the

tabular format, access to all the teams [Table 1].

This framework beautifully segregated the design ap-

proach to reduce risk, thus improves the software quality.

Maintenance chart positively enhances the capability of

either team as less and specialized work. Finally the tabu-

lar format of the maintenance chart always helps in deci-

sion making for the betterment of software quality.

44 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

IX. EXPERIMENT & ANALYSIS

After experimenting with developing web-application

using proposed approach and comparing it with the tra-

ditional approach, four factors have been analyzed i.e.

effort, team performance, congestion, and requirement

accommodation. Here, the web application used is to add

& update faculty, news and events on the institute web-

site to display effectively on web within time as when

required.

The experiment is followed on two different teams

having the same background of knowledge, patience &

skills and having a combination of experienced and fresh

designing & development team.

Fig. 11. Showing distribution of tasks in Team A with traditional ap-
proach

Now [Fig. 11 & Fig. 12] shows the distribution of

work between team members, in which [Fig. 11] shows

the traditional and [Fig. 12] shows the [Fig 7] approach.

After studying [Fig. 11 & Fig. 12] the conclusion is

stored in [Table 2 & Table 3], in which [Fig. 11] con-

cludes [Table 2] and [Fig. 12] concludes [Table 3].

At this point [Table 2 & Table 3] notifies the nature of

operations performed by the members of a team A & B at

a time.

Here [Table 2] displays the nature of operations per-

formed at a time by a member of a team. For e.g. Mem-

ber 1 of Team A has to plan for ‘Add_Faculty’ module,

then he/ she has to perform 4 different natured operations

viz. ‘plan input design’, ‘plan validations’, ‘plan database

processing’ and finally ‘plan for output design’. And so

on for every member.

Fig. 12. Showing distribution of tasks in Team B with the proposed

approach

Table 2. Operation performed at a time analyzed from Fig. 11

Team A
Members

Module

Nature of

Operations Count

Similar Different

Member 1 Add_Faculty 0 4

Member 2 Modify_Faculty 0 4

Member 3 Add News/ Events 0 4

Member 4 Modify News/ Events 0 4

Table 3. Operation performed at a time analyzed from Fig. 12

Team B

Members
Module

Nature of

Operations Count

Similar Different

Member 1 Input/ Output design 4 0

Member 2 Controlling Logic Design 4 0

Member 3 Database processing Logic 4 0

Member 4 Synchronization 4 0

But, the [Table 3] displays the nature of operations

performed at a time by a member of a team. For e.g.

Member 1 of Team B has to plan for ‘In-

put/Output_Design’ module, then he/ she has to perform

4 similar operations that is designing an input/ output

windows for viz. ‘Add_Faculty’, ‘Modifying_Faculty’,

‘Add_News/ Events’, Modifying_News/ Events’. And so

on for every member.

Table 4. Findings from Table 2 & 3

Findings from Table 2 & 3 Team A Team B

Modules assigned 4 4

Operations per modules per member 4 4

Nature of operations per module Different Same

Nature of Work Complex Simple

Efficiency per module per member 25% 100%

After analyzing [Table 4], this illustrates the findings

of [Table 2 & 3]. If the operations per module are differ-

ent in nature then the full efficiency per member is dis-

tributed in no of operations:

Efficiency for Team A -

𝐹𝑢𝑙𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

𝑁𝑜 𝑜𝑓 𝑑𝑖𝑓𝑓.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 =

100%

4
 = 25% (1)

If the operations per module are same in nature, then a

number of different operations is 1. So, the full efficiency

per member is distributed is no. of operations:

Efficiency for Team B -

𝐹𝑢𝑙𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

𝑁𝑜 𝑜𝑓 𝑑𝑖𝑓𝑓.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
=

100%

1
= 100% (2)

From (1) & (2) it has been concluded that different op-

erations per module, which are complex in nature per-

formed at a time, slow down the performance efficiency.

On the other hand, it needs to distribute the task in such a

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 45

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

way that the operations involved in a single task should

be same in nature to enhance the performance.

Finally [Table 5] illustrates the factors, which moti-

vates in using the proposed approach, which dominates

the traditional approach.

Table 5. Factors Concluded from Table 4

Factors Traditional Approach Our Approach

Changes in User Requirement Complex to accommodate Easy to accommodate

Nature of Team Dependent Independent

Maintenance Complex Simple and easy

Coding Complex Simple and easy

Cyclomatic Complexity* 04 to 08 02 to 04

Cyclomatic Complexity* increases in [Table 5] of tra-

ditional approach as Member(s) of a team has to deal

different operations at a time by his/ her own viz.

Modify_News_Events:

Table 6. Overall Cyclomatic Complexity via Traditional approach

Task (s) Cyclomatic Complexity

Input Designing 1

Validation 4

Logic to insert in database 4

Output Design 1

Total 10

On the contrary Cyclomatic Complexity* in [Table 6]

decreases in proposed approach as Member(s) of a team

has to deal same operations at a time by his/ her own viz.

Database processing logic:

Proposed approach [Fig.7] in this paper decreases cy-

clomatic complexity and all the operations performed by

a member (s) of single category and less test-cases due to

declining cyclomatic complexity.

Table 6. Cyclomatic Complexity via proposed approach

Task (s) Cyclomatic Complexity

Add_Faculty 1

Modify_Faculty 2

Add_NewsEvents 1

Modify_NewsEvents 2

Total 6

Finally concluded that the proposed approach in this

paper provides a better quality product and this process

reduces risk in development strategy, but needed some

good experience for distribution and assembling of tasks

to decrease some risk and delivered an improved quality

product.

* Here cyclomatic complexity means number of test

case(s) in test suite(s).

X. ADVANTAGES USING PROPOSED MODEL

The proposed approach [Fig. 7] proposes to reduce

software development risk and improvement in software

quality. It reduces the technical controversies that emerge

during the development phases, resulting enhancement in

the power of thinking and specialization.

It displays the framework [Fig. 7] for another very ef-

fective process model that can be used to deploy with

SDLC for better software quality having low risk towards

[15]:

1). User Requirements: Due to the distribution in

working tasks, integrated in different requirement win-

dows, for different type of requirements - thus incorpo-

rates the same easily to enhance the software. This allo-

cation makes the environment more open, iterative and

dynamic to any change [1].

2). Team: Distribution of team for data-modeling,

business logic and interaction & appearances motivates

team to work in less burdened environment and on single

track as specialization. While using this model the team

leads should be previously experienced to monitor the

whole scenario thus reduces risk in monitoring and de-

velopment.

3). Maintenance: All separated windows makes

maintenance more open, iterative, interactive and dynam-

ic. Separate maintenance team that already dealing as

business logic planning who decide the incoming

maintenance will go to which team.

So the tabular method [Table 1.1] enhances the capa-

bility of maintenance effort that automatically segregates

corrective maintenance, enhancement maintenance in

their respective windows that automatically drives to the

concerned team.

4). Less code: Component architectural and reusability

aspect produces less code, which again a big advantage

over traditional approaches.

5). Low Cyclomatic complexity structure: Segregat-

ed modules ruled cyclomatic complexity at lower side

[17].

𝑉(𝐺) = 𝐸 − 𝑁 + 2 (3)

Where, ‘E’ refers to the Number of Edges and ‘N’ re-

fers to Number of Nodes. Here edges mean probabilities

and nodes means conditions.

If applying this above formula, proves the low Cy-

clomatic complexity, structure means minimum test-

cases that leads to minimum time frame for quality test-

ing, thus reduces technical risk and improves software

quality.

This practice is designed for all team members to par-

ticipate actively in identifying problems & risks, easy

46 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

accommodation of changes in requirement and less &

efficient maintenance effort.

XI. CONCLUSION

In this paper the theoretical pipeline model is proposed

which enhances the capability in the process of SDLC

due to beautifully segregated design approach, with the

help of data modeling, business logic and interaction log-

ic and marked good performance in the preliminary ex-

periment. This model as a result the less burdened work-

ing team(s), reduces stressful maintenance effort, in-

creases efficiency, thus reduces risk due to segregation in

human efforts to improve software quality. At the same

time, our approach provides the independent environment

among planning, design, development teams, which en-

sures smooth & efficient working throughout the project.

Further work will be focused on different languages &

tools under one roof on the same project and also en-

hance the security features.

REFERENCES

[1] AS/NZS ISO 31000:2009, “Risk Management – Principles

& Guidelines”, 2009. Standards New Zealand.

[2] Walt Scacchi, “Process Models in Software Engineering”,

Final Version to appear in, J.J. Marciniak (ed.), Encyclo-

pedia of Software Engineering, 2nd Edition, John Wiley

and Sons, Inc, New York, December 2001

[3] Seema,, Sona Malhotra, “Analysis and tabular comparison

of popular SDLC models”, International Journal of Ad-

vances in Computing and information Technology, ISSN

2277-9140

[4] Barrry W. Boehm, TRW Defence System Group, “A Spi-

ral Model of Software Development and Enhancement”,

1986.

[5] S.Balaji, Dr.M.Sundararajan Murugaiyan, “Wateerfall vs

V-Model Vs Agile: A Comparitive Study on SDLC”, Inter-

national Journal of Information Technology and Business

Management, ISSN 2304-0777.

[6] R. Moraes, J. Duraes, R. Barbosa, E. Martins, H. Madeira,

“Experimental Risk Assessment and Comparison Using

Software Fault Injection”, 37th Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks

(DSN'07) 0-7695-2855-4/07 $20.00 © 2007.

[7] Avraham Leff, James T. Rayfield, “Web-Application De-

velopment Using the ModelNiewlController Design Pat-

tern”, 0-7695-1345-2, 2001 IEEE.

[8] Loveleen Kaur & Dr. Hardeep Singh , “Software Compo-

nent Selection techniques - A review”, IJCSIT - s, Vol. 5

(3) , 2014, 3739-3742.

[9] Ishita Verma, “Study of Component Based Software Engi-

neering”, IJCSCN. Vol 4(3), 84-88, ISSN:2249-5789.

[10] Radhika D Amlani, “Advantages and Limitations of Dif-

ferent SDLC Models”, IJCAIT, ISSN: 2278-7720.

[11] http:// poincare.matf.bg.ac.rs/ ~andjelkaz/ pzv/ cas4/

mvc.pdf

[12] Mahemoff, M.J.; Melbourne Univ., Parkville, Vic., Aus-

tralia ; Johnston, L.J., “Handling multiple domain objects

with Model-View-Controller”, Technology of Object-

Oriented Languages and Systems, 1999. TOOLS 32. Pro-

ceedings

[13] Edward Curry, National University of Ireland, Galway,

Paul Grace, Lancaster University, “Flexible Self-

Management Using the Model-View-Controller Pattern”,

Published by the IEEE Computer Society, 2008.

[14] Andreas Holzinger, Karl Heinz Struggl, Matjaž Debevc,

“Applying Model-View-Controller (MVC) In Design And

Development Of Information Systems: An example of

smart assistive script breakdown in an e-Business applica-

tion”, e-Business (ICE-B), Proceedings of the 2010 Inter-

national Conference.

[15] Nitin Deepak, Shishir Kumar, “Perceptions on Risk Man-

agement strategies in Software Development”, Interna-

tional Journal of System and Software Engineering”, ISSN:

2321-6017, Vol 2(1), 20-27,2014

[16] Radosław Hofman, “Software Quality Perception”, Ad-

vanced Techniques in Computing Sciences and Software

Engineering, 2010, Springer link, ISBN: 978-90-481-

3659-9 (Print) 978-90-481-3660-5 (Online).

[17] K.K Aggarwal & Yogesh Singh, “Software Engineering

3rd edition”, Copyright © New Age International Publish-

ers, 2007.

[18] http://en.wikipedia.org/wiki/ Model %E2%80%93

view %E2%80%93 controller

[19] Trygve Reenskaug and James O. Coplien, “The DCI Ar-

chitecture: A New Vision of Object-Oriented Program-

ming”, http://www.mif.vu.lt/ ~donatas/ Vadovavimas/

Temos/ OOP_evoliucija_DCI_Qi4j/ 2009 The DCI Archi-

tecture – A New Vision of OOP.pdf, 2009

[20] A.K. Bhattacharjee, R.K. Shyamasundar, “Activity Dia-

grams: A Formal Framework to Model Business Process

and Code Generation”, Published by ETH Zurich, Chair

of Software Engineering, copyright JOT, 2002.

[21] Dinesh Verma and Shishir Kumar, “An Improved Ap-

proach for Reduction of Defect Density Using Optimal

Module Sizes”, Published by Hindwai Publishing Corpora-

tion, Advances in Software Engineering. Volume 2014,

Article ID 803530.

[22] Nitin Deepak, Shishir Kumar, “Examining the Character

of Software Characteristics to Improve Software Quality”,

International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 4 Issue 1,

ISSN No. 2277 128X.

[23] Khulood Salem Albeladi, M. Rizwan Jameel Qureshi,

“Improvement of Component Integration Testing Tech-

nique”, International Journal of Information Technology

and Computer Science (IJITCS), Volume 5 No. 8, July

2013, ISSN: 2074-9015 (online), ISSN: 2074-9007 (print).

[24] Sandip Mal, Kumar Rajnish, “Coupling Metric for Under-

standability and Modifiability of a Package in Object-

Oriented Design”, International Journal of Information

Technology and Computer Science (IJITCS), Vol. 6, No. 8,

July 2014, ISSN: 2074-9015 (online), ISSN: 2074-9007

(print)

Authors’ Profiles

Nitin Deepak: Post-graduate student for

the doctor degree for Computer Science in

Bhagwant University, Ajmer (India), ma-

jor in software development strategy,

software risk, software quality and Algo-

rithms. He had completed his Masters in

Computer Sience & Applications from

M.D. University, Rohtak, Haryana (India).

He also served as a freelancer in website development, web-

application development and also as an academician for Mas

 Flexible Self-Managing Pipe-line Framework Reducing Development Risk to Improve Software Quality 47

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 35-47

ters Students of Computer Science & Applications Uttarakhand

Technical University, Uttarakhand (India).

Shishir Kumar: Professor & Head of

Computer Science in Jaypee University of

Engineering & Technology, Guna, M.P.

(India). He has fourteen years of teaching

and research experience. His area of Inter-

est is Software Engineering, Computer

Networks and Image Processing.

How to cite this paper: Nitin Deepak, Shishir Kumar,"Flexible

Self-Managing Pipe-line Framework Reducing Development

Risk to Improve Software Quality", International Journal of

Information Technology and Computer Science(IJITCS), vol.7,

no.7, pp.35-47, 2015. DOI: 10.5815/ijitcs.2015.07.05

