
I.J. Information Technology and Computer Science, 2015, 07, 57-65
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.07.07

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

Management of Possible Roles for Distributed

Software Projects Using Layer Architecture

Yumnam Subadani Devi, Laishram Prabhakar
Manipur Institute of Management Studies, Manipur University, Canchipur, Imphal 795003, Manipur, India

Email: y_subadani@yahoo.com, prabhakarmims@gmail.com

Abstract— Several members are involved in development and

management of the Distributed Software Projects. Each member

needs to know the responsibilities of each other for proper

management of the activities of such distributed projects to

produce coherent outcomes. Distribution middleware software

has higher-level distributed programming models whose

reusable APIs (application programming interface) and

components automate and extend native operating system

capabilities. Software management tools like Work break-down

structure (WBS), Gantt chart, Critical Path Method, and Critical

Chain Method etc. does not fully help the managers to manage

the member's responsibilities during the development of

distributed applications. The layered architecture can help to do

so. This style not only gives the layer level description of the

activity involved, it also defines and directs the group of

workforce. By listing the groups of workforce, the development

team as well as the customer can know the activity and the

member involved to work on those specific activities. This

layered architecture is much benefited to development team and

also to numbers of stakeholder of the large distributed project.

The extended new approach of layer pattern with

'Responsibility Index' adds extra value to manage all the

members' responsibilities. Managers, stakeholders and others

can have an easy management system. The request or complaint

from the customer can be passed to appropriate team without

much delay. Most importantly this will give facility to collect

timely feedback from all levels of customers.

Index Terms— Layer Architecture, Responsibility Index, Team

Management, Customer Service, Distributed Projects

I. INTRODUCTION

Most of today's software projects are geographically

distributed with limited face-to-face interaction between

participants. A typical software development life cycle

has several phases. Some of the phases are requirement

analysis, Designing, Implementation or coding, Testing,

Deployment and Maintenance. Several people

(development team) and stakeholders and customers

work on different cycle or phase of a project. A good

control is required to maintain over the life of the project

by a team lead or a project manager. It could be easy to

manage such a project if all the evolving people are

resides in one place or within some define location.

However it will be difficult to manage if many people

work from different locations with different time zone

and moving from place to place during a phase of project.

Manager much uses appropriate tools to control, support

and manage the entire team. Manager must have

following knowledge

 to manage a distributed projects and its team

 to build teams across sites

 to break down the tasks and distribute

 to share knowledge as per time, space, and other

differences, and

 to coordinate the work to produce best outcomes [1].

The distributed projects have difficulty of coordination.

Management becomes more challenging and troublesome

to make the 'teams’ to work effectively and delivering

better outcomes on time and within budget. To manage

such distributed projects, the software design patterns are

used. A design pattern is a template of formalized best

practices to solve a problem. Different patterns are used

for different activities of managing a software

development. Layered architecture is one of common

design pattern uses for allocating and managing the

different responsibilities of a team during a life cycle of

software development [2]. However the traditional

Layered architecture does not have facility to update the

status of project on sudden changes. Any new changes of

the roles of any member or update of the status of the

project should be available to entire team for proper

management and common understanding.

This study proposed a new concept ‘Responsibility

Index’ to incorporate with traditional layer architecture to

manage all the responsibilities of a large project. This

concept will help to manage all the roles or

responsibilities of members involved in a large

distributed project. The Index will be automatically

updated when a role changes and team member will

know role of each other. It will help the development

team, stakeholder and customer to come closer. Customer

will know their designated developer. This will minimize

delays in handling ticket (complaints) by maintenance

teams. It will improve relation with customer and

stakeholder. It will also help in timely collection of

feedbacks from the customers. This will help to bring all

involving members closer reducing the communication

gap.

A. The concept of software development tools

There are different phases in life cycle of a software

project starting from requirement gathering to

deployment and maintenance of the project. The role and

responsibilities are different for executing different

phases of the life cycle of software. It may not easy to

manage all the roles and responsibilities for a distributed

project. Software management tools like Work break-

58 Management of Possible Roles for Distributed Software Projects Using Layer Architecture

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

down structure(WBS), Gantt Charts, Critical Path

Method, Critical Chain Method, Program Evaluation and

Review Technique (PERT), Network diagrams like

Activity on node (AON), Activity on Arrow (AOA) do

not exactly fully help the manager to manage the roles

and responsibilities. Mostly these tools are developed to

manage the centralized projects [3]. The amount of work

and members involved in developing open system

software applications like Linux, Open CV, etc are very

large and managing the responsibilities of each of the

member are not easy. Again during maintenance,

retrospective phase, sorting reusable components,

feedback, emergency of such projects, finding the target

group is also a time consuming activity. The new

proposed layer software architecture will be benefited to

all the personnel involved in the large distributed

software projects even to the target user or the customers.

Customer will come to know whom to contact or finds

the target group in difficulties.

High-level patterns or style are referred as the

architectural styles. It includes patterns such as client and

server, layered architecture, component based

architecture, message bus architecture, and service-

oriented architecture (SOA). Each style describes

different aspects of applications. For example, some

deployments patterns are represented by architectural

styles describe, some describe structure and design issues

etc. Several applications usually use a combination of

more than one of the styles. The architectural style is a set

of principles and instruction pattern that provides an

abstract framework for developing systems. It improves

partitioning and helps design of reuse by providing

solutions to recurring problems. They provide a common

language. This facilitates a higher level of understanding

that is inclusive of patterns, rules and regulations, without

getting into details. Architecture styles can relate to client

and server versus n-tier. Architectural styles can be

organized by the different key focus area [4].

B. The Software usable concept

The purpose of reuse of the Software is to improve

software quality and productivity. The concept of

'software reuse' is to build systems that are bigger and

even more complex, more reliable, less expensive and

derivable on time. Most software systems are not totally

newly develops; instead they are variants of systems that

have already been developed. Institutions build software

projects within a few business requirements, repeatedly

building system variants within those domains. This is to

improve the quality and productivity of the software

production process. Each team of a distributed project has

a responsibility to contribute reusable assets to team and,

therefore, asset development, and support responsibilities

are distributed among team of projects.

C. The concept of layered architectural style

Layered architecture aims for grouping of related

functionality within an application into distinct layers-

related by a possible common role or responsibility. A

software component can be a software module, a service,

a resource or a package that encapsulates a set of related

functions. Communication between layers may be

explicit and loosely coupled. This style has been

described as an inverted pyramid of reuse. In this each

layer aggregates the responsibilities and abstractions of

the layer directly beneath it. In the situation of strict

layering, components in a layer can interact with

components in the same layer from the layer directly

below it. The relaxed layering situation allows tasks or

components in a layer to interact with components in the

same layer or with components in any lower layer. Some

layers of an application may reside on the same physical

computer of the same tier or may be distributed over

separate computers of n-tier, and the tasks or components

in each layer communicate with components in other

layers through some defined interfaces. For example, an

application design consists of a presentation layer to

represent functionality, business layer to represent

business rules, and data layer to represent the data access.

Each layer in this example has unique contributions.

For a successful management of project a number of

key behavioral factors have emerged. There are several

factors that are crucial in impacting on the behavioral

issues relating to project management [5]. The two main

factors are Project Teams and Virtual Teams. The better

future of the organizations will rely on project teams and

project management that utilized the distributed teams

comprising individuals who may directly or indirectly

interact with each other as part of virtual team. Another

factor is the conflict and negotiation management where

all the conflicts are going to minimize. The key actions

and behaviors across the interaction process lead to the

learning that incorporates the development and

improvement of new skills, to new knowledge to satisfy

team task performance, to being flexible and dynamic,

and to improving the quality of working life. In addition

to this, coordination assists in meeting goal settings,

managing and integrating people and information, setting

and managing time schedules and planning and managing

divisions. Communication as an additional behavior

enables people to understand the nature of a problem

coherently and to share synchronously or asynchronously.

Furthermore, the decision-making process as an action

involves both intellectual and judgmental tasks

influencing team outcomes [6].

The detail of the study is described in several sections.

The related works in given in section 2, the concept of a

layered architecture in section3. Section 4 has the new

proposed layer architecture with ‘Responsibility Index.'

The demonstration of the proposed new layer framework

is given in section 5 and section 6 has the conclusion of

the study.

II. RELATED WORKS

The development of distributing software development

can continue to increase time-to-market by around-the-

clock. It is to increase flexibility on merger and

acquisition of different opportunities. Such geographical

distribution of task becomes increase with high transfer

of development and maintenance activities from the

 Management of Possible Roles for Distributed Software Projects Using Layer Architecture 59

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

developed countries to developing one or vice versa [7].

There is lack of high skilled and engineering expertise

and trained personnel force for off-shoring innovation

decisions [8].

Such distributed environment, the coordination and

communication works are difficult. Management of

projects becomes more challenging and troublesome.

Distributed software development has several

complexities and challenges. Making distributed project

teams’ work effectively and delivering better outcomes

on time and within budget are serious challenge of

industries. In order answer to these challenges, experts,

and researchers or practitioners are continuously finding

and developing vast amounts of frameworks, guidelines,

tools, methodologies and tips [9, 10]. Performance

analysis of any organization can be done with respect to

the factors such as productivity, innovativeness etc[11].

A. Impossible management over software crisis

Software development would be slow, expensive and

error prone, often resulting in products with large number

of defects which cause serious problems in reliability,

usability, and performance. As per the Chaos report of

Standish group [12], the companies in the United States

spent more than $250 billion each year on IT application

development of approximately 175, 000 projects. Around

16% of these projects finished on schedule and also

within target budget. Around 31%were cancelled before

completion giving losses of about $81 billion.

Approximately 53% exceeded their original budgets by

an average of 189% for losses of about $59billion. Those

projects that managed to final completion delivered an

average of 42% of the planned features. Another report

[13] from the Software Engineering Institute (SEI)

indicated that out of around 542 software organizations

participating in the CMM maturity assessment, 67% of

them were at CMM Level 1, and 20% were at CMM

(Capability Maturity Model) Level 2. Inputs to the

process are ill-defined, and the transition from inputs to

final software products is uncontrolled.

However, there is still no visibility as to how software

products are produced, and any disturbance to the

development team or resources can easily cause project

failure. It is said that 87% of the software organizations

in the survey were unable to control their development

processes. The development process is so reactive that

management control is impossible. Rick management

studies are also performed based on deliverable of

projects. Such study can report the risk associated to a

deliverable to alerts the developer team to minimize the

risk using preventive measures [14].

B. Some related tools

Work break-down structure (WBS) provides the basis

for planning and managing the project schedule and

breaks the work required into smaller and more

manageable pieces. Itisan outcome oriented analysis of

the work involved in the project. It also assigns duration

to each problem or task or outcome identified. Gantt

Charts gives a graphical representation that shows the

project calendar giving the start scheduled and end dates,

and the durations. It also records the people who are

responsible for each activity as optional purpose. It is

difficult to update manually. Critical Path Methods

schedule all project activities so that it can be completed

quickly in identifying those activities that, if delayed, are

likely to affect the overall project completion time.

Critical Chain Method mainly used in predictive planning,

but can also be used for iterative development. The

program Evaluation Review Technique (PERT) takes into

account of handling the uncertainty in project planning

and scheduling [15]. Sample diagrams of a work break

down structure and Gantt chart are shown in fig1(a) and

(b) respectively.

(a) A Work Break down Structure

(b) A Gantt Chart (schedule in weeks)

Fig. 1. Project Management charts

C. Some architectures for proper management of

responsibilities

Software architectural design has treated as a crucial

phase of the design process. System architecture

constitutes manageable model of system structure that

describes how system components work together. Several

works have identified architectural styles to guide high-

level system design. However management of the

responsibilities of the members of the project is not

discussed. For example the flat style, a Software

architectural design has no fixed structure and no control

of one actor over another is assumed. Another

architecture design, the structure-in-5 style consists of the

typical strategic planning and logistic components

generally found in many organizations. At the top of the

most organization lies the apex composed of strategic

executive actors. Below it resides the logistics, control or

other standardization and management components

respectively support coordination and middle agency.

The pyramid architecture style is the hierarchical

authority structure exercised within organization.

Members at the lower levels depend on members of the

higher levels. The mechanism is direct supervision from

the apex body. Most of the managers and supervisors are

only intermediate actors routing strategic decisions and

authority from the apex routing to the operating level.

They can coordinate by their own at a local level. Such

Software Project

Requirement

Analysis
System

Design
Coding Testing

.

60 Management of Possible Roles for Distributed Software Projects Using Layer Architecture

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

style can be applied when deploying simple systems.

Moreover, it encourages dynamicity since coordination

and decision mechanisms are happened directly, not

complex and immediately identifiable. It is not suitable

for huge system requiring many kinds of agents.

However, it can be used to manage and resolve crisis

situations. A pictorial flow of pyramid style is shown in

fig2.a.

(a) A pyramid (hierarchical authority style)

(b) A takeover style

Fig. 2. Architectural styles

The takeover architecture style involves the total

delegation of authority and management from multi

partners (say agency 1,2etc) to a single collective

takeover member or actor. This style identities and

autonomies of the separate units that no direct

relationships, dependencies or communications are

tolerated except those involving the takeover. Different

task has been assign to several agencies. It involves

agreement between more agencies to obtain the large

benefits, little investment and lower maintenance costs.

Each partner or agency can manage and control itself on a

local dimension and interact directly with other agency or

partners to exchange, provide and receive services, data

and knowledge. A simple pictorial flow of takeover style

is shown in fig2.b [16].

Hybrid forms of integration of agile practices are

discussed to develop quality software as per customer

requirements [17]. Neural Networks were used to

analyses the performance of Software Effort Estimation

Models [18]. However in most of such study, the proper

framework for managing the responsibilities involved in

distributed software projects are not carried out.

III. THE CONCEPT OF LAYER ARCHITECTURE

Architectural Styles are the high-level set of rules that

constrains the architecture for certain context and

describe to describe solutions to the problems.

Architecture is considered to consist of several

components and the connectors (interactions) between

them. A software component can be a software module, a

service, or a resource that encapsulates a set of related

functions. Design explicitly addresses functional

requirements while architecture explicitly addresses

functional and non-functional requirements. Some of the

requirements are reusability, maintainability, testability,

efficiency, portability, interoperability and fault-tolerance

and the other Quality Attributes. The goal of software

architecture is to enable the construction of very large

system architectures [19]. Some of the benefits of

Architectural Style are:

1. Promotes communications among the designers and

developers by using similar pattern names for

representing the lengthy description of projects

2. Designers and developers use similar terminologies

as they provide a set of predefined subsystems

3. Supports reusability and responsiveness

4. Improves development efficiency and productivity

among the team

5. Standardized layer interfaces for common libraries

The Layers style helps developers to structure the

applications that can be decomposed into groups of

subtasks in which each group of subtasks is at a particular

level of abstraction. Networking protocols are the

common known example of layered architectures. This

protocol consists of a set of principles and conventions

that describe working process. Large system requires

decomposition. A large system may be decomposed to

small portions for proper management. The following is

an example of designing a system that has mix of low and

high-level issues. Such systems require some horizontal

structuring. This is the case where several operations are

on the same level of abstraction but could be independent

of each other. Example of above system is OSI 7-layer

model. Parts of the system should be exchangeable.

Components should able to replace without affecting the

rest of the system. Its platform may be subject to change

in the future. Option of code changes, recompilation, and

reconfiguration of the system can also be perform.

 Agency1

 Control

Agency2 Authority Takeover Providing Agency3

 Delegation Resources

 Handling
 Tasks

 Agency

 N

 Apex

 Delegate Strategic
 Responsibilities Authority

 Manager Supervisor

Route Resolve Coordinate Monitor
Delegation Conflicts

Member1 Member 2 Member 3 Member..n

 Management of Possible Roles for Distributed Software Projects Using Layer Architecture 61

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

Adjusting cache or buffer sizes are examples of a change

of such system.

The layers pattern is better suited to systems that

require reliable operation, because it is easier to

implement error handling. Structurally, each layer

provides a related set of services. Dynamically, each

layer may only use the layers below it. Layer A may use

layer B because it depends on something B does for

example data written to the database by B to be used by

A. Layer A evokes layer B says Layer A passes control or

data or both directly to B.

Fig. 3. Sample Layer styles (Operating system)

IV. THE NEW PROPOSED ARCHITECTURE

A large project has several components to perform. A

component can be a module or activity of a project, a

service, or a resource that encapsulates a set of related

functions. Such project has numbers of team members

who worked on different components (modules) with

different responsibilities such as analysis, designing,

coding, testing etc. In this example the component1 has

all the modules and related activities of the analysis phase

of development of a large project. Component2 has all

the modules and related activities of the design phase and

so on.

This study proposed a new concept of layered

architecture which can handle the index of

responsibilities of a large project. The index will be

automatically updated on changed of the roles of a

member. The new status will be update among all

evolving members. This new framework has been

evaluated using small case study.

An example of project with several components is

shown in fig.4(a). Each layer consists of three

components (comp) in different levels and it also has

several sub layers. The components are the modules and

sub modules of a large project. The components are

interrelated with the help of request. In the middle layer

two components are interacted. Components in different

layers call each other directly and shield each layer by

incorporating a unified interface. In the design,

component 3.1 no longer calls component1.2 directly, but

calls a Layer 1 interface object that forwards the request

instead. It is probably that a client issues a request to

Layer N. Since Layer N cannot carry out the request on

its own. It calls the next Layer N-1 for supporting

subtasks. Layer N-1 provides these services. In the

process sending further requests to Layer N-2 and soon

until Layer1 is reached. Here, the lowest-level services

are finally performed. If necessary, it replies to the

different requests passed back up from Layer 1 to 2, from

Layer2 to Layer3, and so on until the final reply arrives at

Layer N.

The concept of ‘Responsibilities Index’ is introduced

along with the layered architecture. The sketch of the

enhanced version of the Layer Architecture is given in fig.

4(b). This Index is used to track the responsibilities of

each member who are evolved in each of activity of the

entire project phases. A development team may have

several team groups such as team1, 2, 3 etc. Assume that

project has several phases such as Analysis, Designing,

and Coding etc. Different teams were assigned for

different works.

Let's assume that team2 is responsible for designing a

component of the project. Team2 has three members who

work on different roles. A sample of the scenario is

shown in fig.4.(c). Initially in the time of assignment of

the role(time1), the member 'A' has works of designing

'Login form1' which index1 as per this scenario.

Likewise member 'B' has work of 'designing website1',

'C' has 'designs of form1' respectively.

(a) General Layer Architecture

(b) Enhanced version of the General Layer Architecture

Comp1(analysis 1.1, 1.2..)

Comp2 (design 2.1, 2.2...)

Comp3(coding 3.1, 3.2...)

Responsibilities Index

Team name: Activities

Team1: Analysis

Team2: Design

Team3: Coding

Team N: M roles

 Component 1(Analysis 1.1,1.2,1.3...)

Component 2(Design 2.1,2.2,2.3..)

Component 3(Coding 3.1,3.2,3.3..)

 Utilities (commands, compilers, libraries etc.)

Process (classification and management)

Resource (I/O, network, file..) management

Kernel (Device& memory Processing)

drivers

Layer4

Layer3

Layer2

Layer1

62 Management of Possible Roles for Distributed Software Projects Using Layer Architecture

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

(c) Roles changes in Layer Architecture and R Index values

Fig. 4. New layer Architecture

After 8 hours(Time2) (say a day), the role of 'A' is

change to 'Casting the website1' which was finish product

from other member. The Index value of 'A' is changed to

4 from previous value1. Likewise the role of 'B' change to

'free', as no work was assigned, 'C' continues with the

'design of form1'. The 'Responsibility index' was

automatically updated wherever there comes any changes

in roles or component of work. From this current index

value, the evolving team members will come to know

about the component handled or handing by the team

members. If the type of the project is customer service

(frequent interaction with customers on a business), the

index value can be share with the customer and customer

can interact with the corresponding responsible person in

times of any issues. In the current customer service

system the ticket raised by the customers are received by

a central team and distributed to responsible member.

Sometimes the ticket goes around and services are

delayed, annoying the customers. Management of activity

will be much earlier with help of database which contains

the roles.

By adapting this Index, any changes in the

responsibilities will be automatically updated. This

option is not be available in traditional layered

architecture. Such activity of managing the activities of

projects with respect to the members’ responsibilities can

be implemented as per the requirement of the different

projects. Management of the distributed projects has

several issues namely communication, coordination, and

control as consistently used in previous research and in

practice. The details of these are given below. The

possible problem of communication, coordination and

control can be minimized by implementing such of new

form of layered architecture.

A. Communication

In this process people convey meaning to one another

via some medium through which they exchange messages

and information in order to carry out project activities.

Distributed team members can find it difficult to deal

with different interaction styles and preferences. In some

situation, they sometimes make regular and negative

attributions based on infrequent communication and

perceptions of unresponsiveness.

B. Coordination

It can be taken as a mechanism through which people

and technical resources are combined to carry out

specified activities in order to accomplish stated goals. It

requires action related to list of task, team member roles,

member relations, time etc.

C. Control

During control it does monitoring and measuring

project activities. It is done so to anticipate and manage

variances from project plans and organizational goals.

The details of these factors are well discussed in the

previous of study [20].

The execution of the proposed framework with respect

to development of large project is demonstrated in next

section 5. This new framework makes the easy

management of team members, developer and users. In

case of any inquiry, the users can directly transfer their

query directly to concern groups of developer, without

confusion and reducing waiting time.

V. DEMONSTRATION OF THE PROPOSED NEW LAYER

ARCHITECTURE

Let's consider a scenario to develop a project name as

‘Computerized Medical Clinic'. The project is going to

develop in distributed environment; meaning the

developer team and customer is scatter in different parts

of globe. The sketches in fig5. represents the

requirements gathered along with some of the main

required components of the system. This shows the

shows the arrangement of the component before applying

the new scheme of Layer architecture. From this figure

we see only the components of the possible software. But

it does not shows that which components are going to

developed together or what are sequences of the

components.

Fig 5. A medical Imaging Systems (before applying Layer architecture)

It also does not show which group of the developer

will work on which component. Some of the sequences of

the workflow are unknown to participating groups. It may

require several tools such as WBS, Gantt chart etc to

show different aspect of the project. This tools needs to

be update now and then to show the progress of the work

and changes in roles of evolving members. The layer

architecture can be applied to resolve key distributed

Patient

Service

Security

Service

User's

Application

Application

Services Image

Data

Configuration services

Query management

Authorization services

Other related data

Role change in Component 2(Design phase)
Time1: Assigning time

 Time2: After 8hours

Member Activity

A -1.Login form1
B -2.Design website1

C -3.Design Form1

Member Activity
A-4.Casting website1

B-5.Free (no work)

C-3.Design form1

Responsibilities/roles Index
Member old role Current role
A 1 4

B 2 5

C 3 3

---Database of roles--------

 Management of Possible Roles for Distributed Software Projects Using Layer Architecture 63

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

system design challenges as discussed in earlier sections.

It will help to resolve the following common design

challenges like separating concerns between tiers,

improving performance, enabling client extensibility,

ensuring platform-neutral, network-transparent

communication, decoupling suppliers and consumers,

locating and creating components scalable, minimizing

resource utilization etc.

As the members of the different teams are staying far

away from each other across the globe, managing the

responsibilities of the team members becomes complex.

Defining the levels of control is necessary at appropriate

level along with responsibilities of the team members

involved in developing this project. Adapting layer

architecture can minimized such problem in distributed

environment. The new concept of 'Responsibility Index'

will help each involving members to keep updating new

changes in any role. In the scenario of 'Medical Imaging

Systems', after applying the architecture layer pattern,

roughly system can have three layers –Database Layer,

Middle Layer and Presentation layers. The work flows

are process among these three layers to Analysis, Design

and Implementation etc. With the concept of

Responsibility Index, the managing the responsibility in a

layered architecture becomes easy. The theory of this

Index is also shown in fig4(c).

The Index stores two current main data: (1) team name

and (2) activities (component) associated with a team.

Team 'A' will work on activities associated with 'Layer1'.

Team B works on 'layer2 and so on. Table1 shows the

sample data that a Responsibility Index can hold. Here

team 'A' has three members Mr.X,Mr.Y and Mr.Z and all

are assigned the work of designing the 'Database Tier'.

Index value already define, example 0-no assignment, 1-

design, 2-populate table, 3-refresh etc. Initially Mr.X of

team A has no work and it index value is 0. At 09hours

Mr.X was assigned to the designing 'table3', and at

09.30hours Mr.X to populate table1 and then refresh

table1,2 and 3. Index values show the changing roles of

Mr.X(A) with respect to time. Anyone access this Index

will come to know about the roles and works executed by

Mr.X(A). The remaining other layer2 and 3 also can be

executed in similar fashion adapting the Index values.

Table 1. Sample contains of Responsibility Index

Team Name: TeamA, Component: Layer1(Design database Tier)

Team Name Roles Subcomponent
Current Index value

Time Value

Mr. X(A) -- -- 08.00 0

Mr. Y(A) Design Database table1 09.00 1

Mr. Z(A) Design Database table2 08.00 1

Mr. X(A) Design Database table3 09.00 1

Mr. X(A) Populate Database table1 09.30 2

Mr. X(A) Refresh Table1,2,3 10.00 3

Mr. Y(A) -- -- 10.00 0

Mr. Z(A) -- -- 10.00 0

Fig. 6. Electronic Medical Imaging Systems (After applying Layer architecture and Responsibility Index)

Responsibility Index (now)
Team name: Activities

TeamC: Layer3

(Developed user interface for

Medical staffs and admin etc.)

TeamB: Layer2

(Developed applications,

servers, stations etc)

TeamA: Layer1

(Design Database, Update, and

Refresh data etc)

Layer3: Presentation
Ex: radiology clients

Layer2: Middle Tier
Ex: Business Logic-

-image routing,
-security,
-other applications

Layer1: Database Tier
Ex: persistent images

64 Management of Possible Roles for Distributed Software Projects Using Layer Architecture

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

This Index records the current roles and assigned task

of each members. The index automatically updates any

changes in responsibility of any team member. In such

way the team manager, a team member knows the latest

responsibilities each of them. During the time of new

assignment, transfer of responsibility this Index helps to

bring transparency among the team. At the same time, it

also helps the stakeholder and customer of the project to

interact, inquire or discuss with desired and correct

member of project development. Otherwise, sometimes

the tickets (complains) rises from the customers are

unattended and delayed in services. Fig5 shows the

structure of the simple project. It does not answers

question such as which team works on which component

of project, which team handle what type of

responsibilities etc. Fig6 shows that layered architecture

along with the level of hierarchies of the project. These

layers will help the developers to show the flow of data-

inputs to outputs and detail phases of the project. This

new layered architecture with the concept of Index value

will help the evolving team to execute the project

smoothly from time of inception to deployment.

VI. CONCLUSION

The new proposed ‘Responsibility Index’

incorporating with traditional layer architecture added an

extra value to manage all the responsibilities of a large

project. This new Index has the capacity to manage all

the roles and responsibilities of members involved in

developing a large distributed large project. Even though

the projects are conducted jointly from various parts of

globe, several roles changes happen, the Index will be

automatically updated and member will know each role

of each member. Hence it helps the development team,

stockholder and customer to come closer. Customer will

know their designated developer, in case of rising ticket

(complains) and again delay between rise of ticket and

received by maintenance teams will be reduced. There is

a need for such type of combined development

framework that can manage development activities and

member's responsibilities improving the relation with

customer and stakeholder. Most important is timely

collection of feedbacks from the customers. This is more

important if the type of project is of distributed in nature

which has very frequent update and changes of

application types, roles, customers and stakeholder etc.

This helps to bring all involving members closer reducing

the communication gap.

REFERENCES

[1] JD Herbsleb, D Moitra, D, “Global Software Development,”

IEEE Software, 2001, 18(2): 16–20.

[2] RC Martin."Design Principles and Design Patterns."

Retrieved 2000.

[3] RS Pressman, WS Jawadeka. "Software engineering." New

York 1992.

[4] M Shaw, D Garlan, "Software architecture: perspectives on

an emerging discipline" PH, 1996.

[5] P Morris, JK Pinto (Eds.) "The Wiley Guide to Project

Program and Portfolio Management", 336 pp. The Wiley

Guides to the Management of Projects.Wiley, Hoboken

NJ , 2008.

[6] G.Kapogiannis, "a conceptual framework for project

managers to improve projects performance", Ph.D. Thesis,

University of Salford, Salford, UK,2013

[7] B. Meyer, "The unspoken revolution in software

engineering," IEEE Computer,2006, 39(1): 121-123.

[8] AY Lewin, S Massini, C Peeters "Why are companies

offshoring innovation?The emerging global race for

talent," J. of Int. Business Studies, 2008.

[9] J.Espinosa,DeLone, W., and Lee, G. "Global boundaries,

task processes and IS project success: a field study,"

Information Technology and People, 2006: 345-370

[10] Y.Subadani Devi, Y. Jayanta Singh, Laishram Prabhakar.

"Grooming a New Team with Potential Roles using the

Scrum Practices."Proc. Int. Multi Conf. of Engineers &

Computer Scientists. Hong Kong, 2012.

[11] ANH Zaied. "An integrated knowledge management

capabilities framework for assessing organizational

performance."Int. Journal of Information Technology and

Computer Science(IJITCS)4.2(2012): 1.

[12] Standish. The Chaos Report. www.standishgroup.com

/sample research/PDFpages/-chaos1994.pdf,1994.

[13] W.C.Peterson "SEI’s software process program-

presentation to the board of visitors", Software

Engineering Institute, Carnegie Mellon University.1997

[14] Y. Subadani Devi and L. Prabhakar. "A Preventive Risk

Analysis for Managing Distributed Software Projects

based on Deliverable." International Journal of Computer

Applications 68.1 (2013): 27-31.

[15] DG Malcolm, JH Roseboom, CE Clark, "Application of a

Technique for Research and Development Program

Evaluation OPERATIONS RESEARCH",7(5): 646–669

[16] M. Shaw and D. Garlan. "Software Architecture:

Perspectives on an Emerging Discipline", Upper Saddle

River, N.J., Prentice Hall, 1996.

[17] Z Mushtaq, MRJ Qureshi. "Novel Hybrid Model:

Integrating Scrum and XP." International Journal of

Information Technology and Computer Science (IJITCS)

4.6 (2012): 39.

[18] E Praynlin, P Latha. "Performance analysis of software

effort estimation models using neural networks." Int.

Journal of Information Technology and Computer Science

(IJITCS) 5.9 (2013): 101.

[19] M. Shaw, P. Clements. "A Field Boxology: Preliminary

Classification of Architectural Styles for Software

Systems", 1996.

[20] J.Goodbody, "Critical success factors for global virtual

teams" Strategic Communication Management,

2005,9(2):18-21.

Authors’ Profiles

Yumnam Subadani Devi is Ph.D research

Scholar in Manipur Institute of Management

Studies (MIMS), Manipur University,India.

She holds MBA specialization in Information

Technology from Sikkim Manipal University.

Her interest areas are Software Engineering,

Management Information Systems and

Database Management System.

Laishram Prabhakar, is an Assistant Professor in Manipur

Institute of Management Studies (MIMS), Manipur University,

 Management of Possible Roles for Distributed Software Projects Using Layer Architecture 65

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 57-65

India. He holds a Ph.D degree(Information

System Management. Presently working as

Coordinator of Community College,

Manipur University. He has over two

decades of experience in the field of

Information System Management. His area

of interest is in the area of developing

strategies for innovation and knowledge

management. He provides concepts of knowledge management

in Business and Technology.

How to cite this paper: Yumnam Subadani Devi, Laishram

Prabhakar,"Management of Possible Roles for Distributed

Software Projects Using Layer Architecture", International

Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.7, pp.57-65, 2015. DOI:

10.5815/ijitcs.2015.07.07

