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Abstract—Typical methods of quantum/reversible 

synthesis are based on using the binary character of 

quantum computing. However, multi-valued logic is a 

promising choice for future computer technologies, given 

a set of advantages when comparing to binary circuits. In 

this work, we have developed a genetic algorithm-based 

synthesis of ternary reversible circuits using 

Muthukrishnan-Stroud gates. The method for 

chromosomes coding that we present, as well as a 

judicious choice of algorithm parameters, allowed 

obtaining circuits for half-adder and full adder which are 

better than other published methods in terms of cost, 

delay times and amount of input ancillary bits. A 

structure of the circuits is analyzed in details, based on 

their decomposition. 

 

Index Terms—Multiple-valued logic, ternary logic, 

ternary reversible adder, reversible logic. 

 

I.  INTRODUCTION 

Quantum information and quantum computing [1] are 

very attractive research areas and have made huge 

advances both theoretically and experimentally in recent 

years. There are many different proposals for the physical 

implementation of a quantum computer, all of which are 

specified by the physics of their qubit systems and the 

nature of interactions between the qubits. More generally, 

a lot of attention is attracted to the possibility of realizing 

a reversible computer based on the laws of quantum 

mechanics. A reversible circuit maps each input vector 

into a unique output vector. Quantum algorithms and 

protocols for quantum communication and cryptography 

have been studied extensively with the qubit as the 

information storage and transport medium. Most 

approaches to quantum computing use two-valued 

quantum systems (qubits). Recent studies [2-6] have 

indicated that there are many advantages to expand 

quantum computers from qubits to multi-valued systems. 

Three-valued quantum systems, so called qutrits, are the 

simplest multiple valued systems. It is expected that 

qutrit-based quantum information processing will be 

more powerful than qubit implementations [4,5]. But 

multiple-valued quantum logic (MVL) synthesis is still a 

developing research area. The crucial issue of choosing 

the elementary gate set for multi-valued quantum circuits 

is still not well explored. Synthesis of reversible logic 

circuits differs significantly from the synthesis of 

combinational logic circuits. In a reversible circuit, the 

number of inputs must be equal to the number of outputs, 

thus, every output can be used only once (i.e., no fan-out 

is permitted), and must be acyclic. Multiple valued 

quantum logic synthesis, and ternary logic in particular, 

has become popular in the recent years [7-11]. Previous 

works [10,11] used cascades of ternary reversible gates, 

like Feynman and Toffoli gates, to realize ternary logic 

functions. The advantage of this approach is that ternary 

logic functions having many input variables can be easily 

expressed as a ternary Galois field sum of products and 

can be realized using a cascade of ternary Feynman and 

Toffoli gates. Muthukrishnan and Stroud demonstrated 

the realization of MVL for quantum computing using 

liquid ion-trap quantum technology [3], referred to as 

Muthukrishnan and Stroud (M-S) gate. The macro-level 

ternary Feynman and Toffoli gates can be realized on top 

of M-S gates. It was shown that arbitrary MVL 

operations on any number of multiple valued qubits can 

be decomposed into elementary logic gates that operate 

only on two qubits at a time. We refer to these elementary 

two-qutrit gates as M-S gates. The M-S gate is considered 

to be one of the elementary gates in ternary logic 

synthesis. Designing the so-called permutative circuits 

(described by unitary matrices that are in addition 

permutative) is practically important since all the oracles 

in algorithms so far are permutative, and the non-

permutative quantum blocks are usually standardized 

(like Hadamard or Fourier transforms). The algorithms 

designed for these use evolutionary programming 

principles or are adaptations of some methods used in 

Galois Field (GF3) classical circuits and classical 

multiple-valued reversible logic [12-20]. There are very 

few examples in the literature on synthesizing certain 

types of practical special circuits, like arithmetic ones, 

using such quantum CAD tools or by hand. 

In this paper, we have used the genetic algorithm (GA) 

with real valued encoding of the chromosomes using 

ordered 3-tuples [14]. Genetic algorithms are very 

popular Soft Computing approaches for solving problems 

with no identified structure and high level of noise [20-

22]. Advantages of such a choice in our opinion are: 

 

(i) a large search space for solving problems,  

(ii) the size of the search space can be changed by 

choosing the parameters settings,  
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(iii) the possibility of obtaining a large variety of new 

solutions, 

(iv) from this wide variety of solutions one can 

choose the optimal ones according to the 

specified conditions.  

 

These advantages make GAs useful for synthesizing 

ternary reversible/quantum circuits using a cascade of M-

S gates. This follows from the fact that the structure of 

such cascade is still unidentified and the search space 

itself is exponentially large. We have defined the 

quantum cost of a ternary reversible gate as the number 

of M-S gates required in its implementation. The multi-

valued reversible logic circuit with minimal number of 

garbage outputs, minimal quantum cost and minimal 

number of ancilla bits (ancilla bit is an auxiliary input 

constant bit needed in the circuit other than the function 

input bits) is considered as an efficient design. The 

structure of the paper is as follows: Section 2 explains the 

ternary Galois field and basic ternary reversible gates. 

Section 3 presents the details of the proposed genetic 

algorithm; Section 4 shows the proposed design of the 

reversible ternary half-adder, full adder and the analysis 

of the proposed circuits. Section 5 provides the 

conclusions. 

 

II.  TERNARY GALOIS FIELD AND BASIC GATES 

The ternary Galois field (GF(3)) consists of a set of 

elements T = {0, 1, 2} and two basic binary operations – 

addition modulo 3 (denoted by  ) and multiplication 

(denoted by  or absence of any operator) as defined in 

Table 1, which satisfies the following axioms: 

 

(1) Commutative law for addition  

 
xyyx   

 

(2) Associative law for addition  

 
)()( zyxzyx   

 

(3) There is an element 0 (zero) such that  

 

xx 0        for all x 

 

(4) There is an element (x) for any x, such that  

 
0)(  xx  

 

(5)  Commutative law for multiplication  

 
xyyx   

 

(6) Associative law for multiplication  

 
)()( zyxzyx   

 

(7) There is an element 1 (not equal to 0) such that  

xxx  11     for all x 

 

(8) For any x  0, there is an element x1 such that 

 

111   xxxx  

 

(9) Distributive law 

 
)()()( zxyxzyx   

 

Table 1. GF(3) Operations 

  0 1 2   0 1 2 

0 0 1 2  0 0 0 0 

1 1 2 0  1 0 1 2 

2 2 0 1  2 0 2 1 

 

Any transformation of the qutrit state represented by a 

3×3 unitary matrix specifies a valid 1-qutrit ternary 

quantum gate. There are many such non-trivial 1-qutrit 

gates. We use only the permutative transforms as shown 

by permutative matrices of Table 2.  

Table 2. 1- and 2-Qutrits Ternary Permutative Transforms and its 
Symbolic Representation 

1-qutrit 

gates 

1-qutrit 

transformations 

2-qutrit M-S gate 

 

















010

001

100

)1(3Z  

 
 












2,

1,0,

1

12

2

11

XifZ

XifX
Y

XY
 

 

 12,02,01,2,1Z  

 


















001

100

010

)2(3Z  

 


















100

001

010

)01(3Z  

 


















001

010

100

)02(3Z  

 


















010

100

001

)12(3Z  
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The logical equivalent of these 1-qutrit transforms can 

be expressed using GF3 expressions and truth tables as 

shown in Table 3. These permutative operations are thus 

good both technologically and algebraically. The 

transforms Z3(+1) and Z3(02) are referred to as C1 and N, 

respectively, in [2,8]. The transforms Z3(+2), Z3(01) and 

Z3(12) are referred to as C2, D, and E, respectively, in [8]. 

Using the reasoning similar to [2,8,9,10], we assign the 

gate costs of these 1-qutrit gates to be 1. The 1-qutrit gate 

B is said to be the inverse gate of a 1-qutrit gate A, if 

gates A and B in cascade have the resultant effect that the 

input signal to gate A is restored at the output of gate B. 

In particular, for the elements Z3(+1), Z3(+2), Z3(01), 

Z3(02), and Z3(12) the inverse elements are Z3(+2), 

Z3(+1), Z3(01), Z3(02), and Z3(12), respectively.  

Table 3. 1-Qutrit Ternary Permutative Transforms 

Input

A 

Output 

A(0)

=A 

A(+1)= 

A+1 

A(+2) = 

A+2 

A(01) = 

2A+1 

A(02) = 

2A+2 

A(12) 

= 2A 

0 0 1 2 1 2 0 

1 1 2 0 0 1 2 

2 2 0 1 2 0 1 

 

Important gates for designing ternary quantum circuits 

are the ternary M-S gates. The diagram of a ternary M-S 

gate is shown in Table 2. Here, input X1 is controlling, 

and input X2 is controlled. The output Y1 is equal to the 

input X1. If X1 = 2, the other output Y2 is the Z-transform 

of the input X2, otherwise Y2 = X2. The M-S gates are 

similar to the controlled 2-qutrit De Vos gates [2] and 

their extensions used by Miller et al. [6,8], namely the 

CC1, CN, CC2, CD, and CE gates. The only exception is 

that in the M-S gates the controlling value is 2 and in the 

De Vos gates (including the extensions) the controlling 

value is 1. In [6,8], the controlled 2-qutrit gates CC1, CN, 

and CC2 are considered as elementary gates and their 

cost is assumed to be 1. Using similar reasoning, we 

assign the gate cost of M-S gates to be one.  

 

III.  PROPOSED GENETIC ALGORITHM 

In this work we propose an improved approach to 

synthesis of reversible/quantum ternary adders based on 

genetic algorithm. Such approach to reversible logic 

synthesis is called for due to necessity of taking into 

account several additional conditions, namely, forbidding 

the fan-out and fan-in (no-cloning theorem [1]), and 

feedback is not allowed. Genetic algorithms belong to 

adaptive and meta-heuristic algorithms of finding the 

optimal solution for various problems, based on the idea 

of natural selection and genetics. They utilize the 

intelligent random search for solving the problems with a 

large phase space with many dimensions. Consider that a 

sought scheme can be represented by a sequence of 

controlled and uncontrolled logic primitives described 

above, placed in parallel and/or in series. We will place 

not more than one gate in each column (Fig.1). 

Information inputs (controlling and controlled) are placed 

in the upper part of the network while the constant 

ternary signals are placed at the bottom. We have chosen 

the following optimization parameters: 

 

Minimal amount of logic errors on output, according to 

the truth table of synthesized ternary reversible device; 

Minimal amount of constant (ancillary) inputs; 

Minimal amount of circuit gates; 

Minimal circuit delay time. 

 

Genetic algorithm was used to automatically search for 

a sequence of primitive connections (chromosome) that 

satisfy a given truth table and imposed optimization 

conditions. The parameter space contains almost all 

possible chromosomes. 

A.  Chromosome Coding 

Chromosome represents a schematic of a device which 

is coded as a vector of genes which in turn describe a gate 

of a given column. A gene contains the following 

information: the number of line which controls the gate, 

line number of the gate itself, gate type (Fig.1, bottom 

row). If the number of the controlling line equals the gate 

line number we’ll call it a non-controlled gate. Gate A(0) 

is encoded as “000”. Figure 1 presents an example of 

chromosome coding (for half-adder). To model a half-

adder we used four input and output lines. The top two 

lines receive information signals А and В, bottom two (L0, 

L1) get ancilla signals 2 and 0, respectively. To guarantee 

the reversibility of the synthesized devices, the number of 

inputs equals the number of outputs. At output, besides 

repeating the input signals А and В, we obtain the sum 

Sab and the output carry Сab.  

B.  Fitness Function 

An important feature of the genetic algorithm is the 

estimation of the fitness function for each chromosome. 

Successful choice of fitness function is important to 

achieving convergence in a search for solution. In this 

work we use a fitness function containing three 

components: 

 

321 321 FkFkFkF                        (1) 

 

F1 – a fitness component that minimizes logical errors 

in output signals according to the truth table of the 

synthesized device: 

 

1

1
1




Error
F ,                             (2)
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Fig. 1. Ternary reversible half-adder with two ancilla bits (L0(1) and L1(0)). Top row shows the column (gene) number, bottom row -chromosome 

coding. 

 

F2 – a component that minimizes the amount of non-

zero gates dG in a circuit for a chromosome of length dL:  

 

,2
dL

dGdL
F


                              (3) 

 

F2 – a component that minimizes the amount of 

controlled M-S gates: 

 

,3
dG

dGM
F                               (4) 

 

where dGM is the number of 1-qutrit gates; k1, k2, k3 are 

weighting coefficients. In a search for valid logic circuits 

we always set k1=1. Other coefficients of the fitness 

functions were chosen to be less than unity. 

C.  Main Steps of the Genetic Algorithm 

Proposed genetic algorithm has the following main 

steps. 

 

1. Generation of the initial population of 

chromosomes, each representing a possible 

solution to the problem of a reversible device 

synthesis.  

2. Initialization of a seed – no duplicates are allowed 

in the offspring population. Removed 

chromosomes are replaced with random 

individuals. 

3. Selection operator – panmixis. Panmixis is the 

simplest selection operator assigning each member 

of the population a random integer number from 

the range [1, n], where n is the amount of 

individuals in the population. These numbers 

represent the individuals that will participate in the 

crossover. Crossovers of the individuals with 

themselves are discarded. Some members of the 

population will participate in reproduction with 

many other individuals. Despite the simplicity, this 

algorithm is universal for many classes of 

problems. 

4. Crossover operation – a uniform crossover, 

exchanging genes of parents in each locus with a 

pC probability. It ensures that offsprings would 

contain interchanging short chains from parents. 

5. Mutation – a random gene change can happen in 

each locus with a probability pm. 

6. Offspring evaluation according to fitness function. 

If offsprings are better than the worst parent 

individuals, then the former replaces the latter and 

stagnant counter is reset.  Otherwise, stagnation 

counter is incremented. 

7. If stagnation counter hasn’t reached a 

predetermined value, return to step 3. Otherwise, 

start the next cycle. 

8. Analyze whether fitness function value have 

improved for a chosen amount of cycles. If not, 

run the inner GA which uses the obtained 

population as input. Inner GA has the features of 

the main one and is meant to fix at least one error 

in the truth table of the best chromosomes.  

9. If the cycle counter hasn’t reached the chosen 

value, return to step 2. 

10. The algorithm stops after a chosen amount of 

cycles or when chromosomes with a fitness 

function larger or equal to 1 are obtained.  

 

Post GA reduction is a process of minimization of the 

obtained circuits with an equivalent one but having 

smaller length. The following rules are used [14]: i) if 

there are two 1-qutrit gates connected in series in the 

same line they are replaced with one, according to the 

product of their corresponding matrices (Table 1); ii) a 

similar replacement is made for M-S gates, provided that 

they have the same controlling line; ііі) a group 

consisting of 1-qutrit gate, M-S gates, 1-qutrit gate 

connected in series within a single controlled line is 

replaced with an equivalent 1-qutrit gate, according to 

Table 1, and M-S gates in series. 

By applying the above genetic algorithm we have 

discovered that it quickly finds circuits with low amount 

of the output signal logic errors (from 13 down to 0, for 

various circuits). In case of finding a local maximum, it is 

easier to run another inner genetic algorithm which will 

try to fix at least one error and combine its result with the 

previous one, obtaining thus an individual with less errors 

and moving out of the local maximum at the same time. 



42 Design of a Ternary Reversible/Quantum Adder using Genetic Algorithm  

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 09, 38-45 

IV.  EXPERIMENTAL RESULTS AND DISCUSSION 

Proposed GA was used to design reversible ternary 

adder and half-adder. In case of ternary half-adder, the 

input signals are A and B, and output signals, apart from 

A and B which ensure the reversibility, are the sum Sab 

and carry Cab according to the truth table of half-adder 

(Table 4). According to Table 4: 

 

BABASab  ),(sum ,                        (5) 

 








 


3
int),(carry

BA
BACab

.                     (6) 

Table 4. Truth Table of Ternary Half-Adder 

A B Cab Sab 

0 0 0 0 

0 1 0 1 

0 2 0 2 

1 0 0 1 

1 1 0 2 

1 2 1 0 

2 0 0 2 

2 1 1 0 

2 2 1 1 

 

Parameters of the algorithm were chosen according to 

the assessment described below and illustrated in Fig. 2. 

In particular, Fig. 2(a) shows the influence of population 

size on the average gate amount (chromosome length) in 

a synthesized half-adder. According to this assessment, 

the optimal population size is 500. Following the results 

in Fig. 2(b), the optimal stagnant number was chosen to 

be 25, whereas crossover probability pc=0.5, and 

probability of mutation pm=0.03 (Fig. 2(с), (d)). The best 

chromosome satisfying the above criteria is shown in 

Fig.1. Obtained half-adder circuit (chromosome) consists 

of the following elements: first, copying of information 

from line B to L0 is performed (L0=B, genes 1-4); next, 

the condition А = 2 is processed, i.e. if line A contains 

signal 2, an M-S gate with two inputs adds 2 to the 

content of the line (L0 = В + 2, gene 5); next, a carry in 

line L1 is formed (Cab = carry (A,B), genes 6 – 8), and 

finally, a sum is formed in line L0 (Sab = sum (A,B), genes 

9–11). 

A circuit of the ternary reversible half-adder obtained 

using our GA has four input lines – two informational 

and two constant. Obtained circuit contains 11 primitives, 

thus, assuming that the cost of each primitive is the same 

and equals 1, the cost (amount of elementary gates) of 

building the ternary half-adder is 11. The delay time of 

the obtained half-adder, as shown in Fig.1, equals 11t0, 

where t0 is the delay time of a single gate. 
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Fig. 2. Dependence of the average gate amount of a ternary reversible half-adder on (a) population size (pc=0.5, pm=0.03), (b) stagnant number (pc=0.5, 

pm=0.03, pop-size =500), (c) crossover probability (pm=0.03, pop-size =500), and (d) mutation probability (pc=0.5, pop-size =500). 

 

Fig. 3. Ternary reversible half-adder with one ancilla bit L0(0). 

 

Compared to previous work where the cost of the 

ternary half-adder was 19[14], our ternary half-adder 

developed using the proposed genetic algorithm contains 

less elementary gates. Genetic algorithm proposed above 

also allows performing a search for a circuit of a 

reversible ternary half-adder with three inputs, one of 

which is constant (ancilla).  In this case, apart from the 

sum and carry, the output contains a copy of only one 

input signal. Optimized circuit with minimal amount of 

logic primitives is shown in Fig.3. The cost of such half-

adder is 7 and the delay time is 7t0, compared to a cost of 

9 for a 3-input reversible half-adder proposed in [15]. 

Using the half-adder circuits we have also built a  

ternary full adder. Supplying the input of the adder with 

three signals A, B, Сі, we obtain a sum S and carry С on 

output which are defined as  

 

ii CBACBAS  ),,(sum ,                   (7) 

 








 


3
int),,(carry i

i

CBA
CBAC .           (8) 

 

Taking into account (5) and (6), we transform (7) and 

(8) to the following form [12]: 
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),(sum iab CSS  ,                            (9) 

 

 ),(carry,sum iabab CSCC  .                  (10) 

 

Proposed GA was used to obtain the optimal circuit of 

a ternary full adder in the basis of 1-input and 2-input M-

S gates described above. The best obtained 5-input 

chromosome (Fig. 4) according to described criteria 

contains the following elements: first, the sum and carry 

are formed based on the half-adder circuit (Fig. 1), genes 

1 – 11. After that, the output carry of the full adder C is 

formed (genes 12 – 14) using the input carry Сі, sum Sab 

and carry Cab of the half-adder according to eq.(10). 

Finally, a sum S is formed (genes 15 – 17) using the 

previously obtained input transfer Сі and sum Sab 

according to (9). The circuit of the ternary full adder 

obtained using our genetic algorithm has 5 input lines – 

three informational (A, B, and Ci) and two constant 

(ancilla bits) (L0 and L1, which receive, similarly to the 

case of half-adder, constant signals 1 and 0). On output, 

the three lines repeat the input signals (A, B, and Ci) and 

the other two provide the sum and carry to the next rank 

(S and С). Obtained circuit contains 17 primitives, 

corresponding to the cost of realization of 17. The delay 

time of the obtained full adder, as can be seen from Fig. 4, 

equals 16t0, where t0 is the single gate delay time. For 

comparison, the cost of ternary full adder developed by 

Khan et al. in [12] is 50 and requires 4 ancilla bits. The 

cost of full-adder realization by Miller et al. [8] is 96. Our 

approach based on genetic algorithm allowed obtaining 

ternary reversible adder with a much smaller amount of 

elementary gates than previous work [8,12] and a shorter 

delay time. 

To optimize the amount of the input lines of the 

reversible ternary adder we have used the circuit of the 

half-adder with three inputs (Fig. 3) (one ancilla bit). 

After replacing the genes 1–11 in the circuit in Fig. 4 

with the genes 1-7 of the half-adder (Fig. 3) we obtain 4-

input circuit of the reversible ternary full-adder with one 

ancilla bit (Fig. 5) with a cost of 13, as compared to the 

cost of 18 presented in previous work [15], i.e. requiring 

less elementary gates. 

 

 

Fig. 4. Circuit of a reversible ternary full adder with two ancilla bits (L0(1) and L1(0)). 

 

Fig. 5. Circuit of a ternary full adder with one ancilla bit L0(0). 

 

V.  CONCLUSION 

We have described the use of genetic algorithm to find 

the optimal design of ternary reversible/quantum logic 

devices on the example of half-adder and full adder. Due 

to complexity of realization of quantum gates with more 

than two inputs related to the difficulty of controlling 

them, we used liquid ion-trap realizable 1-qubit gates and 

2-qubit Muthukrishnan-Stroud primitive gates [3]. 

Proposed method for chromosome coding and judicious 

choice of parameters of the algorithm allowed us to 

obtain circuits for ternary half-adder and full adder which 

are better than other available approaches. We have 

achieved lower-cost reversible devices in terms of 

elementary gates they are built of. In particular, using our 

approach we have developed a ternary reversible full 

adder with two ancilla bits with a cost of 17 and a full 
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adder with one ancilla bit with a cost of 13, as compared 

to previous works achieving costs of 18 by Zobov et al. 

[15], 50 by Khan et al. [12], and 96 by Miller et al. [8]. 

Moreover, the proposed implementation of the genetic 

algorithm allowed shortening the device delay time and 

reducing the amount of ancilla bits to 1. A notable feature 

of the proposed approach is the use of the modeling 

results for half-adder to build an optimal design of a 

ternary full adder. We have also addressed a strategy for 

choosing an effective fitness-function. We suggest using 

a fitness-function whose main component minimizes the 

amount of logic errors in the output according to the truth 

table of the synthesized device. Other components 

minimize the amount of 1- and 2-input primitives and 

provide only minor contribution to the fitness-function.  

Proposed evolutionary approach to the design of 

reversible ternary adders allows addressing the design of 

ternary parallel adders and subtractors with various ways 

of carry which will be addressed in future work. 
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