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Abstract—In recent years, the mining research over data 

stream has been prominent as they can be applied in 

many alternative areas in the real worlds. In this paper, 

we have proposed an algorithm called MFIWDSIM for 

mining frequent itemsets with weights over a data stream 

using Inverted Matrix [10]. The main idea is moving data 

stream to an inverted matrix saved in the computer disks 

so that the algorithms can mine on it  many times with 

different support thresholds as well as alternative 

minimum weights. Moreover, this inverted matrix can be 

accessed to mine in different times for user’s 

requirements without recalculation. By analyzing and 

evaluating, the MFIWDSIM can be seen as the better 

algorithm compared to WSWFP-stream [9] for min ing 

frequent itemsets with weights over data stream. 

 
Index Terms—Data min ing, frequent itemset with weight, 

data stream, sliding window, inverted matrix. 

 

I.  INTRODUCTION 

Data mining has been interested by many researchers, 

and its applications are successful applied to many areas 

in society. Nowadays, in many applications, data is not 

performed as static data. They are dynamic, continue, and 

sometimes they are extended continuously into undefined 

upper/lower boundary [1,3,13,14,15,16]. This dynamical 

data can be called as a data stream. The examples are 

very popular in the real world  such as data in a network 

traffic analysis, in a web click stream, in a network of 

intrusion detection, or in an  on-line t ransaction analysis. 

There are three challenges in mining over data stream: (1) 

Finding the frequent itemsets in the large sphere in power 

function representation); (2) exp losion of data as it is 

updated and extended continuously while the used 

memory has been limited; (3) and the performed t ime 

needs to be as fast as possible 

Mining frequent itemsets or min ing frequent itemsets 

with weights is one of basic duties in data min ing. The 

traditional methods used for frequent itemsets with 

weights in static data cannot be used for data stream as its 

disadvantages of memory space and performances. 

In [12], Tsai P. S. M. has firstly proposed a new 

approach of min ing frequent itemsets over data stream 

using weighted sliding window model. He also has 

proposed two algorithms based on Apriori so-called as 

WSW and improved WSW-Imp algorithms. 

In [9], it has proposed WSWFP-stream according to 

FP-growth [6,7] to improve the time and the saving 

memory compared to the ones derived from Tsai P. S. M. 

[12]. 

In this paper, basing on the idea of Inverted Matrix 

algorithm proposed by [10] (in which data can be 

transferred to be represented in transactional array), we 

proposes an algorithms of MFIWDSIM. This algorithm 

uses the inverted matrix and an idea based on FP-growth 

[6,7] for min ing frequent itemsets with weights over data 

stream. 

This paper focus on the following sections. In section 

II, we present related works. Section III introduces the 

problem of mining frequent itemsets with weights over 

data stream using inverted matrix. Section IV shows a 

new proposed algorithm, MFIWDSIM (Min ing Frequent 

Itemsets with Weights over Data Stream using Inverted 

Matrix). Last section gives the conclusions and further 

works. 

 

II.  RELATED WORKS 

Recently, data min ing has become the popular research 

interested by many worldwide researchers. In [4], the 

term of frequent itemsets with weights over static 

database was first proposed using MINWAL algorithm. 

In MINWAL, the authors defined a support level with 

weights. The value of itemset's support with weights has 

been calculated by a product of an itemset's support and 

the average of sub-items' weights. The challenge in here 

is related to Apriori property [2] using downward closure 

property. This property is broken as if the alternative 

itemsets will have alternative weights respectively. It  

means that the sub-items of the frequent itemsets with 

weights might not be the frequent sub-itemsets with 

weights. To keep the Apriori property, MINWAL used k-

support bound concept. That means the support value for 

the itemset candidates generated in the k
th

 level should be 

greater than or equal to k-support bound. However, the 

use of k-support bound in [4] to prune the searching 

sphere might cost the time. 

In [8], it proposed an algorithm of AWFIMiner for 

mining frequent itemsets with adaptive weights in a static 
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database. This algorithm is improved from AWFPM 

algorithm, in which a new measurement unit is used 

effectively for pruning index itemsets compared to the 

one mining with adaptive weights. 

In recent years, mining over stream data has been an 

important research. There are many  researches on 

frequent itemsets over data stream using alternative 

models such as Landmark model [11], Titled-t ime 

window model [5] and Sliding window model [12].  

The landmark model [11] considers all data in  one 

window. It involves all transactions from a fixed point of 

past time to present, and these transactions are treated the 

same. 

The tilted-time window model in [5] is a modification  

of the landmark model. It considers the data at the time of 

a system starting up to present. The processing time is 

divided into alternative t ime slots, and the data is split  

into different batches by the time. A batch, that is closer 

to present, has been assigned a higher of weight 

compared to the old one which has to be a fine 

granularity [5]. 

In [12], Tsai P. S. M. has introduced an approach for 

mining frequent item-sets over a data stream based on the 

weighted slid ing window model. Two algorithms of 

WSW and WSW-Imp algorithms are given which are 

based on Apriori property (downward closure property) 

[2]. WSW-Imp algorithm is an improvement of the first 

one. This means if Xp and Xq are two (k-1)-combinational 

itemsets in order to generate k-itemsets candidates of c 

used the combination method in Apriori algorithm, then 

the support with weight c will be g reater than the 

supports with weights of Xp and Xq. 

In [9], it has proposed WSWFP-stream algorithm 

basing on FP-growth [6,7] to improve effectively  on 

memory space and time compared to both algorithms 

derived from Tsai P. S. M. [12]. To  achieve a better 

performance, a new idea has been generated basing on 

representing data on the inverted matrix [10]. An 

algorithm of MFIWDSIM is proposed with use both of 

inverted matrix [10] and FP-growth approach [6, 7]. 

 

III.  MODEL OF MINING FREQUENT ITEMSETS WITH 

WEIGHTS OVER DATA STREAM 

The following content describes the related definitions 

to problem of mining frequent itemsets over data streams 

derived from Tsai P. S. M. [12]. 

Given I as itemset, I={i1,i2,…,iM}. A sub-itemset 

X I , includes k  alternative items so-called as k-itemset 

or an itemset with the length of k .  

For simplification, an itemset {i1,i2,…,iq} would be 

written as i1i2…iq. For example, the itemset {a,b,c} is 

replaced by abc in short. A transaction is a tuple t=(TID,X) 

where TID is an identification index, and X is an itemset. 

A database of transaction DT is a  set of transaction in  the 

process. 

A stream of transactions DS is an infinite range of 

transactions, DS={ti1,ti2,…,tim,…} meanwhile tij, i=1,2,…; 

j=1,2,… is a transaction at time Ti . A  slid ing window
iTW

over data stream is a set of batches of transactions 

considered at the time Ti. Assume that at the time of Ti 

(i=1,2,…), the sliding 
iTW  is div ided into N batches of Bij 

(i=1,2,…; j=1,2,…,N). Each  batch is assigned with 

individual positive real number of weight as 

1
0 1 1

N

j j jj
, , .  


   This means every itemsets in 

the batch’s transactions will have the same weight. 

 

Definition 1. The support with weight of an itemset X 

over data stream DS at the time Ti is SWsupp(X), estimated 

by following equation:  

 

1

N

ij jj
SWsupp(X) F (X) 


                     (1) 

 

Where Fij(X) is the frequency of X in j
th

 batch at the 

time Ti. 

 

Definition 2. The support with min imum weights  over 

data stream DS at Ti is calculated as: 

 

1

N

ij jj
Card(B )  


                     (2) 

 

Where Card(Bij) is number of transactions of j
th

 batch 

at the time Ti, and 0 1( )    is the threshold of 

minimum support defined by user. 

 

Definition 3. At the time Ti, g iven itemset of X I , 

with the min imum weight of , X is so-called as frequent 

itemset with weight over data stream DS using sliding 

window model if:  

 

SWsupp(X)                              (3) 

 

Therefore, X can be seen as satisfied . Otherwise, X is 

not satisfied . 

Table 1. Data stream at the time T 1 

 
 

Example 1: Given data in Tab le 1. W indow 
1TW  of at 

the time    includes 10 transactions divided into 3 

batches of B11, B12, B13. The weights are 
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1 2 30 5 0 3 0 2. , . , .     respectively, and the 

minimum support threshold is 20%  .  

We have, number of transactions in batches as: 

 

11 12 133 4 3Card(B ) ,Card(B ) ,Card(B ) .  
 

 

The frequency of “ab” in batches as: 

 

11 12 131 1 1F ( ab ) ,F ( ab ) ,F ( ab ) .  
 

 

Therefore, the support with weight of itemset of “ab” 

as:  

 

1 0 5 1 0 3 1 0 2 1 0SWsupp(" ab") . . . .      
 

 

The minimum support at the time   : 

 

1

20 3 0 5 4 0 3 3 0 2 0 66

N

ij jj
Card(B )

% ( . . . ) .

  


   

      



 
 

As 1 0 0 66SWsupp(" ab") . .    then “ab” is 

frequent itemset with weight over data stream. On the 

other words, itemset of “ab” is satisfied . 

The frequency of “be” in batches as: 

 

11 12 130 1 1F (be ) ,F (be ) ,F (be ) .  
 

 

Therefore, the support of “ab” itemset as: 

 

0 0 5 1 0 3 1 0 2 0 5SWsupp(" be") . . . .      
 

 

As 0 5 0 66SWsupp(" be") . .    then “be” is not a 

frequent itemset with weight over data stream. Or itemset 

“be” is not satisfied . 

 

Definition 4. At the time Ti, Mining frequent itemsets 

with weight over data stream means to find a set of 

WSWFI including all frequent itemsets with weight. This 

means as finding the following set: 

 

 WSWFI X X I ,SWsupp( X )   
 

 

The following lemma, derived from [2], shows a 

characteristic of the frequent itemset over data stream, 

which is always satisfied Apriori p roperty. This will be a 

basic knowledge for mining frequent itemset with weight 

over data stream.  

 

Lemma 1 [12]. If X is a frequent itemset with weight 

over data stream DS then all sub-itemsets Y X  will be 

the frequent itemsets with weights over data stream of DS.  

 

 

 

 

IV.  MINING FREQUENT ITEMSET WITH WEIGHT 

ALGORITHM OVER DATA STREAM USING INVERTED 

MATRIX  

In this section, we propose MFIWDSIM algorithm for 

mining frequent itemset with weight algorithm over data 

stream using inverted matrix. MFIW DSIM algorithm is 

built basing on the transferring data to the Inverted 

Matrix derived from [10] and the FP-growth approach 

[6,7]. The MFIW DSIM includes two phases: The first is 

building inverted matrix, the second phase is mining on 

the inverted matrix. 

A.  Building inverted matrix 

How to build 

By applying the building inverted matrix method in  

[10], MFIWDSIM re-organizes data (transactions in the 

batches) in current window over data stream into inverted 

matrix saved in computer memory. The organizing data 

in inverted matrix will help  the user in min ing by 

accessing to array addresses of data. On the other hand, 

we can mine the data much time as we can with 

alternative support thresholds as it is already saved in 

computer memory. 

The algorithm will save data in computer memory with  

two components as data indexes and an inverted matrix.  

 

 Data Index: Use Integer numbers to assign to 

single items after sorting in alphabet order.  

 Inverted Matrix: This matrix includes a set of rows 

assigned with single indexed items. Each cell 

(itemset) has three components as: the first is a 

frequency of attending in the batch, the second and 

the third components are the row and the column 

of the next itemset in the matrix. In case, if it is a 

last item then the second and the third will be nulls  

( , ) 
.  

 

Building inverted matrix algorithm use twice scanning 

on the data stream. 

 

The first scanning: Sort the transaction in alphabet 

order fo r items. Then, assign index values for single-

ordering items. 

The second scanning: Scanning transaction in each 

batch and transferring data into inverted matrix can be 

done as follows:  

 

 With the index: Define the location for the first 

item in the transaction in the batch.  

 With each cell in inverted matrix: Find the first 

empty cell (from left to right) at the respective row 

of first index item. Assign this cell with three 

components of: frequency of attending in batch 

   , and two others as row, column of rnext, cnext 

formed as:  
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[SCj] (rnext,cnext)                      (*) 

 

Where SCj=1, if itemset is attended in j
th

 batch. In 

case, there is a same item in the next transaction 

(same batch), then the SCj=SCj+1. The (rnext, cnext) 

is row and column addresses of the cell for the 

next  itemset in  the same t ransaction. This address 

will be nu ll if it is a last item in  the transaction 

(assigned as (Ø,Ø)).  

The assigning works for cells will be repeated 

until we fill the addresses up for the last item in  

the transaction in batch. 

 

Do the same for the next batch of a data stream. 

Building Inverted Matrix Algorithm 

Algorithm 1: Building Inverted Matrix. 

 

Input: At time Ti; 

           Data stream DS; 

           Window    
 is divided into N batches of Bij 

(i=1,2,…; j=1,2,…,N); 

Output: 
iTIM  is inverted matrix at Ti, is represented      

over data stream DS; 

Method: 

          //First scanning 

1. Scan for (T DS  ) 

2. Begin 

3. In each transaction, sort itemsets in alphabet 

ordering; 

4. Define all single item attended over data 

stream; 

5. Build inverted matrix index component;  

6. End; 

          //Second scanning  

7. Scan for (T DS  ) 

8. Begin 

9. Consider each transaction in the batch of 

   , Assume that the alphabet ordering item 

list is: List=<a1,a2,…,at>; 

10. Define address of (r1,c1) - first empty cell 

(from left to right) at the a1 respectively in 

the batch of j; 

11. Assign the item of a1 at the address (formed 

in (*)) as : [SCj] (r2,c2) 

12. For i=2 to t do  

//Consider all the rest items in the List. 

13. Begin 

14. Define address of (ri,ci) in order to write 

single item of ai in List; 

15. If ( 1i t  ) then assign informat ion of ai 

in the batch of j, at address of (ri,ci) as [SCj] 

(ri+1,ci+1) 

16. else assign information  of at in  the batch of 

j, at address (rt,ct) as [SCj] (Ø,Ø); 

17. End; 

18. End; 

19. Return 
iTIM ; 

20. End. // End of algorithm 1  

Building inverted matrix example 

Example 2. Consider the data in Table 1. The current  

window at time T1 has 10 transactions in 3 batches of 

            and the batches weights as 

1 2 30 5 0 3 0 2. , . , .     respectively, the minimum 

support of 20%  . 

Table 2. Index number in inverted matrix 

 

Table 3. Inverted Matrix to transfer data Table 1 
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The building inverted matrix process as follows: 

 

First Scanning: at each transaction, sort items in 

alphabet order, assign index number for each ordering 

items (see Table 2). 

Second scanning: Table 3 shows the transferring data 

from a data stream into an inverted matrix. For example, 

to consider the first transaction of T1=”bce”, in Tab le 2, 

we have, a location of item of “b” as 2, item of “c” as 3, 

and item of “e” as 5. Therefore, there are three cells 

representing for three items located in the rows of 2, 3 

and 5 respectively (in the inverted matrix). The first 

empty cell at the row 2 will be addressed as  (2,1). The 

informat ion in this cell will be [1] (2,2) (this means after 

considering the first transaction, item “b” is attended one 

time at the batch of B13. Address of (2,2) shows the next 

cell of representing of item “c” in transaction T1).  

 

Consider the first empty cell in row 3. Its address is 

(3,1). Therefore, the cell informat ion is  [1] (5,1) 

(frequency of item “c” is 1 at the batch B12. (5,1) shows 

the address of the next item “e” in transaction T1 ). As 

considering to the first empty cell in row 5, its address is 

(5,1). So the cell informat ion is [1] (Ø,Ø) (As item “e” is 

attended one time in the batch B11, and item “e” is the last 

item in the transaction of T1).  

Do the same for transactions  of batches B12, B11. Note 

that when considering the first item in the first transaction 

of the next batch, its address should be saved in the cell 

having a respective row with the item’s location. The 

column address of this cell is the first column of next  

batch. 

Table 3 below shows the transferring data from data 

stream at the time    to the inverted matrix. It is clear in  

the Table 3 that the representing data shows the necessary 

informat ion to mine frequent itemsets with weights over 

inverted matrix instead of min ing them over data stream. 

The detail will be shown in the fo llowing properties and 

building algorithm.  

Using some properties given in  [8], there are some 

properties for building trees based on FP-tree and min ing 

on tree following the FP-growth [6,7]. 

Assume that IMFP-tree(x) is a IMFP-tree of item x. 

This tree is built basing on FP-tree [6,7]. 

 

Property 1. The highest of IMFP-tree(x) (for single-

item of x) is: M-IDx+1, where IDx is the location of x. 

For example, the highest of IMFP-tree(b) is 4 (see in  

Table 3). 

 

Property 2. The distributional frequency of item in all 

batches is shown on the last cells in row of batch 

(respectively with the inverted matrix index number). 

For example, as shown in  Table 3, distributional 

frequency of item “a” in  batches is [1,2,1] - one t ime in  

batch 3 (B13), twice in batch 2 (B12), and one time in  

batch 1 (B11) - given in the cell address of (1,8), (1,5) –  

last cell in the batch, and (1,1). Distributional frequency 

of item “e” in batches is [     ] given in cell address of 

(5,9), (5,6) and (5,2). 

Property 3. Number of samples in building IMFP-

tree(x) fo r x at an index position is number of cells the 

row in the matrix, where these cells do not reference to 

the null addresses. 

For example, at row 3 in Tab le 3, the IMFP-tree(c) has 

6 samples in building as there are 9 cells in the row 

including 3 of them referenced to the null addresses. 

 

Property 4. Distributional frequency of item in  batch 

in building IMFP-t ree(x) (at j
th

 batch) equals 1 at j if 

1jSC  , or equals 0 in the rest positions . 

For example, building IMFP-tree(a), the distributional 

frequency as: one sample with abc:0,1,0 in 3
rd

 batch, 2 

samples as ace:0,1,0 and abe:0,1,0 in  2
nd

 batch, one 

sample abc:1,0,0 in 1
st

 batch. 

 

Property 5. When building MFP-tree for the next  

items (which had alphabet order), this tree do not contain 

the previous-alphabet items.  

This means the next tree has a reducing size as its 

previous alphabet items are eliminated. 

For example, building IMFP-t ree(c) will not include 

items of “a” and “b”, or building IMFP-t ree(d) will not 

include items of “a”, “b” and “c”.  

 

Property 6. There is no need to build the IMFP-tree(x) 

if x is the last item in alphabet order. 

For example, the IMFP-tree (e) is not necessary to 

build as if “e” is last item and all cells’ address reference 

to the null. 

B.  Mining the inverted matrix 

Algorithm 

After building a inverted matrix, the mining process 

will be performed according to alphabet ordering items. 

For each single-item satisfied , the algorithm is 

performed as follows: (1) Define the samples in inverted 

matrix; (2) Building IMFP-tree for each item according to 

FP-tree [6,7]. Note that at each node, there is a save of list 

of frequencies in each batch (see also in [8]); (3) Min ing 

IMFP-tree for this item based on FP-growth [6,7] to find 

the frequent itemsets with weights; (4) Remove IMFP-

tree and conditional tree (if existing) for the item. Repeat 

the same process for next items in the matrix. 

 

Algorithm 2: Mining Inverted Matrix. 

Input: At time Ti; 

           Inverted Matrix 
iTIM ; 

          Weighted table of batches  1j ( j ,..,N )  ;   

          Minimum support threshold over data stream µ; 

Output: L is a list of frequent itemset with weight of 

inverted matrix 
iTIM ;  

Method: 

1. At time Ti : Consider window of 
iTW . Define 

number of transaction in the batch; 

2.  Update weighted table for batches; 

3. Compute the support with minimum weight  
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based (2); 

4. From inverted matrix 
iTIM , define C1 (frequent 

itemset with weight) satisfied . 
5. L=C1; 

6. For i:=1 to M do 

 // M is number of items 

7. Begin 

8. For x at row i 

9. For j:=1 to 
iTCard( IM )  do 

        //          
  is index number of inverted mate 

10. If (value of ( ija    ) then 

11. Begin  

12. Follow the tracking of referenced cells (base 

(*)), we can find k  samples:  

Sampx={S1:f1,…,fN;…;Sk:f1,…,fN}; 

// Where there is only one fp=1 at the item located 

at p
th

, fp=0 in otherwise. 

13. End; 

14.  Build IMFP-tree(x) from Sampx; 

15. Create a conditional tree for item x; 

16. Build the list item candidates from conditional 

tree of x; 

17.  Build FP(x) is a set of itemset satisfied ;  

18.        L=LFP(x);  

19.  Remove IMFP-tree(x) and conditional tree of x; 

20.   End;  

21. Return L;  

22. End. // End of algorithm 2 

Example of mining inverted matrix 

Mining inverted matrix in Table 3 to find frequent 

itemset with weight over data stream can be seen as 

follows:  

At time T1: Consider window of 
1TW . Define number 

of transaction in batches and number of single items, 

update the weights . 

Calculate the support with minimum weight  

according to (2): 

 

1
0 66

N

ij jj
Card(B ) .  


   

 
 

As property 2, items of “a”, “b”, “c”, “d” and “e” have 

the distributional frequency as : 

<a:1,2,1;b:1,2,2;c :3,3,3; :d:1,0,1;e:2,3,2> and the support 

with weights respectively as: 

 

<a:1.3;b:1.5;c:3.0;d:0.7;e:2.3>. 

 

All items are satisfied . Therefore, there is no 

eliminated itemset. The list of single items as frequent 

itemset with weight over data stream will be 

L=C1={a,b,c,d,e}. 

Therefore, we can build and mine the IMFP-tree for 

the items of “a”, “b”, “c” and “d” (there is no tree for “e” 

as it is the last item in the list-based property 5). 

 

 

 Building and Mining IMFP-tree(a). 

 

According to property 3, in Table  3, item “a” is located 

in row 1. There are 4 “not-empty” cells (these cells 

addresses do not reference to the next cell of null address). 

Therefore, the number of samples will be 4 to build  

IMFP-tree(a).  

According to property 4, the samples in building tree 

will be: {abc:0,0,1;ace:0,1,0;abe:0,1,0;abc:1,0,0}. Then, 

the tree can be built in Fig. 1(a).  

 

 

Fig.1. IMFP-tree(a) and conditional trees 

From index table in Fig. 1(a), there are 2-itemsets 

(together with a”) as <ea:0,2,0;ca:1,1,1;ba:1,1,1> and the 

support with weights respectively as 

<ea:0.6;ca:1.0;ba:1.0>. It is clear that item “ea” did not 

satisfied . Remove item “e” from IMFP-tree(a), we have 

the tree in  Fig. 1(b). Update “ca” and “ba” into L, we 

have, L={a,b,c,d,e,ca,ba}. 

Continue mining by developing the 2-itemsets of “ca” 

and “ba”. By mining conditional tree of “ba”, we have a 

null tree. By  mining the conditional tree of “ca”, we have 

a tree in Fig. 1(c).  

There is a 3-itemset candidate of {bca:1,0,1} and the 

support with weight of “bca” is <bca:0.7> satisfied . By  

mining the conditional tree of “bca” we have a null tree. 

Therefore, L={a,b,c,d,e,ca,ba,bca}. 

Remove IMFP-tree(a) and its conditional tree after 

mining. 

 

 Building and mining IMFP-tree(b). 

 

There are 5 samples in build ing IMFP-tree(b) (see in  

Table 3 at row 2). They:  

{bce:0,0,1;bc:0,0,1;bc:0,1,0;be:0,1,0;bc:1,0,0} (not 

including “a” according to property 5). From the samples 

we have IMFP-tree(b) in Fig. 2(a). 
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Fig.2. IMFP-tree(b) and conditional tree 

From index table, we have 2-itemset together with “b” 

without “a” as <eb:0,1,1;cb:1,1,2> and the support with 

weights respectively as  <eb:0.5;cb:1.2>. The itemset of 

“eb” is not satisfied . Remove item “e” from IMFP-

tree(b) we have a condit ional tree in Fig. 2(b). Update 

itemset of “cb” to L, we have L={a,b,c,d,e,ca,ba,bca,cb}. 

Mining the condition tree of “cb”, we have null tree. 

Therefore, L={a,b,c,d,e,ca,ba,bca,cb}. 

Remove IMFP-tree(b) and its conditional tree after 

mining. 

 

 Building and mining IMFP-tree(c). 

 

Samples in build ing IMFP-tree(c) is 6 (as seen in Table 

3, row 3) as:  

 

{ce:0,0,1;cde:0,0,1;ce:0,1,0;cd:0,1,0;cde:1,0,0;ce :1,0,0}. 

 

From these samples we can build IMFP-tree(c) in Fig. 

3(a). 

 

 

Fig.3. IMFP-tree(c) and its conditional tree 

From index table, there are 2-itemset together with “c” 

as <ec:2,2,2;dc:1,0,1> and the support with weight 

respectively as <ec:2.0;dc:0.7>. These itemsets are 

satisfied . Update “ec” and “dc” into L, we have 

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc}.  

Mining conditional tree of “dc”, we have a null t ree. 

Then, by min ing conditional tree of “ec”, we have a 

conditional tree in Fig. 3(b).  

There is a 3-itemset candidate of {dec:1,0,1} and 

support with weight as  “dec” là <dec:0.7> satisfied . By  

mining conditional tree of itemset “dec” we have an null 

tree. Update itemset “dec” into L we have:  

 

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc,dec}. 

 

Remove IMFP-tree(c) and its conditional tree after 

mining. 

 

 Building and Mining IMFP-tree(d). 

 

Number of samples in building IMFP-tree(d) is 2 (see 

Table 3, row 4) as: {de:0,0,1;de:1,0,0}. The tree can be 

seen in Fig. 4.  

 

 

Fig.4. IMFP-tree(d) 

There is a 2-itemset together with “d” is <ed:1,0,1> 

and the support with weight is  <ed:0.7> satisfied . 

Therefore, 

 

L={a,b,c,d,e,ca,ba,bca,cb,ec,dc,dec,ed}. 

 

Remove IMFP-tree(d) after mining. 

Result of frequent itemsets (with weights) over data 

stream at time T1 is: 

 

1 3 1 5 3 0 0 7 2 3 1 0 1 0

0 7 1 2 2 0 0 7 0 7 0 7

a : . ;b : . ;c : . ;d : . ;e : . ;ca : . ;ba : . ;
L

bca : . ;cb : . ;ec : . ;dc : . ;dec : . ;ed : .

 
  
   

 

C.  Update inverted matrix 

Algorithm 

The transferring data from data stream to the inverted 

matrix is quite easy when we update data (eliminate 

respective transactions in the o ld batches and update the 

new ones). This work can be done in the inverted matrix 

without updating all data over data stream. 

At time Ti+1, to clear o ld fashioned transactions in the 

inverted matrix we only need to remove the old batch of 

(BiN), update inverted matrix index, change all the column 

index of cells which have not null addresses referenced to 

other cells in the inverted matrix, update the new batch of 

(Bi+1,1), change all batch’s transactions into the inverted 

matrix. 

 

Algorithm 3: Update inverted matrix. 

Input: At time Ti.  

          Inverted matrix 
iTIM ; 

          Newest batch of Bi+1,1; 

Output: 
1iTIM


 is inverted matrix at time Ti+1; 

Method: 

1. At time Ti+1:  

2.  CT=Card(BiN); 

3.  Remove current batch of BiN; 
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4. Update inverted matrix indexes for the rest 

batches; 

// Keep the rows’ indexes and only change the 

columns’ indexes where their addresses are not 

null. 
5. For i:=1 to M do // M is item’s position in the 

inverted matrix  

6. For j:=1 to LCI do // LCI is the last column’s 

index in the inverted matrix 

7. If ij next(a )and(c )   then cnext=cnext-CT;  

// aij is a cell in inverted matrix. 

8. Update the newest batch of Bi+1,1, and then update 

the inverted matrix indexes; 

9.  Update batches’ weights ; 

10. Return 
1iTIM


;  

11. End. // End of algorithm 3 

Example of updating inverted matrix 

The main tasks for updating in time T2 are: Remove 

the old batch of (B13), update the new of (B21) and update 

the weights (see in Table 4).  

 

Table 4. Data stream at time T 2 

 
 

At time T2, after removing the old batches B13, batch 

B12 to B23, batch B11 to B22, the number of inverted matrix 

indexes in  batches B23 , B22 will reduce to 3 (number of 

transactions in batch B13).  

We will have Tab le 5. Update the new batch B21, and 

update the matrix indexes we will have Table 6. 

 

Table 5. Inverted matrix after removing batch B13 and updating index number 

 

Table 6. Inverted matrix at t ime T 2 after updating batch of B21 

 
 

V.  CONCLUSIONS AND FURTHER WORKS 

The paper has proposed MFIWDSIM algorithm for 

mining frequent itemsets with weights over data stream. 

This is based on the idea of transferring data from static 

database to inverted matrix derived from [10]. The 

improvement of this algorithm is that there are two 

components at each inverted matrix cell. The first shows 

a frequency of item in batch, and the second shows the 

referenced addresses for the next cell in the same 

transaction. Therefore, the frequency of each item can be 
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taken from last cell on the right at its position on the 

matrix without moving  the data stream to the FP-tree as 

previous algorithms [9] done. 

The proposed algorithm does not need to build FP-

trees as in [9] for all data stream. Th is means all data 

stream is moved to inverted matrix for min ing. From this, 

the samples are taken in order to build trees (FP-growth) 

for each item. As the items were increased in alphabet 

sorting list, therefore, building and min ing the next items 

did not include the previous alphabet ordering items. This 

means the number of itemset candidates has been reduced 

significantly (the pruning tree is to make reducing of 

number candidates as well). 

Number of scanning over data stream is twice as: 

Firstly, we need to sort items in  alphabet order at each 

transaction, and create the index values for single items 

respectively. The second is to transfer data from stream 

(after sorting) to the inverted matrix. 

Moreover, when data is transferred to inverted matrix, 

the updating information, or processing of itemsets seems 

to be easier doing at alternative t imes. It is because that 

we can do them all on the matrix instead of on the FP-

trees, in where the data stream must be updated before 

doing each tasks. 

With the conclusions given above, it seems that 

algorithms of MFIWDSIM will be the effect ive 

algorithms for interactional min ing frequent itemset with 

weight over data stream using inverted matrix.  

The trend for this paper is researching on the compact 

of inverted matrix as we can save it to computer memory. 

Other way might be an archive of calculat ing results at 

continuous times for the interaction mining. 
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