
I.J. Information Technology and Computer Science, 2015, 07, 77-89
Published Online June 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.07.09

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

Mining Sequential Patterns from mFUSP - Tree

Ashin Ara Bithi
Asian University of Bangladesh, Dhaka, Bangladesh

E-mail: ashincse@yahoo.com

Abu Ahmed Ferdaus
University of Dhaka, Dhaka, Bangladesh

E-mail: ferdaus1167@gmail.com

Abstract—Mining sequential patterns from sequence database

has consequential responsibility in the data mining region as it

can find the association from the ordered list of events. Mining

methods that predicated on the pattern growth approach, such as

PrefixSpan, are well-organized enough to denude the sequential

patterns, but engendering a projection database for each pattern

regards as bottleneck of these methods. Lin (2008) first

commenced the concept of tree structure to sequential pattern

mining, which is acknowledged as Fast updated sequential

pattern tree (FUSP - tree). However, link information stored in

each node of FUSP - tree structure increases the complication of

this method due to its link updating process. In this paper, at

first, we have proposed a modified fast updated sequential

pattern tree (called a mFUSP - tree) arrangement for storing the

complete set of sequences with just frequent items, their

frequencies and their relations among items in the given

sequence into a compact data structure; excluding this tree

structure avoids storing link information along to the next node

of the following branch in the tree that carries the same item.

Afterward, we have established by a mining method that our

mFUSP - tree structure is proficient enough to ascertain out the

perfect set of frequent sequential patterns from sequence

databases without generating any intermediate projected tree

and without calling for repeated scanning of the original

database during mining. Our experimental result proves that, the

performance of our proposed mFUSP - tree mining approach is

a lot more trustworthy than other existing algorithms like GSP,

PrefixSpan and FUSP - tree based mining.

Index Terms— Intermediate Projected Tree, Projection

Database, Sequential Pattern Mining, Frequent Pattern,

Sequence Database, Tree - Based Mining.

I. INTRODUCTION

Data mining (sometimes called data or knowledge

discovery) is the process of examining data to distill

useful information and helpful knowledge from large

databases. This information may assist us to reach a

determination. Mining useful information and helpful

knowledge from large databases has evolved into an

important research field in data mining arena. Among

them, sequential pattern mining in large transactional

databases plays an important part in this area. Sequential

pattern mining is the procedure of obtaining the complete

set of frequent occurring ordered events or subsequences

from a set of sequences or sequence database. The

advantage to find the sequential patterns is, we can see

the customer's sequences and predict the probability to

purchase some items in next transactions by the clients.

For instance, if a customer bought egg and sugar in one

transaction, then, we can predict the probability to buy

milk by this customer in the next: that is, if {egg, sugar}

then {milk}. It is widely applied in the analysis of

customer purchase patterns or web access patterns,

sequencing or time-related processes such as science

experiments, natural disasters, and in DNA sequences,

and so on. Agrawal and Srikant first introduced

sequential pattern mining in 1995 [1]. Based on their

study, sequential pattern mining is stated as follows:

“Given a sequence database or a set of sequences where

each sequence is an ordered list events or elements and

each event or element is a set of items, and given a user-

specific minimum support threshold or min_sup,

sequential pattern mining is the process of finding the

complete set of frequent subsequences, that is, the

subsequences whose occurrence frequency in the set of

sequences or sequence databases is greater than or equal

to min_sup.” Past studies developed two major classes of

sequential pattern mining methods; one class proposed

apriori based mining algorithms and another class

proposed pattern growth based mining methods. GSP

(Generalized Sequential Pattern) [2] is an apriori based

algorithm which can determine the complete set of

frequent sequential patterns by using point-wise

candidate sequences generation and test access. This

algorithm scans the whole sequence database multiple

times to find out the support count or frequency of each

pattern from the database. As a result of multiple

scanning, the complexity of GSP algorithm gradually

increases with large database. PrefixSpan [3] is a pattern

growth based approach which is similar to FP-growth [4].

It does not make a great number of useless candidate sets

that makes out apriori based method. But, to see the

sequential patterns, PrefixSpan recursively creates a

circle of small projected databases from large databases.

To do this, the algorithm first scans the original database

to get the frequent items and their corresponding counts,

and then, it starts the mining operation. In mining process,

it first finds the subsequences for every prefix i.e.

frequent items. After this, the algorithm finds the

sequential patterns from the projected databases which

are produced from each prefix sequence and then, it

recursively creates set of small projected databases for

every frequent subsequence. In this approach, the

sequences grow from short to large with recursively

78 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

projected databases which increases both the time and

space complexity. Also, each time it commands to scan

the projected database to find the frequent items that

mean it needs multiple scanning of the projected database.

Mining algorithm [5] of FUSP - tree [6] is also based on

pattern growth approach which can find frequent

sequential patterns from FUSP - tree data structure by

recursively breeding set of small projected trees from the

large tree. Links stored in the FUSP - tree facilitate to

find the frequent items easily without scanning each

projected tree, but each time it needs to expense lots of

effort to update the links of each projected tree during

mining.

Table 1. Sequence Database

Sequence ID(SID) Sequence

10 p(pqr)(pr)

20 (pt)r(pu)

30 p(pqr)(pv)

40 (pq)(pt)

In this paper, we have developed a modified fast

updated sequential pattern tree (called a mFUSP - tree)

structure and mFUSP - tree mining algorithm based on

pattern growth approach for sequence database. At first,

this paper generates a mFUSP - tree structure of the

sequence database to store only frequent items. For this

ground, the large database is condensed into a smaller

tree data structure and when frequent items are not

exchanged, the approach doesn’t need to re- skim the

original database once the tree is created and can get the

results only from the tree. At the time of tree creation, it

lays the frequency of each item in the tree’s node which

helps us to dilute the effort of monotonous support

counting during mining. In this way, our mining

algorithm can overlook the multiple scanning of large

database. It requires only twice scans of large database to

create the mFUSP - tree. Our proposed mFUSP - tree

mining algorithm is also capable to discover the complete

set of frequent sequential patterns from the mFUSP - tree

without re-building the intermediate projected trees. So

that, our mining method can keep off the effort of links

updating of each projected tree and our mFUSP - tree

structure does not associate the same item in the tree;

these are different from FUSP - tree [6]. In this study, we

have provided both theoretical and substantial proof of

the completeness and correctness of the mFUSP - tree

mining algorithm. Moreover, a thorough experimental

study is provided to compare the proposed approach with

GSP [2], PrefixSpan [3], and FUSP-Tree Based mining [5]

on both synthetic and real datasets. The results show that

the proposed algorithm is much efficient than others.

The arrangement of this paper is as follows. Section 2

introduces the definitions of sequential pattern mining. In

Section 3, we briefly review the pattern growth mining

and two existing works. Section 4 proposes a compact

data structure, called mFUSP - tree, for storing complete

sequence database and a mFUSP - tree mining method

with example for mining sequential patterns. Carrying out

analysis is presented in part 5 and final section 6 draws

the conclusion that points out the potency of our study.

II. PROBLEM DEFINITIONS

Permit, I = {i1, i2, . . ., in} be a set of items in the

database D.

Definition 1: A finite number of items, denoted as X

= {i1, i2, . . ., im}, for all 1≤ m ≤ n, is called an itemset or

element or event. An itemset is also known as a subset of

I or X occur in I, de-noted as X ⊆ I.

For example, let, I = {p, q, r, t} and (pqr) is an itemset

or element or event of I where each item in (pqr) must

exist in I.

Definition 2: A sequence is an ordered list of itemsets.

A sequence s = (s1, s2, . . . , sm) where si is an itemset or

element or event. An item can pass at most once in an

ingredient of a sequence, but can occur multiple times in

different ingredients of a sequence

For instance, s = {(p) (pqr) (prt)} is a sequence which

has three elements or itemsets: (p), (pqr), (prt) and 4

items: {p, q, r, t}. Items p and r appear more than once in

different elements but appear only once in separate

element.

Definition 3: A sequence database D is a set of

records or rows where each record represented as <SID,

s>. SID (sequence ID) is the identifier of each sequence

and s is the sequence. Table 1 shows a sequence database

which contains four sequences and six items which are:

{p, q, r, t, u, and v}.

Definition 4: The number of items in a sequence is

called the length of the sequence. A sequence with length

l is called an l-sequence.

For illustration, first sequence, s1 = {(p) (pqr) (pr)}

shown in Table 1 has 6 items. So, it is called 6-sequence.

Definition 5: The absolute support of a sequence s in

a sequence database, D is the number of sequences in D

that contain s. The relative support of a sequence s in a

sequence database, D is the percentage of sequences in D

that contain s.

For case in point, sequence (pq) appears 3 times in the

Table 1, so the absolute support of (pq) is 3 and the

relative support of (pq) is 75% {(100 × 3) ÷ 4}.

Definition 6: Given a minimum support threshold

(min_sup), a sequence s is called a frequent sequential

pattern in D if absolute support or support of s ≥ min_sup.

Let, the minimum support threshold is 50%. Specify

that, for four sequences in Table 1, the minimum support

threshold (min_sup) is (4*0.5) = 2. So, sequence (pq) is a

frequent sequential pattern in Table 1 because the support

of (pq) ≥ min_sup (3 ≥ 2).

Definition 7: For two sequences α = (α1, α2, . . . , αn)

and β = (β1, β2, . . . , βm) where αi and βj are itemsets for 1

≤ i ≤ n and 1 ≤ j ≤ m. β is defined as a subsequence of α if

β1 ⊆ α1, β2 ⊆ α2, . . . , βm ⊆ αn.

Suppose sa = {(p) (pq)}. sa is a subsequence of s1 and s1

is a supersequence of sa. sa is sequential pattern of length

3 (i.e. 3-pattern).

Definition 8: For an item α from itemset I and a

sequence s, the α-prefix of s is the prefix of s from the

 Mining Sequential Patterns from mFUSP - Tree 79

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

first point (the leftmost item) to the first occurrence of α

inclusive and after the α-prefix is taken away, the

remainder portion of s is known as the α-projection of s.

For exemplar, the q-prefix of the sequence {(p) (pqr)

(pr)} is {(p) (pq)} and the q-projection is {(r) (pr)}.

Definition 9: If α is the last item of s then α-prefix is s

itself and the α-projection is the empty sequence €.

For instance, the u-projection of {(pt) (r) (pu)} is € and

u-prefix is this sequence itself.

Definition 10: The multiple set of α-projections from

the sequences where α occurs in sequence database D is

called the α-projection database Dα.

For example, all the q-projections from sequence

database shown in Table 1 are {(r) (pr)}, {(r) (pv)}, and

{(pt)}. These three sequences are known as q-projection

database, Dq.

Definition 11: Sequence relation denoted as s-relation

is a relation that exists between two items α and β if they

appear in different itemsets of a sequence, s and itemset

relation denoted as i-relation is a relation that exists

between two items α and β if both appear in the same

itemset of a sequence, s.

From Table 1, we can see that first sequence s1 has

three events, (p), (pqr), and (pr). Item p appears in the

first event (p) and item r appears in the second event (pqr)

of the first sequence, s1; so, in this situation, there exists

s-relation between them. On the other hand, second event

(pqr) holds both item p and r; in this case, there exists i-

relation between them.

III. REVIEW OF WORKS

In this segment, we have discussed an apriori based

mining method, pattern growth mining, and FUSP - tree

structure which will aid us to better understand our

proposed approach.

A. Generalized Sequential Patterns (GSP)

GSP (Generalized Sequential Patterns) [2] is an apriori

based sequential pattern mining algorithm which was

proposed by Srikant and Agrawal in 1996. During mining,

it generates lots of candidate sets and it tests them by

multiple passes. The GSP algorithm to find the frequent

sequential patterns is outlined as follows:

First Part: It scans the whole sequence database and

finds length - 1 sequential patterns.

Second Part: To find the entire frequent sequential

pattern, it scans the whole database iteratively. Each

iteration discovers all the frequent sequential patterns

with the same length.

In each iteration to find length-k sequential patterns

(Lk), it does the following:

1. By joining two length-(k-1) frequent sequential pat-

terns if only their first and last items are different, it

generates the length-k candidate sequential patterns,

Ck.

2. It prunes the length-k candidate sequential patterns

if any of its length-(k-1) contiguous subsequences is

infrequent.

Then, it scans the whole database and finds the support

for all the length-k candidate sequential patterns. If the

support of any length-k candidate sequence is greater

than or equal to min_sup, it puts this candidate sequence

in length-k frequent sequential pattern (Lk).

It extends this procedure until there is any frequent

sequential pattern or candidate sequence found.

However, GSP algorithm holds the difficulty that is

described in formula 1 (see Problem 1).

Problem 1: For n sequential patterns (candidate +

frequent), needs to scan the whole database n times to

determine the support of each sequential pattern. When

the size of the database increases, it generates the number

of sequential patterns used in the mining algorithm

supplementary and as a result the scans of whole database

increases extremely as well. This problem is defined as

follows:

Dsize α Seqnum and Seqnum α Dscan (1)

Here, Dsize denotes the total size of the database, Seqnum

represents as the total number of sequential patterns and

Dscan means the total scans of the whole database. If Dsize

increases, then both Seqnum and Dscan also increase and

vice versa.

B. Pattern Growth Approach

At this time, we interpret the basic concept of pattern

growth approach for sequential pattern mining since our

proposed algorithm is based on it. Pattern growth

approach is founded along the theory of conditional

searching. Based on the definition 8, 9, and 10, this

theory is illustrated as follows: prefix sequences are

grown by finding smaller projection database from the

larger database for each prefix sequence.

Then, recursively find frequent sequences from this

projection database and add these frequent sequences to

prefix sequence to find next frequent patterns. In sum, the

frequent sequential patterns become larger and projection

databases become smaller as the recursive calls go deeper

and more mysterious. Granting to the theory of

conditional searching, the pattern growth approach for

sequential pattern mining is shown in Algorithm 1.

Algorithm 1: Pattern Growth Mine (pattern p,

database D, int η)

Input: Sequence Database D, Minimum Support

Threshold η, Frequent Pattern p. Initially, p set as null.

Output: Complete set of frequent sequential patterns

Method:

1. F → €

2. for each item α in I do

2.1. if (Support of α ≥ η)

2.1.1. if item α is sequence related (see

Definition 11) to p

2.1.1.1. then, q ← (p) U (α)

2.1.1.2. F → F U q

2.1.1.3. Construct α-Projection Database

Dα of D

2.1.1.4. F → F U Pattern Growth Mine (q,

Dα, η)

2.1.2. endif

80 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

2.1.3. if item α is itemset related (see Definition

11) to p

2.1.3.1. then, q ← (p U α)

2.1.3.2. F → F U q

2.1.3.3. Construct α-Projection Database

Dα of D

2.1.3.4. F → F U Pattern Growth Mine (q,

Dα, η)

2.1.4. endif

2.2. endif

3. endfor

4. return F

But, pattern growth approach holds the dilemma that is

explained in formula 2 (see Problem 2). PrefixSpan [3] is

a sequential pattern mining algorithm based on pattern

growth approach and it also goes through the same

difficulty.

Problem 2: In the nastiest case, for n frequent

sequential patterns, needs to create n projection databases

that mean one or more projection sequences for each

projection database. The number of sequential patterns

as well as projection databases generation rises in

increasing order of the size of the whole database. This

problem is illustrated as follows:

Dsize α Seqnum and Seqnum α Dproject (2)

Here, Dproject represents as the total number of

projection databases. If Dsize increases, then both Seqnum

and Dproject increase as well and vice versa. (Look at

problem 1 to be familiar with the meaning of Dsize and

Seqnum)

Definition 12: If two nodes of a tree structure contain

items from two different events of a sequence, then there

exists sequence relation or s-relation and if two nodes

hold items from the same event of a sequence, then there

exist itemset relation or i-relation.

C. FUSP - Tree Algorithm

To proficiently mine the sequential patterns, Lin et

al.2008 proposed the FUSP-tree [6] structure and its

maintenance algorithm. FUSP - tree consists of one root

node labeled as ‘root’ and a set of prefix subtrees as the

children of the root. Each node in the prefix subtrees

contains item-name; which represents the node contains

that item, count; the number of sequences represented by

the portion of the path reaching the client, and node-link;

links to the following node of that item in the next branch

of the FUSP - tree. The FUSP - tree contains a Header-

Table which store frequent item, their count and the link

of first occurrence node in the tree of that item. This table

serves to find appropriate items or sequences in the tree.

The construction process is similar to FP - tree [4] i.e. the

construction process is executed tuple by tuple from first

sequence to final. Only the conflict from the FP - tree is,

the connection between two nodes is symbolized by‘s’ or

‘i’ as like IncSpan [7]. Here, symbol‘s’ indicates the

sequence relation (see Definition 12) between two

different events in a sequence and symbol ‘i’ indicates

the itemset relation (see Definition 12) between two items

in an event.

Mining process [5] of FUSP - tree [6] is similar to

PrefixSpan [3] and FP-growth [4] algorithms. After the

FUSP - tree is maintained, the final frequent sequences

can then be found by a recursive method from the tree.

This method determines the sequential patterns from the

FUSP - tree structure by generating set of small projected

trees from the large tree recursively. It generates no

candidate sets, but it produces many projected trees for

prefix sequences which suffer the same trouble defined in

formula 2 (see Problem 2). Figure 1 shows a FUSP - tree

structure with its Header Table for the sequence database

shown in Table 1.

Fig. 1. FUSP - Tree with Header Table

IV. PROPOSED APPROACH

We have described our mFUSP - tree structure and its

mining approach to find frequent sequential patterns from

sequence databases in this section. At first, our proposed

approach constructs a modified fast updated sequential

pattern tree (called a mFUSP - tree) structure to store

only frequent items from the sequence database. Then, it

generates the complete set of frequent subsequences from

the mFUSP - tree structure without generating any

intermediate projected tree. The algorithm for mFUSP -

tree mining is given in Algorithm 2.

Algorithm 2: (mFUSP - Tree Mining: mining frequent

subsequences from sequence database)

Input: Sequence Database and Minimum Support

Threshold (min_sup).

Output: The complete set of frequent sequential

patterns.

Method:

1. Scan the sequence database to ascertain the length-1

frequent sequential patterns and their counts.

2. Scan again sequence database to construct mFUSP -

tree and its corresponding Header Table only for

frequent items which are originated from step 1 by

using Algorithm 3.

3. Then, recursively mines the original mFUSP - tree

to find out frequent sequential patterns without

generating intermediate trees by using Algorithm 4.

A. mFUSP - Tree Structure

In our study, a modified fast updated sequential pattern

tree (called a mFUSP - tree) data structure along with

Header Table is applied to store only frequent items from

the sequence database. Each frequent item in the events

 Mining Sequential Patterns from mFUSP - Tree 81

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

of a sequence is inserted into the tree based on the events

arranged in each sequence. Each branch of the tree is a

sequence of the sequence database. It requires only two

scans of database to construct the tree which reduces the

scans of large original database significantly. One scan is

for detecting the length-1 sequential patterns and their

counts; another scan is required to build the mFUSP - tree

structure along with Header Table based on length-1

patterns.

A modified fast updated sequential pattern tree

(mFUSP - tree) is defined as follows:

1. The root of the tree is a special virtual node with a

label as Root and all sequences of the database add

as child nodes to root.

2. Each node in a mFUSP - tree registers four pieces of

information: label, support count, identification and

child link (label: count: identification: child link).

Every node is labeled by a frequent item from the

events of a sequence. The count of a node

determines the number of sequences that share this

node in their paths. Identification in a node is used

to indicate if there exists a sequence relation (s-

relation) or itemset relation (i-relation) between two

nodes (see definition 12). If there exists s-relation,

then set identification of the second node as “s” and

if there exist i-relation, then place identification of

the second node as “i”. Child link in a node is

applied to connect the child nodes from this node.

3. The mFUSP - tree structure maintains a Header

Table, where each distinct frequent item with their

support count is stored for sequential mining.

Construction process of mFUSP - tree is similar to

FUSP - tree structure which executes tuple by tuple from

first sequence to final. The algorithm for constructing a

mFUSP - tree from sequence database is given in

Algorithm 3.

Algorithm 3: (Construction of mFUSP - Tree from

Sequence Database)

Input: Sequence Database and Minimum Support

Threshold (min_sup).

Output: mFUSP - Tree, T.

Method:

1. Scan (first scan) the sequence database and get

length-1 sequential patterns with their support counts.

Keep frequent length-1 patterns (those support count ≥

min_sup) to the Header Table.

2. Create the root node of a tree T and label it as "Root".

Initially current _node = root.

3. for each sequence Si till the end of database (second

scan)

3.1 for each event ej in Si

3.1.1 for each item I in the ej

3.1.1.1 if support of I ≥ min_sup, then

3.1.1.1.1 if item I is sequence related (see

Definition 11 & 12) to

current_node’s label, then

3.1.1.1.1.1 if current_node has a child node

c which c.label = I and

c.identification = s, then set

c.count += 1 and current_node

= c.

3.1.1.1.1.2 Otherwise,

 3.1.1.1.1.2.1 Create a New node label with I.

 3.1.1.1.1.2.2 New node.count = 1.

 3.1.1.1.1.2.3 New node.identification = s.

 3.1.1.1.1.2.4 Store New node in the

current_node's successor link.

 3.1.1.1.1.2.5 Set current_node = New node

3.1.1.1.1.3 end if

3.1.1.1.2 end if

3.1.1.1.3 if item I is itemset related (see

Definition 11 & 12) to

current_node’s label, then

3.1.1.1.3.1 if current_node has a child node

c which c.label = I and

c.identification = i, then set

c.count += 1 and current_node

= c.

3.1.1.1.3.2 Otherwise,

 3.1.1.1.3.2.1 Create a New node label with I

 3.1.1.1.3.2.2 New node.count = 1.

 3.1.1.1.3.2.3 New node.identification = i.

 3.1.1.1.3.2.4 Store New node in the

current_node's successor link.

3.1.1.1.3.2.5 Set current_node = New node

3.1.1.1.3.3 end if

3.1.1.1.4 end if

3.1.1.2 end if

3.1.2 end for

3.2 end for

4 current_node = root.

5 end for

a. Example of mFUSP - Tree Structure

In this fragment, we will try to describe the

construction algorithm of mFUSP - tree by using an

example. As input our algorithm just takes a sequence

database and a minimum support threshold.

In our example, we have used the sequence database

which is shown in Table 1 and let the minimum support

is 50% or 2 (4*50% = 2).

The mFUSP - tree for the sequence database presented

in Table 1 is constructed as follows: Scan the database to

find the length-1 frequent sequential patterns with their

support counts and keep them in the Table 2. Scan yet

again the database and get the first sequence p(pqr)(pr).

Insert this sequence into the initial tree with only one

Root node. It creates a new node (p: 1: s) (i.e. labeled as p,

with count set to 1 and identification to s) as the child of

the Root node, and then derives the p-branch "(p: 1: s) →

(p: 1: s) → (q: 1: i) → (r: 1: i) → (p: 1: s) → (r: 1: i)", in

which arrows point from parent nodes to children nodes.

Now, insert the second sequence (pt)r(pu). It starts from

the Root again. Since the Root node has a child labeled

with "p" and identification of this node is also s, then, p's

count is just increased by 1, i.e., (p: 2: s) immediately.

But, next item, t in first event of second sequence does

not match with the existing child node of node (p: 2: s).

So, create a new child node (t: 1: i) of node (p: 2: s) and

then, derives the branch "(p: 2: s) → (t: 1: i) → (r: 1: s)

82 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

→ (p: 1: s)", but it ignores to insert item u as item u is

infrequent according to the Table 2. Third sequence is

most alike to the first sequence. So, just increment the

count of nodes of the first branch and also, it does not

insert the node (v: 1: i) as the child node of (p: 2: s) since

item v is not frequent. This operation goes on until there

is no sequence in the sequence database. Header Table

stores p, q, r, and t with their support count because they

are frequent. The complete mFUSP - tree along with its

Header Table is shown in Figure 2.

Table 2. Length-1 Patterns and Their Support Counts

Length-1 Sequential Patterns Support Count

p 4

q 3

r 3

t 2

u 1

v 1

Fig. 2. mFUSP - Tree with Header Table

b. Characteristics of mFUSP - Tree

The key design points behind the mFUSP - tree are

summarized as follows:

1. mFUSP - tree is used to store each sequence of a

sequence database in a compact data structure.

Because, same sequences will share the same branch

of the tree, only counts of the corresponding nodes

increment. So, the size of the mFUSP - tree is much

smaller than the size of the sequence database. The

height of the tree is one plus the maximum length of

the sequences in the database (one for root). The

number of leave nodes of the tree, i.e., tree width is

the number of distinct sequences in the database.

2. Each node stores the corresponding counts of the

items, so that, the mining algorithm can avoid the

tedious support counting during mining. That means,

it can lessen the repeated scanning of large database

during mining.

3. Identification store in each node is used to easily

specify the sequence relation or itemset relation

between nodes.

4. Compared with the FUSP - tree [6], links stored in

the FUSP - tree [6] to find the next node of same

item from the next branch help us to locate the

frequent items easily without scanning each

projected trees during mining. Our proposed tree

structure avoid this extra burden by not storing link

information in the tree, as our proposed mining

algorithm is efficient enough to discover frequent

sequential patterns without these link information.

Our tree structure only links the children nodes from

the parent.

Definition 13: For any node labeled as ei, all the nodes

in the path from the root (excluded root) of the tree to this

node form a prefix sequence of ei.

For instance, in the Figure 2, for node (q: 2: i) in the

first branch, the prefix sequence is (p)(pq).

Definition 14: for any node labeled as ei, all the nodes

in the path from ei (itself excluded) to leave node form a

suffix sequence of ei. There are several children of ei in

the tree, and each branch from a child to a leaf node will

represent as a suffix sequence and all these suffix

sequences are called the suffix tree of ei.

For example, in the Figure 2, for node (q: 2: i) in the

first branch, the suffix sequence is (r)(pr). Again, in the

Figure 2, node (p: 4: s) has three suffix sequences

(pqr)(pr), (t)(r)(p), and (q)(pt). All these suffix sequences

are called the suffix tree of node (p: 4: s) and node (p: 4: s)

is the root of this suffix tree.

Lemma 1: Given a sequence database S, the support

count of each sequential pattern can be obtained from the

count of each node corresponding to this sequential

pattern.

Justification: Based on the mFUSP - tree construction

process, each sequence in S is mapped to one path in the

mFUSP - tree. And all frequent items in each sequence

are completely stored in the mFUSP - tree. Given a

sequential pattern α = (α1, α2, . . . , αn). Following the

child link of each item, we can traverse the suffix trees of

these nodes. Assume that P denotes a complete set of

paths that sequence α occurs in the suffix trees. Let n

denote the last node in a path p (p € P), the support count

of α in p is equal to the count of n node. Therefore, for

each p in P, we can accumulate the count of each last

node of each p to get the complete support count of

sequence α.

Based on this lemma, we can conclude that our

algorithm can avoid multiple scanning of large database

during mining since we can get the support count of each

sequential pattern from the mFUSP - tree. Because

monotonous multiple scanning is required to get the

support count of each pattern from the large database.

Our algorithm requires only twice scans of database

owing to construct the mFUSP - tree.

B. Mining Algorithm of mFUSP - Tree

mFUSP - tree mining algorithm is designed for

efficiently mining sequential patterns from the mFUSP -

tree structure. During mining, this algorithm utilizes the

original mFUSP - tree for the entire mining and does not

rebuild intermediate trees for projection databases like

PrefixSpan [3] and FUSP - tree [5]. Moreover, it does not

scan the original database multiple times during mining

that GSP [2] does.

 Mining Sequential Patterns from mFUSP - Tree 83

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

Lemma 2: Given a mFUSP - tree T of a sequence

database S, each frequent sequential pattern can be

derived from the original mFUSP - tree structure, T

without generating any intermediate projected tree.

Rationale: We can find any node from the suffix tree

of a node labeled as ei by using the links of the children

node of ei. If we store only the prefix node labeled as ei,

then, using the links of the child nodes, we can discover

the frequent events from the suffix tree of ei. For this

reason, we employ suffix rootsets that store only the

prefix node labeled as ei. Rootsets are used to virtually

represent the suffix trees without the need to physically

store each suffix tree. The main idea is, find frequent

events from the suffix trees of the last frequent event in a

m-prefix sequence and add these frequent events to m -

prefix sequence to enlarge this subsequence to m+1 -

prefix sequence recursively. In closing, our algorithm can

avoid generating any projected tree during mining by

storing just the prefix nodes (roots) of the suffix trees

physically instead of storing whole suffix trees.

The algorithm for mining sequential patterns from the

mFUSP - tree is described in Algorithm 4. This algorithm

begins from the Header Table. For each frequent item α

in the Header Table, it always tries to get the first-

occurrence node with labeled α from each branch of the

original tree and stores these nodes in the rootset. The

first-occurrence nodes of a symbol are found using depth-

first-search of the tree. The algorithm of detecting the

first-occurrence node is given in Algorithm 5.

This algorithm applies two rootsets, one to store the s-

relation nodes and another to store the i-relation nodes

related to an item, α. If the sum of the counts of all nodes

in the rootset for s-relation nodes related to α is greater

than or equal to the minimum support threshold, then α is

appended to the sequential pattern list. Next, using this

rootset, find the next frequent prefix subsequence (α)(α1)

or (αα1) or both from the α-suffix tree. The same attitude

is employed for the rootset that stores i-relation nodes.

This process goes along for each prefix subsequence until

there is no suffix tree for that prefix subsequence for

search. This method is carried out for each frequent item

in the Header Table to retrieve all frequent sequential

patterns.

Algorithm 4: (mFUSP - tree Mine (Rootset, p):

Mining Sequential Patterns from mFUSP - tree)

Input: mFUSP - tree with Header Table and Minimum

Support Threshold (min_sup).

Output: The Complete Set of Frequent Sequential

Patterns.

Global Variable: Rootset_s to store s-relation nodes,

Rootset_i to store i-relation nodes, Track to store each

root node.

Other Variable: F to store frequent sequential patterns

list and p to store each pattern.

Initial: Initially, Rootset_s stores Root of the original

tree and set both F and p as null. At first, call the mFUSP

- tree Mine () of Algorithm 4 by passing Rootset_s and p.

Method:

1. F → €

2. for each frequent item α in the Header Table

2.1 Rootset_s = new Rootset()

2.2 Rootset_i = new Rootset()

2.3 for each root node R of the Rootset

2.3.1 Track = R

2.3.2 for each child node N of R

2.3.2.1 First-Occurrence-

Node(α,N,0,0) [Describe

in Algorithm 5]

2.3.3 end for

2.4 end for

2.5 if (the sum of the counts of root nodes in the

Rootset_s ≥ min_sup), then

2.5.1 q ← (p) U (α)

2.5.2 F → F U q

2.5.3 F → F U Call mFUSP-tree Mine

(Rootset_s, q)

2.6 end if

2.7 if (the sum of the counts of root nodes in the

Rootset_i ≥ min_sup) ,then

2.7.1 q ← (p U α)

2.7.2 F → F U q

2.7.3 F → F U Call mFUSP-tree Mine

(Rootset_i, q)

2.8 end if

3. end for

4. return F

Algorithm 5: (First-Occurrence-Node (α, N, Mark_s,

Mark_i): To Find First Occurrence Node that Labeled as

α in the mFUSP- tree).

Input: Frequent Item, α and child node N of Root node

R from Rootset, Mark_s variable is used to find only one

s-relation node labeled as α from a branch and Mark_i

variable is used to find only one i-relation node labeled as

α from a branch.

Output: The First Occurrence nodes those Labeled as

α.

Global Variable: Mark variable is used to keep track

if the parent node's label of a node equal to the root

node's label. Initially, Mark set as 0.

Method:

1. if (N. label = Track. label)

1.1 set Mark as 1

2. end if

3. if (N. label = α), then

3.1 if (Track. label = root)

3.1.1 Append N to Rootset_s

3.1.2 Mark_s set as 1

3.2 else if (N. identification = “i” && Mark = 0

&& Mark_i = 0)

3.2.1 Append N to Rootset_i

3.2.2 Mark_i set as 1

3.3 else if (N. identification = “i” && Mark = 1

&& Mark_i = 0)

3.3.1 Append N to Rootset_i

3.3.2 Append N to Rootset_s

3.3.3 Mark_i set as 1

3.3.4 Mark_s set as 1

3.4 else if (N. identification = “s” && Mark_s = 0)

3.4.1 Append N to Rootset_s

84 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

3.4.2 Mark_s set as 1

3.5 end if

4. end if

5. for each child node, n of node N

5.1 First-Occurrence-Node (α, n, Mark_s, Mark_i)

6. end for

a. Example of Mining Algorithm of mFUSP - Tree

For proper understanding of our proposed mining

approach, in this section, we will try to illustrate our

algorithm step by step with the aid of an example. As for

input, our mining algorithm just takes mFUSP-tree with

Header Table and minimum support threshold (min_sup).

The algorithm’s steps are keyed out below using the

mFUSP - tree structure established in Figure 2:

Step 1: The first item in the Header Table is 'p'. From

the Root node of the mFUSP - tree shown in Figure 2

determines the first-occurrence nodes labeled as 'p' using

depth-first-search. The first-occurrence node of item 'p' is

(p: 4: s) node. The count of this node is 4 ≥ minimum

support threshold and Identification of node (p: 4: s) is

“s”. So, the frequent sequential pattern is (p) and now the

list of mined frequent sequential patterns is {(p): 4}. The

mining of frequent 2-sequences that start with item 'p'

would continue with the suffix tree rooted at node (p: 4: s)

pictured in Figure 3 [colored portion]. Again, for item 'p'

in the Header Table, initiates exploring to obtain first-

occurrence nodes labeled as 'p' from the root node (p: 4:

s). The first-occurrence nodes labeled as 'p' from root

node (p: 4: s) are (p: 2: s), (p: 1: s) and (p: 1: s). The sum

of counts of these nodes is 4 ≥ minimum support

threshold. Identification of these nodes is “s”, so that, the

frequent sequential pattern is (p)(p) and at this moment

the list of mined frequent sequential patterns is {(p): 4,

(p)(p): 4}. Yet again, for item 'p' in the Header Table,

finds a first-occurrence node (p: 2: s) labeled as 'p' from

the suffix trees rooted at nodes (p: 2: s), (p: 1: s) and (p: 1:

s) depicted in Figure 4 [colored portion]. The count of

node (p: 2: s) is 2 ≥ minimum support threshold. As

identification of this node is “s”, appends it to (p)(p)

sequence as a s-relation item to create frequent 3-

sequence (p)(p)(p) and at this time the list of mined

frequent sequential patterns is {(p): 4, (p)(p): 4, (p)(p)(p):

2}. At that point is, no suffix tree rooted at node (p: 2: s)

for search described in Figure 5 [colored portion]. So, no

frequent 4-sequences exist for (p)(p)(p) sequence and

stop here.

Fig. 3. Suffix tree rooted at node (p: 4: s) for prefix sequence "(p)"

Fig. 4. Suffix trees rooted at (p: 2: s) and (p: 1: s) for prefix sequence

"(p)(p)"

Fig. 5. Suffix tree rooted at node (p: 2: s) for prefix sequence "(p)(p)(p)"

Fig. 6. Suffix tree rooted at node (q: 2: i) for prefix sequence "(p)(pq)”

Backtrack and go again for item 'q' on the Header

Table and discovers a first-occurrence node (q: 2: i)

labeled as 'q' from the suffix tree of node (p: 2: s) and

there is no node labeled as “q” in the suffix tree rooted at

node (p: 1: s) illustrated in Figure 4 [colored portion].

The count of this node is 2 ≥ minimum support threshold.

Identification of node (q: 2: i) is “i”. So, node (q: 2: i) is

considered as a i-relation node. So, the frequent

sequential pattern is (p)(pq) and currently, the list of

mined frequent sequential patterns is {(p): 4, (p)(p): 4,

(p)(p)(p): 2, (p)(pq): 2}.

Persist in this operation for the frequent 4-sequences

that begin with the (p)(pq) sequence from suffix tree

 Mining Sequential Patterns from mFUSP - Tree 85

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

rooted at node (q: 2: i) demonstrated in Figure 6 [colored

portion] and come up only one frequent pattern (p)(pq)(p):

2. No suffix tree left to search rooted at node (p: 2: s)

provided in Figure 5 [colored portion].

Applying this same methodology, we can find the

complete set of frequent sequential patterns starting with

item 'p' and the frequent sequential patterns are {(p): 4,

(p)(p): 4, (p)(p)(p): 2, (p)(pq):, (pt): 22, (p)(pq)(p): 2,

(p)(pqr): 2, (p)(pqr)(p): 2, (p)(pr): 2, (p)(pr)(p): 2, (p)(q):

2, (p)(q)(p): 2, (p)(qr): 2, (p)(qr)(p): 2, (pq): 3, (pq)(p): 3,

(pqr): 2, (pqr)(p): 2, (p)(r): 3, (p)(r)(p): 3, (pr): 2, (pr)(p):

2}.

Step 2: This same procedure will be repeated for the

frequent items q, r, and t; those are stored in the Header

Table. Finally, the complete set of frequent sequential

patterns are {(p): 4, (p)(p): 4, (p)(p)(p): 2, (p)(pq): 2,

(p)(pq)(p): 2, (p)(pqr): 2, (p)(pqr)(p): 2, (p)(pr): 2,

(p)(pr)(p): 2, (p)(q): 2, (p)(q)(p): 2, (p)(qr): 2, (p)(qr)(p):

2, (pq): 3, (pq)(p): 3, (pqr): 2, (pqr)(p): 2, (p)(r): 3,

(p)(r)(p): 3, (pr): 2, (pr)(p): 2, (pt): 2, (q): 3, (q)(p): 3, (qr):

2, (qr)(p): 2, (r): 3, (r)(p): 3, (t): 2}.

C. Completeness and Correctness – Theoretical Proof

The primary purpose of all kinds of mining algorithms

is to determine the perfect set of frequent patterns for the

specified minimum support threshold. When an algorithm

can get those patterns without losing anyone, then we can

suppose that the algorithm is complete. On the other hand,

the correctness of an algorithm is to determine the correct

patterns with accurate frequency which are interesting for

the given minimum support threshold. When an

algorithm has both of these standards, then the algorithm

is complete and correct. Like other existing sequential

pattern mining algorithms, our proposed mining

algorithm is also complete and correct that we have

theoretical demonstrated in this fragment.

Let T denote the complete mFUSP - tree and Lk the

complete set of k-sequential patterns. Before giving the

proof, we briefly summarized the major steps of the

mFUSP - tree mining algorithm. These steps will help us

to ignore the details of algorithm that not related to the

proof.

1. Find all L1 patterns in the construction of the

mFUSP - tree.

2. For each patterns α in Lk-1 (k ≥ 2).

2.1 Traverse α’s suffix mFUSP - tree in T, denoted

as T|α, and calculate the count of each item in L1

from T|α by using Lemma 1.

2.2 Obtain a k-sequential pattern, denoted as α', by

appending either an item in the last itemset of α

or a new itemset after the last itemset of α if the

support count of α' satisfies minimum support

threshold.

2.3 Put all those patterns α' into Lk if their support

counts satisfy minimum support threshold.

3. Recursively find Lk+1 sequential patterns with prefix

α' in T|α'.

Theorem 1: Every sequential pattern must be

obtained by the mFUSP - tree mining algorithm.

Proof: For each item i in L1, we traverse i’s suffix

mFUSP - tree, denoted as T|i, from T. This theorem can

be proved by induction.

Basis: If k = 1, meaning that there is only one item in

each pattern, then all patterns in L1 can be found by the

step 1 of the mFUSP - tree mining algorithm.

Inductive step: We consider algorithm can find all Lk

sequential patterns. Suppose we are given an Lk

sequential pattern denoted as x = {i1, i2,…, ik}. This

means step 2.1 of the algorithm will traverse < i1, i2,…, ik-

1 >’s suffix mFUSP - tree T|< i1, i2,…, ik-1 >. Based on the

Lemma 1, the support count of each sequential pattern

can be derived from the mFUSP - tree. Hence, all the

pattern information related to ik-1 will be kept in T|< i1,

i2,…, ik-1 >. Thus, step 2.2 of the algorithm can find x' =

{i1, i2,…, ik-1} from T|< i1, i2,…, ik-1 >. Finally, ik can be

appended after x' to form pattern x. Then, we can find all

sequential patterns of Lk by checking if a pattern in Lk

satisfies minimum support threshold. We did this in step

2.3. Therefore, the mFUSP - tree mining algorithm can

find all sequential patterns.

Theorem 2: The sequential patterns obtained by the

mFUSP - tree mining algorithm are correct.

Proof: Because of the examination done in steps 1,

2.2, and 2.3, every sequential pattern in L1 and Lk (k ≥ 2)

must be frequent (i.e. satisfy minimum support threshold).

Based on these theorems above, we have concluded

that the mFUSP - tree mining algorithm is complete and

correct.

V. PERFORMANCE ANALYSIS

We have evaluated the performance of our proposed

mFUSP - tree mining approach with other three existing

approaches GSP [2], PrefixSpan [3] and FUSP-Tree

Based mining [5] for two real datasets and a synthetic

dataset. All the experiments were conducted on a 2.80-

GHz Intel(R) Pentium(R) D processor with 1.5GB main

memory, running on Microsoft Windows 7. All the

programs were written in NetBeans IDE 6.8 with JDK 6.

A. Datasets

We have used three datasets, two real-datasets, BMS-

WebView-1 [8], and BMS-POS [8], as well as a

Synthetic dataset T10I4D100K [8] for evaluation of

experimental results. We use these datasets by

considering each transaction as a sequence and each item

of the transaction as a single item element in that

sequence. Obviously, while considering these datasets for

sequential pattern mining, they will also generate long

sequential patterns. The properties of these datasets, in

terms of the number of distinct items, the number of

sequences, the maximum sequence size, the average

sequence size, and type are shown below by a Table 3.

B. Experimental Result

Execution times after running four algorithms for

different minimum support thresholds by using three

datasets (T10I4D100K, BMS-WebView-1, and BMS-

POS) are presented at this juncture.

86 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

Table 3. Properties of Experimental Datasets

Dataset Distinct Items No. of Sequences Max Size Avg. Size Type

T10I4D100K 870 100000 29 10.1 Synthetic

BMS-WebView-1 497 59602 267 2.5 Real

BMS-POS 1657 515597 164 6.5 real

a. The Comparison Between GSP and mFUSP - Tree

Three datasets, including a synthetic dataset (i.e.

T10I4D100K) and two real datasets (i.e. BMS-WebView-

1 and BMS-POS), were used to examine the execution

time of both GSP and mFUSP - tree with respect to

minimum support threshold. Figure 7 shows the

execution time results for T10I4D100K, BMS-WebView-

1 and BMS-POS, respectively. The results indicate that

the mFUSP - tree mining algorithm is much faster than

GSP. The results are as expected; because GSP needs

scanning these datasets multiple times to find the support

count of each sequential pattern. When the number of

sequences in each dataset increases, the amount of scans

increases as well and as a consequence, the execution

times of GSP algorithm raise. On the contrary, mFUSP -

tree mining method can determine the support count of

each pattern from the node’s count of the mFUSP - tree

structure effortlessly and moreover, it calls for only twice

scans of these datasets to build the mFUSP - tree from

these datasets.

Fig. 7. Execution Time vs. Minimum Support between GSP and mFUSP

- Tree

b. The Comparison Between PrefixSpan and mFUSP -

Tree

Figure 8 demonstrates the execution time results for

T10I4D100K, BMS-WebView-1 and BMS-POS,

respectively due to compare the execution time of both

PrefixSpan and mFUSP - tree with respect to minimum

support threshold. The result is quite encouraging;

because PrefixSpan produces projected intermediate tree

from these datasets for each sequential pattern. We know

that number of sequential pattern generation increases

when the size of the database increases and hence, the

number of intermediate tree generation increases as well.

This similar dilemma influences PrefixSpan algorithm.

For this reason, PrefixSpan requires more times than

mFUSP - tree mining to uncover frequent sequential

patterns from these large datasets (T10I4D100K, BMS-

WebView-1, and BMS-POS) as our proposed method

does not generate intermediate trees during mining.

 Mining Sequential Patterns from mFUSP - Tree 87

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

Fig. 8. Execution Time vs. Minimum Support between PrefixSpan and
mFUSP - Tree

c. The Comparison Between FUSP - Tree and mFUSP -

tree

Figure 9 is employed for evaluating the performance of

both FUSP - tree and mFUSP - tree mining with respect

to minimum support threshold by using three datasets,

T10I4D100K, BMS-WebView-1 and BMS-POS,

respectively. FUSP - tree almost similar to the mFUSP -

tree except that it generates intermediate trees for each

sequential pattern from these datasets and it stores

additional linking information in its node. The results

shown in Figure 9 point out that as an effect of

intermediate trees generation and link updating procedure

of each projected tree, FUSP - tree entails supplementary

times during mining than mFUSP - tree mining for these

large datasets.

Fig. 9. Execution Time vs. Minimum Support between FUSP - Tree and

mFUSP - Tree

C. Completeness and Correctness

In this section, we have substantial demonstrated that

the proposed algorithm is complete and correct.

The completeness of the proposed algorithm can be

verified by comparing the total numbers of patterns

generated for various minimum support thresholds. From

Figure 10, we can perceive that the proposed algorithm

produces the same number of patterns as GSP [2],

PrefixSpan [3] and FUSP - tree [5] mining generate for

datasets T10I4D100K, BMS-WebView-1 and BMS-POS

respectively. From this figure, we can also observe that

the total number of frequent patterns generation inversely

proportional to the minimum support threshold. That

implies, if the values of the minimum support thresholds

decrease, then the total number of frequent patterns

generation increases and vice versa. Since for all datasets,

the proposed algorithm has generated complete set of

frequent sequential patterns as existing algorithms

generate, so it proves the completeness of the algorithm

presented in this paper.

Table 4 has presented the sequential patterns obtained

from the four algorithms for the sequences which are

shown in Table 1. We can realize from this table that,

these four algorithms generate the same frequent

sequential patterns with the same frequencies for the

same minimum support threshold. In other word, we can

state that, the proposed algorithm gives the same result as

GSP [2], PrefixSpan [3] and FUSP - tree [5] mining

methods produce that demonstrates the correctness of the

algorithm given in this paper.

88 Mining Sequential Patterns from mFUSP - Tree

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

Thus, based on the exceeding discussion, it can be said

that the proposed mFUSP - tree mining algorithm is

complete and correct.

Table 4. Sequential Patterns Obtained from Four Algorithms for

Database Shown in Table 1

Fig. 10. Comparison between No. of Sequential Patterns and Minimum
Support

VI. CONCLUSION

To achieve efficient mining sequential patterns, a

compact data structure, called a mFUSP - tree, is

proposed to store and compress entire sequence database

and a mining algorithm, named mFUSP - tree mining, is

developed to ascertain the complete set of frequent

patterns from the mFUSP - tree. Because of this tree

structure, we can resolve many problems that have other

existing algorithms like GSP, PrefixSpan and FUSP - tree

mining. First of all, we can compact larger sequence

database into smaller tree structure because of partaking

the same branch of the tree for the similar sequence of

database and as well, for storing frequent items.

Subsequently, our mining algorithm can avoid the

multiple scanning of large database attributable to storage

of counts in the tree’s node; only require twice scans of

database to build the mFUSP - tree. Next, the link

information is not stored in the mFUSP - tree structure

then that our proposed mining algorithm can pay no

attention to the link updating process. Ultimately, the

mFUSP - tree structure is too efficient for incremental

mining that we will describe in our future study. In order

that, the performance of our proposed mining method

enhances in favor of these gains of the mFUSP - tree

structure. Likewise, we want to point out that mFUSP -

tree mining algorithm does not scan the large database

numerous times as well as does not generate intermediate

projected trees as a result of depth first search from

parent node to child nodes that shrinks the time

complexity of the algorithm and our experimental results

provide evidence for performance enhancement of the

method that has demonstrated in this paper.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,"

in ICDE, P. S. Yu and A. L. P. Chen, Eds. IEEE Computer

Society,1995,pp.3-14. http://doi.ieeecomputersociety.org/

10.1109/ICDE.1995.380415

[2] R. Srikant and R. Agrawal, “Mining sequential patterns:

Generalizations and performance improvements," in EDBT,

ser. Lecture Notes in Computer Science, P. M. G. Apers,

M. Bouzeghoub, and G. Gardarin, Eds., vol. 1057.

Springer, 1996, pp. 3-17. http://dx.doi.org/10.1007/

BFb0014140

[3] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.

Dayal, and M. Hsu, “Prefixspan: Mining sequential

patterns by prefix-projected growth," in ICDE, D.

Georgakopoulos and A. Buchmann, Eds. IEEE Computer

Society, 2001, pp. 215-224. http://doi.ieeecomputersociety.

org/10.1109/ICDE.2001.914830

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation," in SIGMOD Conference, W.

Chen, J. F. Naughton, and P. A. Bernstein, Eds. ACM,

2000, pp. 1-12. http://doi.acm.org/10.1145/342009.335372

[5] Bithi A. A., Akhter M., & Ferdaus A. A. “Tree Based

Sequential Pattern Mining”, IRACST - International

Journal of Computer Science and Information Technology

& Security (IJCSITS), ISSN: 2249-9555, Vol. 2, No.6,

December2012. http://www.ijcsits.org/papers/vol2no6

2012/25vol2no6.pdf

 Mining Sequential Patterns from mFUSP - Tree 89

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 07, 77-89

[6] C.-W. Lin, T.-P. Hong, W.-H. Lu and W.-Y. Lin, “An

incremental FUSP-tree maintenance algorithm," in ISDA,

J.-S. Pan, A. Abraham, and C.-C. Chang, Eds. IEEE

Computer Society, 2008, pp.445-449.

http://doi.ieeecomputersociety.org/10.1109/ISDA.2008.12

6

[7] H. Cheng, X. Yan, and J. Han, “Incspan: incremental

mining of sequential patterns in large database," in KDD,

W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, Eds.

ACM, 2004,pp.527-532. http://doi.acm.org/10.1145/

1014052.1014114

[8] Z. Zheng, R. Kohavi, and L. Mason, “Real world

performance of association rule algorithms," in KDD, 2001,

pp.401-406.http://portal.acm.org/citation.cfm?id=502512.

502572

Authors’ Profiles

Ashin Ara Bithi: currently a Lecturer of

Department of Computer Science and

Engineering at Asian University of

Bangladesh. She has received her B.Sc.

and M.S. degree from the Department of

Computer Science and Engineering,

University of Dhaka, Bangladesh. Her

research interests include Data Mining,

Sequential Pattern Mining, Frequent

Pattern Mining, and Web Mining.

Abu Ahmed Ferdaus: received his

M.Sc. in Computer Science from the

Department of Computer Science,

University of Dhaka, Bangladesh. He had

a prior B.Sc. in Applied Physics and

Electronics from the Department of

Applied Physics and Electronics (now

known as Electrical and Electronic

Engineering) of the same University. He

is currently working as an Associate Professor in the

Department of Computer Science and Engineering at University

of Dhaka, Bangladesh. His research interests include Data &

Knowledge Engineering, Data Warehousing and Mining,

Sequential Pattern Mining, Frequent Pattern Mining, and

Database System.

How to cite this paper: Ashin Ara Bithi, Abu Ahmed

Ferdaus,"Mining Sequential Patterns from mFUSP - Tree",

International Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.7, pp.77-89, 2015. DOI:

10.5815/ijitcs.2015.07.09

