
I.J. Information Technology and Computer Science, 2016, 10, 63-71

Published Online October 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.10.08

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

Mining Frequent Itemsets with Weights over

Data Stream Using Inverted Matrix

Long Nguyen Hung
*

E-mail: ntthlong@gmail.com

Thuy Nguyen Thi Thu
*

*Informatics Department, Vietnam University of Commerce, Hanoi, Vietnam

E-mail: NguyenTthuthuy@gmail.com

Abstract—In recent years, the mining research over data

stream has been prominent as they can be applied in

many alternative areas in the real worlds. In this paper,

we have proposed an algorithm called MFIWDSIM for

mining frequent itemsets with weights over a data stream

using Inverted Matrix [10]. The main idea is moving data

stream to an inverted matrix saved in the computer disks

so that the algorithms can mine on it many times with

different support thresholds as well as alternative

minimum weights. Moreover, this inverted matrix can be

accessed to mine in different times for user’s

requirements without recalculation. By analyzing and

evaluating, the MFIWDSIM can be seen as the better

algorithm compared to WSWFP-stream [9] for min ing

frequent itemsets with weights over data stream.

Index Terms—Data min ing, frequent itemset with weight,

data stream, sliding window, inverted matrix.

I. INTRODUCTION

Data mining has been interested by many researchers,

and its applications are successful applied to many areas

in society. Nowadays, in many applications, data is not

performed as static data. They are dynamic, continue, and

sometimes they are extended continuously into undefined

upper/lower boundary [1,3,13,14,15,16]. This dynamical

data can be called as a data stream. The examples are

very popular in the real world such as data in a network

traffic analysis, in a web click stream, in a network of

intrusion detection, or in an on-line t ransaction analysis.

There are three challenges in mining over data stream: (1)

Finding the frequent itemsets in the large sphere in power

function representation); (2) exp losion of data as it is

updated and extended continuously while the used

memory has been limited; (3) and the performed t ime

needs to be as fast as possible

Mining frequent itemsets or min ing frequent itemsets

with weights is one of basic duties in data min ing. The

traditional methods used for frequent itemsets with

weights in static data cannot be used for data stream as its

disadvantages of memory space and performances.

In [12], Tsai P. S. M. has firstly proposed a new

approach of min ing frequent itemsets over data stream

using weighted sliding window model. He also has

proposed two algorithms based on Apriori so-called as

WSW and improved WSW-Imp algorithms.

In [9], it has proposed WSWFP-stream according to

FP-growth [6,7] to improve the time and the saving

memory compared to the ones derived from Tsai P. S. M.

[12].

In this paper, basing on the idea of Inverted Matrix

algorithm proposed by [10] (in which data can be

transferred to be represented in transactional array), we

proposes an algorithms of MFIWDSIM. This algorithm

uses the inverted matrix and an idea based on FP-growth

[6,7] for min ing frequent itemsets with weights over data

stream.

This paper focus on the following sections. In section

II, we present related works. Section III introduces the

problem of mining frequent itemsets with weights over

data stream using inverted matrix. Section IV shows a

new proposed algorithm, MFIWDSIM (Min ing Frequent

Itemsets with Weights over Data Stream using Inverted

Matrix). Last section gives the conclusions and further

works.

II. RELATED WORKS

Recently, data min ing has become the popular research

interested by many worldwide researchers. In [4], the

term of frequent itemsets with weights over static

database was first proposed using MINWAL algorithm.

In MINWAL, the authors defined a support level with

weights. The value of itemset's support with weights has

been calculated by a product of an itemset's support and

the average of sub-items' weights. The challenge in here

is related to Apriori property [2] using downward closure

property. This property is broken as if the alternative

itemsets will have alternative weights respectively. It

means that the sub-items of the frequent itemsets with

weights might not be the frequent sub-itemsets with

weights. To keep the Apriori property, MINWAL used k-

support bound concept. That means the support value for

the itemset candidates generated in the k
th

 level should be

greater than or equal to k-support bound. However, the

use of k-support bound in [4] to prune the searching

sphere might cost the time.

In [8], it proposed an algorithm of AWFIMiner for

mining frequent itemsets with adaptive weights in a static

mailto:ntthlong@gmail.com

64 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

database. This algorithm is improved from AWFPM

algorithm, in which a new measurement unit is used

effectively for pruning index itemsets compared to the

one mining with adaptive weights.

In recent years, mining over stream data has been an

important research. There are many researches on

frequent itemsets over data stream using alternative

models such as Landmark model [11], Titled-t ime

window model [5] and Sliding window model [12].

The landmark model [11] considers all data in one

window. It involves all transactions from a fixed point of

past time to present, and these transactions are treated the

same.

The tilted-time window model in [5] is a modification

of the landmark model. It considers the data at the time of

a system starting up to present. The processing time is

divided into alternative t ime slots, and the data is split

into different batches by the time. A batch, that is closer

to present, has been assigned a higher of weight

compared to the old one which has to be a fine

granularity [5].

In [12], Tsai P. S. M. has introduced an approach for

mining frequent item-sets over a data stream based on the

weighted slid ing window model. Two algorithms of

WSW and WSW-Imp algorithms are given which are

based on Apriori property (downward closure property)

[2]. WSW-Imp algorithm is an improvement of the first

one. This means if Xp and Xq are two (k-1)-combinational

itemsets in order to generate k-itemsets candidates of c

used the combination method in Apriori algorithm, then

the support with weight c will be g reater than the

supports with weights of Xp and Xq.

In [9], it has proposed WSWFP-stream algorithm

basing on FP-growth [6,7] to improve effectively on

memory space and time compared to both algorithms

derived from Tsai P. S. M. [12]. To achieve a better

performance, a new idea has been generated basing on

representing data on the inverted matrix [10]. An

algorithm of MFIWDSIM is proposed with use both of

inverted matrix [10] and FP-growth approach [6, 7].

III. MODEL OF MINING FREQUENT ITEMSETS WITH

WEIGHTS OVER DATA STREAM

The following content describes the related definitions

to problem of mining frequent itemsets over data streams

derived from Tsai P. S. M. [12].

Given I as itemset, I={i1,i2,…,iM}. A sub-itemset

X I , includes k alternative items so-called as k-itemset

or an itemset with the length of k .

For simplification, an itemset {i1,i2,…,iq} would be

written as i1i2…iq. For example, the itemset {a,b,c} is

replaced by abc in short. A transaction is a tuple t=(TID,X)

where TID is an identification index, and X is an itemset.

A database of transaction DT is a set of transaction in the

process.

A stream of transactions DS is an infinite range of

transactions, DS={ti1,ti2,…,tim,…} meanwhile tij, i=1,2,…;

j=1,2,… is a transaction at time Ti . A slid ing window
iTW

over data stream is a set of batches of transactions

considered at the time Ti. Assume that at the time of Ti

(i=1,2,…), the sliding
iTW is div ided into N batches of Bij

(i=1,2,…; j=1,2,…,N). Each batch is assigned with

individual positive real number of weight as

1
0 1 1

N

j j jj
, , .  


   This means every itemsets in

the batch’s transactions will have the same weight.

Definition 1. The support with weight of an itemset X

over data stream DS at the time Ti is SWsupp(X), estimated

by following equation:

1

N

ij jj
SWsupp(X) F (X) 


  (1)

Where Fij(X) is the frequency of X in j
th

 batch at the

time Ti.

Definition 2. The support with min imum weights over

data stream DS at Ti is calculated as:

1

N

ij jj
Card(B)  


   (2)

Where Card(Bij) is number of transactions of j
th

 batch

at the time Ti, and 0 1()   is the threshold of

minimum support defined by user.

Definition 3. At the time Ti, g iven itemset of X I ,

with the min imum weight of , X is so-called as frequent

itemset with weight over data stream DS using sliding

window model if:

SWsupp(X)  (3)

Therefore, X can be seen as satisfied . Otherwise, X is

not satisfied .

Table 1. Data stream at the time T 1

Example 1: Given data in Tab le 1. W indow
1TW of at

the time includes 10 transactions divided into 3

batches of B11, B12, B13. The weights are

 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix 65

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

1 2 30 5 0 3 0 2. , . , .     respectively, and the

minimum support threshold is 20%  .

We have, number of transactions in batches as:

11 12 133 4 3Card(B) ,Card(B) ,Card(B) .  

The frequency of “ab” in batches as:

11 12 131 1 1F (ab) ,F (ab) ,F (ab) .  

Therefore, the support with weight of itemset of “ab”

as:

1 0 5 1 0 3 1 0 2 1 0SWsupp(" ab")      

The minimum support at the time :

1

20 3 0 5 4 0 3 3 0 2 0 66

N

ij jj
Card(B)

% (. . .) .

  


   

      



As 1 0 0 66SWsupp(" ab") . .   then “ab” is

frequent itemset with weight over data stream. On the

other words, itemset of “ab” is satisfied .

The frequency of “be” in batches as:

11 12 130 1 1F (be) ,F (be) ,F (be) .  

Therefore, the support of “ab” itemset as:

0 0 5 1 0 3 1 0 2 0 5SWsupp(" be")      

As 0 5 0 66SWsupp(" be") . .   then “be” is not a

frequent itemset with weight over data stream. Or itemset

“be” is not satisfied .

Definition 4. At the time Ti, Mining frequent itemsets

with weight over data stream means to find a set of

WSWFI including all frequent itemsets with weight. This

means as finding the following set:

 WSWFI X X I ,SWsupp(X)   

The following lemma, derived from [2], shows a

characteristic of the frequent itemset over data stream,

which is always satisfied Apriori p roperty. This will be a

basic knowledge for mining frequent itemset with weight

over data stream.

Lemma 1 [12]. If X is a frequent itemset with weight

over data stream DS then all sub-itemsets Y X will be

the frequent itemsets with weights over data stream of DS.

IV. MINING FREQUENT ITEMSET WITH WEIGHT

ALGORITHM OVER DATA STREAM USING INVERTED

MATRIX

In this section, we propose MFIWDSIM algorithm for

mining frequent itemset with weight algorithm over data

stream using inverted matrix. MFIW DSIM algorithm is

built basing on the transferring data to the Inverted

Matrix derived from [10] and the FP-growth approach

[6,7]. The MFIW DSIM includes two phases: The first is

building inverted matrix, the second phase is mining on

the inverted matrix.

A. Building inverted matrix

How to build

By applying the building inverted matrix method in

[10], MFIWDSIM re-organizes data (transactions in the

batches) in current window over data stream into inverted

matrix saved in computer memory. The organizing data

in inverted matrix will help the user in min ing by

accessing to array addresses of data. On the other hand,

we can mine the data much time as we can with

alternative support thresholds as it is already saved in

computer memory.

The algorithm will save data in computer memory with

two components as data indexes and an inverted matrix.

 Data Index: Use Integer numbers to assign to

single items after sorting in alphabet order.

 Inverted Matrix: This matrix includes a set of rows

assigned with single indexed items. Each cell

(itemset) has three components as: the first is a

frequency of attending in the batch, the second and

the third components are the row and the column

of the next itemset in the matrix. In case, if it is a

last item then the second and the third will be nulls

(,) 
.

Building inverted matrix algorithm use twice scanning

on the data stream.

The first scanning: Sort the transaction in alphabet

order fo r items. Then, assign index values for single-

ordering items.

The second scanning: Scanning transaction in each

batch and transferring data into inverted matrix can be

done as follows:

 With the index: Define the location for the first

item in the transaction in the batch.

 With each cell in inverted matrix: Find the first

empty cell (from left to right) at the respective row

of first index item. Assign this cell with three

components of: frequency of attending in batch

 , and two others as row, column of rnext, cnext

formed as:

66 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

[SCj] (rnext,cnext) (*)

Where SCj=1, if itemset is attended in j
th

 batch. In

case, there is a same item in the next transaction

(same batch), then the SCj=SCj+1. The (rnext, cnext)

is row and column addresses of the cell for the

next itemset in the same t ransaction. This address

will be nu ll if it is a last item in the transaction

(assigned as (Ø,Ø)).

The assigning works for cells will be repeated

until we fill the addresses up for the last item in

the transaction in batch.

Do the same for the next batch of a data stream.

Building Inverted Matrix Algorithm

Algorithm 1: Building Inverted Matrix.

Input: At time Ti;

 Data stream DS;

 Window
 is divided into N batches of Bij

(i=1,2,…; j=1,2,…,N);

Output:
iTIM is inverted matrix at Ti, is represented

over data stream DS;

Method:

 //First scanning

1. Scan for (T DS)

2. Begin

3. In each transaction, sort itemsets in alphabet

ordering;

4. Define all single item attended over data

stream;

5. Build inverted matrix index component;

6. End;

 //Second scanning

7. Scan for (T DS)

8. Begin

9. Consider each transaction in the batch of

 , Assume that the alphabet ordering item

list is: List=<a1,a2,…,at>;

10. Define address of (r1,c1) - first empty cell

(from left to right) at the a1 respectively in

the batch of j;

11. Assign the item of a1 at the address (formed

in (*)) as : [SCj] (r2,c2)

12. For i=2 to t do

//Consider all the rest items in the List.

13. Begin

14. Define address of (ri,ci) in order to write

single item of ai in List;

15. If (1i t ) then assign informat ion of ai

in the batch of j, at address of (ri,ci) as [SCj]

(ri+1,ci+1)

16. else assign information of at in the batch of

j, at address (rt,ct) as [SCj] (Ø,Ø);

17. End;

18. End;

19. Return
iTIM ;

20. End. // End of algorithm 1

Building inverted matrix example

Example 2. Consider the data in Table 1. The current

window at time T1 has 10 transactions in 3 batches of

 and the batches weights as

1 2 30 5 0 3 0 2. , . , .     respectively, the minimum

support of 20%  .

Table 2. Index number in inverted matrix

Table 3. Inverted Matrix to transfer data Table 1

 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix 67

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

The building inverted matrix process as follows:

First Scanning: at each transaction, sort items in

alphabet order, assign index number for each ordering

items (see Table 2).

Second scanning: Table 3 shows the transferring data

from a data stream into an inverted matrix. For example,

to consider the first transaction of T1=”bce”, in Tab le 2,

we have, a location of item of “b” as 2, item of “c” as 3,

and item of “e” as 5. Therefore, there are three cells

representing for three items located in the rows of 2, 3

and 5 respectively (in the inverted matrix). The first

empty cell at the row 2 will be addressed as (2,1). The

informat ion in this cell will be [1] (2,2) (this means after

considering the first transaction, item “b” is attended one

time at the batch of B13. Address of (2,2) shows the next

cell of representing of item “c” in transaction T1).

Consider the first empty cell in row 3. Its address is

(3,1). Therefore, the cell informat ion is [1] (5,1)

(frequency of item “c” is 1 at the batch B12. (5,1) shows

the address of the next item “e” in transaction T1). As

considering to the first empty cell in row 5, its address is

(5,1). So the cell informat ion is [1] (Ø,Ø) (As item “e” is

attended one time in the batch B11, and item “e” is the last

item in the transaction of T1).

Do the same for transactions of batches B12, B11. Note

that when considering the first item in the first transaction

of the next batch, its address should be saved in the cell

having a respective row with the item’s location. The

column address of this cell is the first column of next

batch.

Table 3 below shows the transferring data from data

stream at the time to the inverted matrix. It is clear in

the Table 3 that the representing data shows the necessary

informat ion to mine frequent itemsets with weights over

inverted matrix instead of min ing them over data stream.

The detail will be shown in the fo llowing properties and

building algorithm.

Using some properties given in [8], there are some

properties for building trees based on FP-tree and min ing

on tree following the FP-growth [6,7].

Assume that IMFP-tree(x) is a IMFP-tree of item x.

This tree is built basing on FP-tree [6,7].

Property 1. The highest of IMFP-tree(x) (for single-

item of x) is: M-IDx+1, where IDx is the location of x.

For example, the highest of IMFP-tree(b) is 4 (see in

Table 3).

Property 2. The distributional frequency of item in all

batches is shown on the last cells in row of batch

(respectively with the inverted matrix index number).

For example, as shown in Table 3, distributional

frequency of item “a” in batches is [1,2,1] - one t ime in

batch 3 (B13), twice in batch 2 (B12), and one time in

batch 1 (B11) - given in the cell address of (1,8), (1,5) –

last cell in the batch, and (1,1). Distributional frequency

of item “e” in batches is [] given in cell address of

(5,9), (5,6) and (5,2).

Property 3. Number of samples in building IMFP-

tree(x) fo r x at an index position is number of cells the

row in the matrix, where these cells do not reference to

the null addresses.

For example, at row 3 in Tab le 3, the IMFP-tree(c) has

6 samples in building as there are 9 cells in the row

including 3 of them referenced to the null addresses.

Property 4. Distributional frequency of item in batch

in building IMFP-t ree(x) (at j
th

 batch) equals 1 at j if

1jSC  , or equals 0 in the rest positions .

For example, building IMFP-tree(a), the distributional

frequency as: one sample with abc:0,1,0 in 3
rd

 batch, 2

samples as ace:0,1,0 and abe:0,1,0 in 2
nd

 batch, one

sample abc:1,0,0 in 1
st

 batch.

Property 5. When building MFP-tree for the next

items (which had alphabet order), this tree do not contain

the previous-alphabet items.

This means the next tree has a reducing size as its

previous alphabet items are eliminated.

For example, building IMFP-t ree(c) will not include

items of “a” and “b”, or building IMFP-t ree(d) will not

include items of “a”, “b” and “c”.

Property 6. There is no need to build the IMFP-tree(x)

if x is the last item in alphabet order.

For example, the IMFP-tree (e) is not necessary to

build as if “e” is last item and all cells’ address reference

to the null.

B. Mining the inverted matrix

Algorithm

After building a inverted matrix, the mining process

will be performed according to alphabet ordering items.

For each single-item satisfied , the algorithm is

performed as follows: (1) Define the samples in inverted

matrix; (2) Building IMFP-tree for each item according to

FP-tree [6,7]. Note that at each node, there is a save of list

of frequencies in each batch (see also in [8]); (3) Min ing

IMFP-tree for this item based on FP-growth [6,7] to find

the frequent itemsets with weights; (4) Remove IMFP-

tree and conditional tree (if existing) for the item. Repeat

the same process for next items in the matrix.

Algorithm 2: Mining Inverted Matrix.

Input: At time Ti;

 Inverted Matrix
iTIM ;

 Weighted table of batches 1j (j ,..,N)  ;

 Minimum support threshold over data stream µ;

Output: L is a list of frequent itemset with weight of

inverted matrix
iTIM ;

Method:

1. At time Ti : Consider window of
iTW . Define

number of transaction in the batch;

2. Update weighted table for batches;

3. Compute the support with minimum weight 

68 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

based (2);

4. From inverted matrix
iTIM , define C1 (frequent

itemset with weight) satisfied .
5. L=C1;

6. For i:=1 to M do

 // M is number of items

7. Begin

8. For x at row i

9. For j:=1 to
iTCard(IM) do

 //
 is index number of inverted mate

10. If (value of (ija  ) then

11. Begin

12. Follow the tracking of referenced cells (base

(*)), we can find k samples:

Sampx={S1:f1,…,fN;…;Sk:f1,…,fN};

// Where there is only one fp=1 at the item located

at p
th

, fp=0 in otherwise.

13. End;

14. Build IMFP-tree(x) from Sampx;

15. Create a conditional tree for item x;

16. Build the list item candidates from conditional

tree of x;

17. Build FP(x) is a set of itemset satisfied ;

18. L=LFP(x);

19. Remove IMFP-tree(x) and conditional tree of x;

20. End;

21. Return L;

22. End. // End of algorithm 2

Example of mining inverted matrix

Mining inverted matrix in Table 3 to find frequent

itemset with weight over data stream can be seen as

follows:

At time T1: Consider window of
1TW . Define number

of transaction in batches and number of single items,

update the weights .

Calculate the support with minimum weight 

according to (2):

1
0 66

N

ij jj
Card(B) .  


   

As property 2, items of “a”, “b”, “c”, “d” and “e” have

the distributional frequency as :

<a:1,2,1;b:1,2,2;c :3,3,3; :d:1,0,1;e:2,3,2> and the support

with weights respectively as:

<a:1.3;b:1.5;c:3.0;d:0.7;e:2.3>.

All items are satisfied . Therefore, there is no

eliminated itemset. The list of single items as frequent

itemset with weight over data stream will be

L=C1={a,b,c,d,e}.

Therefore, we can build and mine the IMFP-tree for

the items of “a”, “b”, “c” and “d” (there is no tree for “e”

as it is the last item in the list-based property 5).

 Building and Mining IMFP-tree(a).

According to property 3, in Table 3, item “a” is located

in row 1. There are 4 “not-empty” cells (these cells

addresses do not reference to the next cell of null address).

Therefore, the number of samples will be 4 to build

IMFP-tree(a).

According to property 4, the samples in building tree

will be: {abc:0,0,1;ace:0,1,0;abe:0,1,0;abc:1,0,0}. Then,

the tree can be built in Fig. 1(a).

Fig.1. IMFP-tree(a) and conditional trees

From index table in Fig. 1(a), there are 2-itemsets

(together with a”) as <ea:0,2,0;ca:1,1,1;ba:1,1,1> and the

support with weights respectively as

<ea:0.6;ca:1.0;ba:1.0>. It is clear that item “ea” did not

satisfied . Remove item “e” from IMFP-tree(a), we have

the tree in Fig. 1(b). Update “ca” and “ba” into L, we

have, L={a,b,c,d,e,ca,ba}.

Continue mining by developing the 2-itemsets of “ca”

and “ba”. By mining conditional tree of “ba”, we have a

null tree. By mining the conditional tree of “ca”, we have

a tree in Fig. 1(c).

There is a 3-itemset candidate of {bca:1,0,1} and the

support with weight of “bca” is <bca:0.7> satisfied . By

mining the conditional tree of “bca” we have a null tree.

Therefore, L={a,b,c,d,e,ca,ba,bca}.

Remove IMFP-tree(a) and its conditional tree after

mining.

 Building and mining IMFP-tree(b).

There are 5 samples in build ing IMFP-tree(b) (see in

Table 3 at row 2). They:

{bce:0,0,1;bc:0,0,1;bc:0,1,0;be:0,1,0;bc:1,0,0} (not

including “a” according to property 5). From the samples

we have IMFP-tree(b) in Fig. 2(a).

 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix 69

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

Fig.2. IMFP-tree(b) and conditional tree

From index table, we have 2-itemset together with “b”

without “a” as <eb:0,1,1;cb:1,1,2> and the support with

weights respectively as <eb:0.5;cb:1.2>. The itemset of

“eb” is not satisfied . Remove item “e” from IMFP-

tree(b) we have a condit ional tree in Fig. 2(b). Update

itemset of “cb” to L, we have L={a,b,c,d,e,ca,ba,bca,cb}.

Mining the condition tree of “cb”, we have null tree.

Therefore, L={a,b,c,d,e,ca,ba,bca,cb}.

Remove IMFP-tree(b) and its conditional tree after

mining.

 Building and mining IMFP-tree(c).

Samples in build ing IMFP-tree(c) is 6 (as seen in Table

3, row 3) as:

{ce:0,0,1;cde:0,0,1;ce:0,1,0;cd:0,1,0;cde:1,0,0;ce :1,0,0}.

From these samples we can build IMFP-tree(c) in Fig.

3(a).

Fig.3. IMFP-tree(c) and its conditional tree

From index table, there are 2-itemset together with “c”

as <ec:2,2,2;dc:1,0,1> and the support with weight

respectively as <ec:2.0;dc:0.7>. These itemsets are

satisfied . Update “ec” and “dc” into L, we have

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc}.

Mining conditional tree of “dc”, we have a null t ree.

Then, by min ing conditional tree of “ec”, we have a

conditional tree in Fig. 3(b).

There is a 3-itemset candidate of {dec:1,0,1} and

support with weight as “dec” là <dec:0.7> satisfied . By

mining conditional tree of itemset “dec” we have an null

tree. Update itemset “dec” into L we have:

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc,dec}.

Remove IMFP-tree(c) and its conditional tree after

mining.

 Building and Mining IMFP-tree(d).

Number of samples in building IMFP-tree(d) is 2 (see

Table 3, row 4) as: {de:0,0,1;de:1,0,0}. The tree can be

seen in Fig. 4.

Fig.4. IMFP-tree(d)

There is a 2-itemset together with “d” is <ed:1,0,1>

and the support with weight is <ed:0.7> satisfied .

Therefore,

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc,dec,ed}.

Remove IMFP-tree(d) after mining.

Result of frequent itemsets (with weights) over data

stream at time T1 is:

1 3 1 5 3 0 0 7 2 3 1 0 1 0

0 7 1 2 2 0 0 7 0 7 0 7

a : . ;b : . ;c : . ;d : . ;e : . ;ca : . ;ba : . ;
L

bca : . ;cb : . ;ec : . ;dc : . ;dec : . ;ed : .

 
  
 

C. Update inverted matrix

Algorithm

The transferring data from data stream to the inverted

matrix is quite easy when we update data (eliminate

respective transactions in the o ld batches and update the

new ones). This work can be done in the inverted matrix

without updating all data over data stream.

At time Ti+1, to clear o ld fashioned transactions in the

inverted matrix we only need to remove the old batch of

(BiN), update inverted matrix index, change all the column

index of cells which have not null addresses referenced to

other cells in the inverted matrix, update the new batch of

(Bi+1,1), change all batch’s transactions into the inverted

matrix.

Algorithm 3: Update inverted matrix.

Input: At time Ti.

 Inverted matrix
iTIM ;

 Newest batch of Bi+1,1;

Output:
1iTIM


 is inverted matrix at time Ti+1;

Method:

1. At time Ti+1:

2. CT=Card(BiN);

3. Remove current batch of BiN;

70 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

4. Update inverted matrix indexes for the rest

batches;

// Keep the rows’ indexes and only change the

columns’ indexes where their addresses are not

null.
5. For i:=1 to M do // M is item’s position in the

inverted matrix

6. For j:=1 to LCI do // LCI is the last column’s

index in the inverted matrix

7. If ij next(a)and(c)  then cnext=cnext-CT;

// aij is a cell in inverted matrix.

8. Update the newest batch of Bi+1,1, and then update

the inverted matrix indexes;

9. Update batches’ weights ;

10. Return
1iTIM


;

11. End. // End of algorithm 3

Example of updating inverted matrix

The main tasks for updating in time T2 are: Remove

the old batch of (B13), update the new of (B21) and update

the weights (see in Table 4).

Table 4. Data stream at time T 2

At time T2, after removing the old batches B13, batch

B12 to B23, batch B11 to B22, the number of inverted matrix

indexes in batches B23 , B22 will reduce to 3 (number of

transactions in batch B13).

We will have Tab le 5. Update the new batch B21, and

update the matrix indexes we will have Table 6.

Table 5. Inverted matrix after removing batch B13 and updating index number

Table 6. Inverted matrix at t ime T 2 after updating batch of B21

V. CONCLUSIONS AND FURTHER WORKS

The paper has proposed MFIWDSIM algorithm for

mining frequent itemsets with weights over data stream.

This is based on the idea of transferring data from static

database to inverted matrix derived from [10]. The

improvement of this algorithm is that there are two

components at each inverted matrix cell. The first shows

a frequency of item in batch, and the second shows the

referenced addresses for the next cell in the same

transaction. Therefore, the frequency of each item can be

 Mining Frequent Itemsets with Weights over Data Stream Using Inverted Matrix 71

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 10, 63-71

taken from last cell on the right at its position on the

matrix without moving the data stream to the FP-tree as

previous algorithms [9] done.

The proposed algorithm does not need to build FP-

trees as in [9] for all data stream. Th is means all data

stream is moved to inverted matrix for min ing. From this,

the samples are taken in order to build trees (FP-growth)

for each item. As the items were increased in alphabet

sorting list, therefore, building and min ing the next items

did not include the previous alphabet ordering items. This

means the number of itemset candidates has been reduced

significantly (the pruning tree is to make reducing of

number candidates as well).

Number of scanning over data stream is twice as:

Firstly, we need to sort items in alphabet order at each

transaction, and create the index values for single items

respectively. The second is to transfer data from stream

(after sorting) to the inverted matrix.

Moreover, when data is transferred to inverted matrix,

the updating information, or processing of itemsets seems

to be easier doing at alternative t imes. It is because that

we can do them all on the matrix instead of on the FP-

trees, in where the data stream must be updated before

doing each tasks.

With the conclusions given above, it seems that

algorithms of MFIWDSIM will be the effect ive

algorithms for interactional min ing frequent itemset with

weight over data stream using inverted matrix.

The trend for this paper is researching on the compact

of inverted matrix as we can save it to computer memory.

Other way might be an archive of calculat ing results at

continuous times for the interaction mining.

REFERENCES

[1] Aggarwal C. In C. Aggarwal (Ed.), Data Streams: Models

and algorithms. Springer, (2007).

[2] Agrawal R., Srikant, R., Fast Algorithms for Mining

Association Rules. In: 20th Int’l. Conf. on Very Large

Data Bases (VLDB), pp. 487–499, (1994).
[3] Aneri P., Chaudhari M. B., Frequent pattern mining of

continuous data over data streams, Int’l. Jour. for

Technology Research Engineering, Vol. 1, Issue 9, pp.

935-940, (2014).

[4] Cai, C.H., Fu, A.W.-C., Cheng, C.H., Kwong, W.W.
(1998), Mining Association Rules with Weighted Items.

In Proceedings of Int’l. Database Engineering and

Applications Symposium (IDEAS 1998), Cardiff, Wales,

UK, July 1998, pp. 68–77, (1998) .

[5] Giannella C., Han, J., Pei, J., Yan, X., & Yu, P. S., Mining
frequent patterns in data streams at multiple time

granularities. In H. Kargupta, A. Joshi, K.Sivakumar, & Y.

Yesha (Eds.), Next generation data mining, pp. 191–210,

(2003).

[6] Han J., and Kamber M., Data Mining: Concepts and
Techniques, Morgan Kanufmann, (2000).

[7] Han J., Pei, J., Yin, Y., Mao, R., Mining frequent patterns

without candidate generation: a frequent-pattern tree

approach, Data Mining and Knowledge Discovery 8, pp.

53–87, (2004).
[8] Hung Long Nguyen, An Efficient Algorithm for Mining

Weighted Frequent Itemsets Using Adaptive Weights,

Int’l Jour. of Intelligent Systems and Applications, Vol. 7,

No. 11, pp. 41-48, (2015).

[9] Long Nguyen Hung, Thuy Nguyen Thi Thu, Giap Cu

Nguyen, An Efficient Algorithm in Mining Frequent

Itemsets with Weights over Data Stream Using Tree Data

Structure, Int’l Jour. of Intelligent Systems and

Applications, Vol. 7, No. 12, pp. 23-31, (2015).
[10] Mohammad El-Hajj, Osmar R. Zaïane, Inverted Matrix:

Efficient Discovery of Frequent Items in Large Datasets

in the Context of Interactive Mining, In: Proc. 2003 Int’l.

Conf. on Data Mining and Knowledge Discovery (ACM

SIGMOD), pp. 109-118, August 24-27, 2003, (2003).
[11] Manku G., Motwani R. Approximate frequency counts

over data streams. In: Proceedings of the VLDB

conference, pp. 346–357, (2002).

[12] Tsai P. S. M., Mining frequent itemsets in data streams

using the weighted sliding window model. Expert Systems
with Applications, pp. 11617-11625, (2009).

[13] Vijayarani S., Sathya P., A survey on frequent pattern

mining over data streams, Int’l. Jour. of Computer Science

and Information Tech. & Sec. (IJCSITS), Vol. 2., No. 5,

pp. 1046-1050, (2012).
[14] Vikas K., Sangita., A review on algorithm for mining

frequent itemset over data stream, Int’l. Jour. of Data

Advanced Research in Comp. Sci. and Software

Engineering, Vol 3., Issue 4, pp. 917-919, (2013).

[15] Wang J., Zeng Y., SWFP-Miner: An efficient algorithm
for mining weight frequent pattern over data streams,

High Technology Letters, Vol. 3, No. 3, pp. 289-294,

(2012).

[16] Younghee K., Wonyoung K., Ungmo K., Mining frequent

itemsets with normalized weight in continuous data
streams, Journal of Information Processing Systems, Vol.

6, No. 1, pp. 79-90, (2010).

Authors’ Profiles

Long Nguyen Hung is currently a lecturer
at Faculty of Economic Information System,

Vietnam Commercial University (VCU). He

received his B.Sc. degree in Informatics

from Hanoi University of Science in 1991,

and his M.Sc. degree in Information
Technology from Le Quy Don Technical

University in 2002. His research interests

include: Data Mining, Knowledge Discovery in Databases,

Information Systems, and Database. Many his publications also

are concentrated to these areas.

Thuy T. T. Nguyen was born in 1973 in

Bacgiang, Vietnam. She graduated

university in 1993 in Math. In 1999, she
received MSc degree in Information

Technology in Hanoi National University.

She received PhD in Computer Science at

The University of Hull, UK in 2011

respectively. From 2001 afterward, she joined to Vietnam
University of Commerce, as a lecturer. Her interested

research includes data mining, neural network,

supervised/unsupervised learning techniques, and management

information systems. Many her publications also are

concentrated to these areas.

