
I.J. Information Technology and Computer Science, 2016, 12, 1-9

Published Online December 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.12.01

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

Automation in Software Source Code

Development

Henryk Krawczyk and Dawid Zima
Department of Computer Systems Architecture, Gdansk University of Technology, Poland,

E-mail: henryk.krawczyk@eti.pg.gda.pl, dawzima@student.pg.gda.pl

Abstract—The Continuous Integration idea lays beneath

almost all automation aspects of the software

development process. On top of that idea are built other

practices extending it : Continuous Delivery and

Continuous Deployment, automat ing even more aspects

of software development. The purpose of this paper is to

describe those practices, including debug process

automation, to emphasize the importance of automat ing

not only unit tests, and to provide an example o f complex

automation of the web application development process.

Index Terms—Continuous integration, continuous

delivery, continuous deployment, test automation, debug

automation.

I. INTRODUCTION

According to the Forrester report [1] companies are

looking to prioritize innovation through developing

software services, but Software development providers

can’t deliver new services at the rate business leaders

want (business leaders want software delivered in six

months). Also, according to the report, corporate culture

and development process immaturity impedes

communicat ion, and slows service delivery, and only a

few IT organizat ions regularly perform advanced

continuous delivery practices.

Automation in terms of software development exists in

almost all stages of the software development life cycle,

independently from the chosen development method.

Some of them emphasize automation – like Test-Driven

development and many Agile methodologies. Deeper

description of different software development models is

not in the scope of this paper, and can be found in other

publications [2]. The Continuous Integration set of

practices are the core of the automation in the software

development process. On top of that idea are built other

practices extending it : Continuous Delivery and

Continuous Deployment. These ideas are the answer to

the rapid demand of business for new services – they

speed up the process of when the developed application

will be deployed to the users. However, not all aspects of

software development are subject to automation.

In terms of the software development process

(activities strictly related to development) there can be

distinguished 3 roles: (1) Development, (2) Validation

and (3) Debug. Development is an actual p rogramming

effort which ends when a p iece of code is committed to

the source code repository (whether it is a new feature,

bug fix or new test covering some functionality of the

software). Validation is responsible for executing and

interpreting tests and their results. Debug means

analyzing failed tests and error reports to find out root

causes in the developed software source code. In s mall

projects all three roles are related to each developer, but

in larger projects there may be entire teams specialized in

each role.

The purpose of this paper is to describe key pract ices

that are the core of the automation in software

development: Continuous Integration, Continuous

Delivery and Continuous Deployment emphasizing test

and debug process automation, including a simplified

example of an automated acceptance test of a web-based

application.

The rest of the paper is structured as follows: Section 3

contains detailed description of Continuous Integration

practices. Section 4 describes practices extending

Continuous Integration, Continuous Delivery and

Deployment. Section 5 p rovides introduction to tests

automation with a detailed example of Continuous

Integration process with acceptance test automation for

web applicat ion. Section 6 introduces the debug

automation process extending the previous example.

Section 7 concludes this publication.

II. RELATED WORK

There are many publications describing and comparing

different software development models. In authors other

paper [2] they’ve been discussed including tradit ional,

agile and open source methodologies. Z. Mushtaq et al.

[15] proposed hybrid model combining two agile

methodologies – Scrum and eXtreme Programming (of

which many practices were the origin of the Continuous

Integration).

Continuous Integration, Delivery and Deployment has

been well described and discussed by M. Fowler [3] [5], J.

Humble [6] [7] and D. Farley [6]. Forrester Consulting [1]

prepared Continuous Delivery Maturity Assessment

Model based on the results of the survey they conducted.

A. Miller from Microsoft Corporation [4] has analyzed

and presented data from their Continuous Integration

process for a period of approximately 100 working days .

Debug automation has not been the subject of many

researches, most of them were well described and

published by Microsoft researchers [14] [12]. They’ve

2 Automation in Software Source Code Development

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

shared theirs’ experience from more than 10 years of

implementing, using and improving overall process of

debug automation.

III. CONTINUOUS INTEGRATION

The Continuous Integration (CI) is a set of practices,

known for a long time, but formally introduced as part of

the eXtreme Programming methodology, and then well

described by Martin Fowler [3]. He has distinguished the

11 most important practices of CI: (1) ―Maintain a Single

Source Repository‖, (2) ―Automate the Build‖, (3) ―Make

Your Build Self-Testing‖, (4) ―Everyone Commits To the

Mainline Every Day‖, (5) ―Every Commit Should Build

the Mainline on an Integration Machine‖, (6) ―Fix Broken

Builds Immediately‖, (7) ―Keep the Build Fast‖, (8) ―Test

in a Clone of the Production Environment‖, (9) ―Make it

Easy for Anyone to Get the Latest Executable‖, (10)

―Everyone can see what's happening‖ and (11)

―Automate Deployment‖. It can be concluded in one

sentence: the CI set of practices provides rapid feedback

about committed change quality and helps to avoid

integration problems.

The first CI pract ice, ―Maintain a Single Source

Repository‖ (1), means that there should be a single,

centralized, application source-code source behind a

version management system (application that allows

developers to work in parallel on the same files, allowing

them to share and track changes, resolve conflicts etc.,

i.e.: SVN, GIT, Perforce) that is known to anyone who is

involved in the project. There should be distinguished a

mainline among other branches, that contains the most

up-to-date sources of the project that developers are

currently working on. All developers working on the

project should commit their changes to the repository.

Everything that is needed to build the project, including

test scripts, database schemas, third party libraries etc.

should be checked-in to that repository. As Martin

Fowler says [3], the basic rule of thumb is that anyone

should be able to build a project on a virgin machine

(fresh setup) having access only to the centralized source

code repository. Practice shows that this is not always

possible, and sometimes some environment setup on new

developer machines are required (i.e. installation of

Windows Driver Kit).

―Automate the Build‖ (2) might be considered as the

crucial practice in CI. It means that the process of

converting source code into a running system should be

simple, straightforward and fu lly automated (including

any environment changes, like database schemas etc.).

This is the first step that indicates the quality of change

checked-in to the source code repository – if the build

was compiling before, and failed to compile after

introducing the change, the developer that made the

commit should fix the compilation as soon as possible.

There are many existing solutions like: GNU Make,

Apache Ant for Java projects, NAnt for .Net or MSBuild

that allow automation of the build process.

By making the build self-testing (3), there should be

low-level tests (i.e. Unit Tests) included in the project,

covering most of the codebase, that can be easily

triggered and executed, and the result is clear and

understandable. If any of the tests failed (a single test

case or an entire test suite) the build should be considered

as failed. It is important to remember that testing will not

tell us that software works under all conditions (does not

prove absence of bugs), but will tell us that under certain

conditions it will not work. Execution of low-level tests

after each check-in allows you to quickly check if the

change introduced a regression to the project.

When many developers are working on the same

project, developing different components (in isolation)

that interact with each other based on the prepared

contract (interface) and do not integrate their changes

frequently but rather rarely (i.e. once every few weeks),

they can experience something called ―integration hell‖ –

conflicts, redundant work, misunderstandings on the

stage when different components are integrated after

being developed in isolation. To resolve these issues,

developers should commit to the mainline very often (i.e.

every day) (4), literally continuously integrating their

changes. This practice allows one to quickly find any

conflicts between developers.

Before committing their changes to the repository,

developers should: get the latest source code from the

repository, resolve any conflicts, and perform build and

low-level tests on their development machine. If all steps

were successful, then they are allowed to commit their

change to the repository, however this is not the end of

their work. A dedicated machine (integration machine)

detects changes in the source code repository and

performs the build (5). Only when the build is

successfully completed on the integration machine, can

the build be considered as successful, and the developer’s

work is done.

It is important to maintain the codebase in a healthy

state – each compilat ion break, unit test failure or static

source code analyzer error should be fixed as soon as

possible by the developers who have broken the build (6).

Somet imes, to get quickly back mainline to the successful

state, the best way is to revert latest commits to the last

known good build.

―Keep the Build Fast‖ (7) – to be able to provide rapid

feedback about committed change quality, build process

time should be relat ively short. eXtreme Programming

methodology tells us that the build should last no longer

than 10 minutes.

All tests should be performed in the environment

maximally similar to the production environment (8).

This means, i.e . using database servers with the same

version as on the production, web browsers the same as

used by clients etc. Every d ifference between the test and

production environment introduces the risk that

developed software will behave differently when

deployed to the production environment.

Martin Fowler [3] also pays special attention to the

availability of the project executables. They should be

easily accessible to anyone who needs them (9) for any

purposes – manual tests, demonstrations etc.

According to the exact words of Martin Fowler [3] CI

 Automation in Software Source Code Development 3

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

is all about communication, so it is important that

everyone involved in the project can see what is

happening (10) – what is the current state of the mainline,

what is the latest successful build etc. Modern tools

supporting the CI process (often called CI servers)

provide web based GUI that allows you to display all

necessary information.

Fig.1. Diagram of the Continuous Integration Process

To perform h igher level tests (integration, performance,

acceptance etc.) there is a need to deploy the project to

the test environment (as previously mentioned, it should

be similar to the production environment). So there is a

need to automate the deployment process (11). When the

deployment automation is used to deploy the project to

the production, it is worth to have also an automated

rollback mechanis m that allows you to revert the

application to the last good state in case of any failures.

Deployment automation will be elaborated more during

the discussion of the Continuous Delivery, Continuous

Deployment and the Deployment Pipeline in this paper.

The CI server allows the practical implementation of

the CI process. Its main responsibility is to monitor the

source code repository, perform build, deploy and test

when a change is detected, store build artifacts (i.e.

project executables) and communicate the result to

project participants. There are many existing commercial

and open source CI servers available on the market ,

offering many collaboration features. The most popular

are: TeamCity (JetBrains), Jenkins, Team Foundation

Server (Microsoft), Bamboo (Atlassian).

Ade Miller from Microsoft Corporation [4] analyzed

data from their CI process. Data was collected for the

―Web Service Software Factory: Modeling Edit ion‖

project that was released in November of 2007, fo r a

period of approximately 100 working days (4000 hours of

development). Developers checked in changes to the

repository on average once each day, and the CI server

was responsible to compile the project, run unit tests and

static code analysis (FxCop and NDepend) and

compilation of MSI installers.

During that 100 days, developers committed 551

changes resulting in 515 builds and 69 bu ild breaks (13%

of committed changes). According to his analysis, causes

of build breaks were: Stat ic code analysis (40%), Unit

Tests (28%), Compilation errors (26%), Server issues

(6%). The great majority of build breaks were fixed in

time less than an hour (average time to fix a CI issue was

42 minutes). There were only 6 breaks that lasted over the

night.

He has also calculated the CI process overhead, which

in that case was 267 hours (50 for server setup and

maintenance, 165 for checking-in, and 52 for fixing build

breaks). In hypothetical calcu lations for an alternative

heavyweight process without CI, but with similar

codebase quality, he has estimated the project overhead at

464 hours, so in h is case the CI process reduced the

overhead by more than 40%.

IV. CONTINUOUS DELIVERY, CONTINUOUS DEPLOYMENT

AND DEPLOYMENT PIPELINE

Continuous Delivery [5] [6] is the practice of

developing software in a way where it is always ready to

be deployed to the production environment (software is

deployable through its lifecycle and the development

team priorit ize keeping the software deployable over t ime

spent working on a new feature). Continuous Delivery is

built on the CI (adding stages responsible for deploying

application to production), so in order to do Continuous

Delivery, you must be doing Continuous Integration.

Continuous Deployment is a pract ice built on Continuous

Delivery. Each change is automatically deployed to the

production environment (which might result in mult iple

deployments per day). The main difference (and the only

one) between Continuous Delivery and Continuous

Deployment is that the deployment in Continuous

4 Automation in Software Source Code Development

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

Delivery depends on business decisions and is triggered

manually, and in Continuous Deployment each ―good‖

change is immediately deployed to the production [5] [7].

According to Jez Humble and David Farley [6],

Deployment Pipeline is a manifestation of a process of

getting software from check-in to release (―getting

software from version control into the hands of your

users‖). A d iagram of a Deployment Pipeline has been

shown in Figure 3. Each change, after being checked-in

to the repository, creates the build that goes through a

sequence of tests. As the build moves through the

pipeline, tests become more complex, the environment

more production-like and confidence in the build ’s good

fitness is increasing. If any of the stages will fail, the

build is not promoted to the next one, to save resources

and send information to the development team rap idly.

Stages common for all pro ject types in the Deployment

Pipeline are: commit stage (build compiles, low level

unit-tests are passing, code analysis is passing),

automated acceptance tests stage (asserts whether the

project works on a functional level), manual test stage

(asserts whether the system meets customer requirements,

finding bugs omitted during the automated tests) and

release stage (project is delivered to its users). This

pattern does not imply that everything is automated and

no user action is required – rather, it ensures that

complicated and error-prone tasks are automated and

repeatable.

Continuous

Integration

Continuous

Delivery

Continuous

Deployment

Fig.2. Continuous Integration, Delivery and Deployment relations

Fig.3. Basic Deployment Pipeline [6]

Jez Humble and David Farley [6] have distinguished a

number of Deployment Pipeline practices: (1) Only build

your binaries once, (2) Deploy the Same Way to Every

Environment, (3) Smoke-Test Your Deployments, (4)

Deploy into a Copy of Production, (5) Each Change

Should Propagate through the Pipeline Instantly, (6) If

Any Part of the Pipeline Fails, Stop the Line.

V. TEST AUTOMATION

A software is tested to detect errors, however the

testing process is not able to confirm that the system

works well in all conditions, but is able to show that

under certain conditions it will not work. Testing may

also verify whether the tested software behaves in

accordance with the specified requirements used by

developers during the design and implementation phase.

It also provides information about the quality of the

product and its condition. Frequent test execution (i.e. in

an automated way) helps to address regressions

introduced to source code as soon as possible.

All levels of tests can be automated. Starting from unit

tests examining application internals, through the

integration tests checking integration between different

software components, fin ishing on acceptance tests

validating system behavior. For .Net projects an example

of technology that might be used to automate unit tests is

xUnit.net [8]. Almost all modern CI servers have a built-

in support for the most common test frameworks and all

modern frameworks have support for command line

 Automation in Software Source Code Development 5

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

instrumentation for automation purposes.

There are many good practices, patterns and

technologies related to test development or execution that

encourage automation. One of them is colloquially named

the ―3-As‖ pattern (Arrange, Act, Assert) suggesting that

each test consists of an init ialization part (arrange),

invoking code or system under test (act) and verifying if

the execution results meet the expectations (assert).

Another good example is a PageObject [9] pattern which

introduces separation between testing code and UI of the

application under test (so the change in a tested

application UI requires only a single change in the layer

of that UI abstraction, not affecting the numbers of tests

interacting with that UI through the PageObject layer).

Selenium [10] is an example of a technology that allows

automation of the interactions with web browsers.

Fig.4. Test Bus Imperative [11]

In terms of automation of higher levels of tests

interacting with UI (which might be very time-

consuming), there is another pattern that is worth to

mention – The Test Bus Imperative [11]. As the author

claimed, it is the software development architecture that

supports automated acceptance testing through exposing

a test bus – the set of APIs that allows convenient access

to application modules. So having in an application a

presentation API used by both – UI and Acceptance Tests,

allows developers to bypass UI to speed-up tests

execution, which in consequence allows one to run a

higher level of tests much more frequently – i.e. every

commit.
In very complex systems, which are developed by

multip le teams, with thousands of tests of mult iple levels,

sometimes information that the test failed is not sufficient.

Especially, when one single source code change (maybe a

complex one) causes hundreds of tests to fail – but there

may be a single root cause for all of those failures. It is a

very time consuming task to inspect all of those tests

separately, and causes redundant work. Then, it comes in

handy to have a debug automation process, which will be

described further in this publication.

To have better understanding of how test automation

works an example will be considered. For the sake of this

example SUT (System Under Test) is a web-based

application (hosted on an external HTTP server and

accessed by users via web browsers). The system use

case that will be covered by the automated acceptance

test is very simple: a user using different browsers

supported by the application (Firefox, Chrome and

Internet Explorer) wants to log in to the application by

providing user name and password and clicking ―Log in‖

button. So the automated test must perform the following

steps: open web browser, navigate to log in page, enter

username and password, click ―Log in‖ button, and

validate if the user was correctly redirected to the main

page. Development process in terms of this example is: (1)

developer commits change to the repository, (2) CI server

automatically detects that change, (3) downloads sources

and starts a new build (compilation etc.), (4)

automatically deploys applicat ion to a test environment

that is similar to the production one (development HTTP

server and database) and performs automated acceptance

tests (including the one considered in this example), (5)

in case of any failures, a report with test results is

generated and presented to the user, otherwise (6) if every

step succeeded, the application is deployed to the

production. It is worth to mention that tests are written by

developers or validation engineers and executed

automatically on all provided web browsers. The entire

process has been illustrated in Fig. 5.

Fig.5. Continuous Deployment process example

6 Automation in Software Source Code Development

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

Listing 1. Login use-case description in Gherkin language

Listing 2. Implementation of PageObject pattern using Selenium to

interact with web browser

For the sake of this example, as a source code

repository GIT has been chosen, and for the CI server,

TeamCity from Jetbrains. The TeamCity server has all

necessary features built-in, i.e . automated compilat ion

(and deployment) using MSBuild or Visual Studio,

running batch scripts, communication with many popular

source code repositories (including GIT), running static

code analysis (i.e . using FxCop and StyleCop) and unit

test runners (i.e. NUnit).

Automation of web application acceptance tests has

been accomplished by using a combination of

technologies like: Gherkin, SpecFlow, NUnit and

Selenium. Gherkin is a business readable language that

allows one to specify acceptance criteria using English-

like syntax and Given-When-Then patterns (Listing 1.).

SpecFlow allows you to generate a test skeleton for a

provided gherkin description using (i.e .) NUnit beneath

as a test framework (Listing 3.). Generated steps are

implemented using Selenium that allows interaction with

the web browser via a PageObject abstraction layer

(Listing 2.). Listing 2. and 3. are written in C#

programming language.

Listing 3. Acceptance test implementation using SpecFlow

Feature: LoginFeature
Scenario Outline: Correct logging in
Given Start a web browser <browser>
 And Go to the log in page
 And enter login 'test' and password 'test'
When press "Log In" button
Then will be redirected to main page and will be
logged in.
Scenarios:

| browser |
| Firefox |
| Chrome |
| Internet Explorer |
| PhantomJS |

public abstract class PageObject : IDisposable
{
 public IwebDriver WebDriver { get; set; }
 public string BaseUrl { get; set; }
 protected PageObject(IwebDriver webDriver){…}
 public void Dispose(){…}
 public void Navigate(string url)
 {
 WebDriver.Navigate().GoToUrl(BaseUrl+url);
 }
}
public class LoginPage : PageObject
{
 public LoginPage(IwebDriver webDriver):base(webDriver)
 {
 Navigate(‚‛);
 }
 public void InsertUserAndPassword(string user,string p
ass)
 {
 IwebElement loginInput =
 WebDriver.FindElement(By.Id(‚login‛));
 loginInput.SendKeys(user);
 IwebElement passInput =
 WebDriver.FindElement(By.Id(‚password‛));
 passInput.SendKeys(pass);
 }
 public PageObject Submit()
 {
 WebDriver.FindElement(By.TagName(‚form‛)).Submit();
 if(WebDriver.FindElement(By.Id(‚login-status‛))
 .Text != ‚OK‛) return this;
 return new HomePage(WebDriver);
 }
}
public class HomePage : PageObject
{

public HomePage(IwebDriver webDriver) : base(webDriver)
{}
}

[Binding]
public class LoginFeatureStepDefinitions
{
 public PageObject PageObject { get; set; }

 [Given(@‛Start a web browser Chrome‛)]
 public void GivenStartAWebBrowserChrome()
 {
 PageObject = new LoginPage(new ChromeDriver());
 }

 [Given(@‛Start a web browser Firefox‛)]
 public void GivenStartAWebBrowserFirefox()
 {
 PageObject = new LoginPage(new FirefoxDriver());
 }

 [Given(@‛Start a web browser Internet Explorer‛)]
 public void GivenStartAWebBrowserInternetExplorer()
 {
 PageObject = new LoginPage(new InternetExplorerDriver(
));
 }

 [Given(@‛Start a web browser PhantomJS‛)]
 public void GivenStartAWebBrowserPhantomJs()
 {
 PageObject = new LoginPage(new PhantomJSDriver());
 }

 [Given(@‛Go to the log in page‛)]
 public void GivenGoToTheLogInPage(){}

 [Given(@‛enter login ‘(.*)’ and password ‘(.*)’‛)]
 public void GivenEnterLoginAndPassword(string p0,string
p1)
 {
 (PageObject as LoginPage).InsertUserAndPassword(p0,p1)
;
 }

 [When(@‛press ‚‛(.*)‛‛ button‛)]
 public void WhenPressButton(string p0)
 {
 PageObject = (PageObject as LoginPage).Submit();
 }

 [Then(@‛will be redirected do main page (…)‛)]
 public void ThenWillBeRedirectedToTheMainPage()
 {
 if (PageObject.GetType()!=typeof(HomePage))
 {
 Assert.Fail();
 }
 }

 [AfterScenario]
 public void TearDown()
 {
 if (PageObject != null)
 {
 PageObject.Dispose();
 PageObject = null;
 }
 }
}

 Automation in Software Source Code Development 7

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

VI. DEBUG PROCESS AUTOMATION

When the developed application is very complex,

consisting of many components with thousands of tests,

sometimes information that the test failed may not be

sufficient. Especially, after commit failed hundreds of

tests at the same time. Inspecting all of them may be a

time-consuming task. After all, it may be a single bug

that caused multiple tests to fail.

When the software was released to the users, they will

probably report some erro rs (manually or v ia an

automated system). The number of reported errors

depends on the quality of the application and the number

of the users using the developed application. Manual

error report analysis might be a t ime-consuming task with

redundant work, because many of the reported errors will

have the same root cause in the application’s source code

(hundreds of users experiencing the same bug and

reporting it via the automated error collection system).

When the inflow of error reports (coming from internal

test execution systems or from the users after the software

was released) is big, it may come in handy to have some

kind of post-mortem debug automation process to reduce

the time that developers must spend on bug fixing. The

main goal of debug automation is to automatically detect

the root cause of a single crash report, and aggregate

collections of bug reports of the same bug into buckets to

avoid duplicates, thus saving developers’ time.

Error reports might be prepared by the crashing

application itself when the crash occurs (when developers

expect that a crash may have occurred and prepared some

kind of exception handling and reporting subsystem) or

by the operating system (when the error was unhandled

by the application). All of modern operating systems are

capable of handling unhandled application exceptions,

preparing crash reports consisting of memory dumps or

log files from memory analysis (kernel or user memory

dumps for Windows, coredumps for Linux, Tombstone

files for Android).

Fig.6. Example of debug automation process

The Debug automation system should be able to

analyze error reports, i.e. using command-line debuggers

(KD and CDB in W indows, GDB in Linux). Somet imes

it is necessary for the debuggers to have some additional

resources like applicat ion source code or debug symbols

to provide more accurate data. Results of the automated

analysis should provide a crash root cause signature that

would be used by the bucketing algorithm responsible for

clustering duplicated crash reports into buckets

representing a single bug in the source code.

An example of a bucket ing algorithm may be the one

using call stack similarity to indicate if the two crash

reports represent the same bug. This similarity may be

computed using simple string-like similarity (i.e.

Levenshtein distance) or a much more sophisticated

method, like the one proposed by the Microsoft Research

Team, Position Dependent Model (PDM) that’s part of a

more complex method called ReBucket [12]. Another

example of a bucketing algorithm in Windows might be

using the result of ―!analyze -v‖ command in KD or CDB

debuggers, providing informat ion like exception code and

its arguments or ―BUCKET_ID‖ section [13].

Windows Error Reporting System (WER) [14] is a

good example o f a large scale debug automation system

used at Microsoft. It originated from a combination of

diagnosis tools used by the Windows team, and an

automatic data collection tool from the Office team. As

described in [14], W ER is a d istributed post-mortem

8 Automation in Software Source Code Development

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

debugging system. When the error occurs on the client

machine, a special mechanism that’s part of the Windows

operating system automatically collects necessary data on

the client machine, prepares an error report, and (with

user permissions) send that report to WER Service, where

it’s debugged. If the resolution for the bug is already

known, the client is provided with a URL to find the fix.

To have better understanding of how debug automation

can reduce redundant work in failing test results analysis,

an extended version of the example from the previous

section will be considered. An additional assumption to

the example provided in the test automation section is

that the application under test is written in ASP.NET

MVC technology (for the sake of this example).

Automated flow has been extended for additional steps:

application error acquisit ion and error correlation, so the

entire process is: developer commits change to the

repository, CI server detects that change and starts new

build, automatically deploys application to test

environment and performs automated tests, in case of any

failures acquires error reports from the application and

performs correlation of the error reports; otherwise, if

every step succeeded, the application is deployed to the

production. An example of how web application written

in ASP.NET MVC technology can handle errors has been

presented on Listing 4. Method DumpCallStack sends a

prepared text file with call stack of the unhandled

exception that occurred which is acquired by the next step

of the automated debug process.

Then, after acquiring all error reports with exception

call stacks, all of them are compared (i.e . using simple

string comparison) to find out how many of them are

identical. So the result of this example can be as follows:

after submitting a change to the repository 10 tests failed,

but debug automation step after analyzing call stacks of

those 10 fails finds out that all of them were caused by a

single root cause (with one, identical call stack). So the

developer, instead of analyzing all 10 test results, has to

focus on a single bug represented by a single call stack

causing those 10 tests to fail.

Listing 4. Function in Global.asax of ASP.NET MVC application

collecting exception call stack after each failure

VII. CONCLUSION

Increasing business demand for reducing the t ime of

development and deployment to production of new

features, fosters automation in software development, as

can be seen in practices like Continuous Integration,

Delivery and Deployment. Start ing from the compilation,

through deployment, tests and debug – almost all stages

of iterative development activit ies might be automated.

The core of the automation best practices is mentioned

before Continuous Integration, which tends to evolve into

an extended version: Continuous Delivery and

Continuous Deployment. Complex systems with

advanced validation processes (i.e. complex and well-

developed automated tests on many levels) needs to have

an automated debugging process to reduce redundant

work when analyzing failed test results (when a single

root cause in the source code caused hundreds of tests to

fail).

REFERENCES

[1] Forrester Consulting, ―Continuous Delivery: A Maturity

Assessment Model,‖ 2013.

[2] D. Zima, ―Modern Methods of Software Development,‖
TASK Quarterly, tom 19, nr 4, 2015.

[3] M. Fowler, ―Continuous Integration,‖ [Online]. Available:

http://www.martinfowler.com/articles/continuousIntegrati

on.html. [Accessed 3 10 2015].

[4] A. Miller, "A Hundred Days of Continuous Integration,"
in Agile 2008 Conference, 2008.

[5] M. Fowler, "ContinuousDelivery," 30 May 2013. [Online].

Available:

http://martinfowler.com/bliki/ContinuousDelivery.html.

[Accessed 28 November 2015].
[6] J. Humble and D. Farley, "Anatomy of the Deployment

Pipeline," in Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment

Automation, Addison-Wesley Professional, 2010, pp.

105-141.
[7] J. Humble, "Continuous Delivery vs Continuous

Deployment," 13 August 2010. [Online]. Available:

http://continuousdelivery.com/2010/08/continuous-

delivery-vs-continuous-deployment/. [Accessed 22

November 2015].
[8] "xUnit.net," [Online]. Available: http://xunit.github.io/.

[Accessed 28 November 2015].

[9] M. Fowler, "PageObject," 10 September 2013. [Online].

Available: http://martinfowler.com/bliki/PageObject.html.

[Accessed 12 February 2016].
[10] ―Selenium,‖ [Online]. Available:

http://www.seleniumhq.org/. [Accessed 12 February

2016].

[11] R. Martin, ―The test bus imperative: architectures that

support automated acceptance testing,‖ IEEE Software,
tom 22, nr 4, pp. 65-67, 2005.

[12] Y. Dang, R. Wu, H. Zhang, D. Zhang and P. Nobel,

"ReBucket: A Method for Clustering Duplicate Crash

Reports Based on Call Stack Similarity".

[13] "Using the !analyze Extension," [Online]. Available:
https://msdn.microsoft.com/en-

us/library/windows/hardware/ff560201. [Accessed 22

November 2015].

[14] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V.

Orgovan, G. Nichols, D. Grant, G. Loihle and G. Hunt,
"Debugging in the (very) large: ten years of

implementation and experience," in Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems

principles, 2009.

[15] Zaigham Mushtaq, M. Rizwan Jameel Qureshi, "Novel
Hybrid Model: Integrating Scrum and XP", IJITCS, vol.4,

no.6, pp.39-44, 2012.

public class MvcApplication : System.Web.HttpApplication
{
 (…)
 public void Application_Error()
 {
 Exception e = Server.GetLastError();
 Response.Clear();
 Server.ClearError();
 DumpCallStack(e.StackTrace);
 }
}

 Automation in Software Source Code Development 9

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 1-9

Authors’ Profiles

Henryk Krawczyk: Rector of the Gdansk

University of Technology in 2008-2012

and 2012-2016, the dean of Faculty of
Electronics, Telecommunications and

Informatics in 1990-1996 and 2002-2008,

and also Head of the Computer Systems

Architecture Department since 1997,

received his PhD in 1976 and became a
Full Professor in 1996. Current research interests: software

development and testing methods, modeling and analysis of

dependability of distributed computer systems including

emergency situations, defining a new category of so-called

approaching threats and determining effective and suitable
detection and elimination procedures, analyzing the essential

relationship between system components and their user

behaviors, developing web services and distributed applications

with usage of digital documents.

Dawid Zima: PhD student at the Gdansk

University of Technology, Department of

Computer Architecture, Faculty of

Electronics, Telecommunications and
Informatics. Received his engineering

degree in 2012 and master's degree in 2013.

Research interests: debug process

automation, methods for bucketing error

reports based on call stack similarities.

How to cite this paper: Henryk Krawczyk, Dawid Zima,

"Automation in Software Source Code Development",
International Journal of Information Technology and Computer

Science(IJITCS), Vol.8, No.12, pp.1-9, 2016. DOI:

10.5815/ijitcs.2016.12.01

