
I.J. Information Technology and Computer Science, 2016, 12, 27-38

Published Online December 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.12.04

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Improving Performance of Dynamic Load

Balancing among Web Servers by Using Number

of Effective Parameters

Deepti Sharma
Department of Information Technology, Jagan Institute of Management Studies, Affiliated to

GGSIPU, Rohini, Delhi, India

E-mail: deepti.jims@gmail.com

Dr. Vijay B. Aggarwal

DIT, JIMS, Rohini, Delhi, India

E-mail: vbaggarwal@jimsindia.org

Abstract—Web application is being challenged to

develop methods and techniques for large data processing

at optimum response time. There are technical challenges

in dealing with the increasing demand to handle vast

traffic on these websites. As number of users‟ increases,

several problems are faced by web servers like bottleneck,

delayed response time, load balancing and density of

services. The whole traffic cannot reside on a single

server and thus there is a fundamental requirement of

allocating this huge traffic on mult iple load balanced

servers. Distributing requests among servers in the web

server clusters is the most important means to address

such challenge, especially under intense workloads. In

this paper, we propose a new request distribution

algorithm for load balancing among web server clusters.

The Dynamic Load Balancing among web servers take

place based on user‟s request and dynamically estimat ing

server workload using mult iple parameters like

processing and memory requirement, expected execution

time and various time intervals. Our simulat ion results

show that, the proposed method dynamically and

efficiently balance the load to scale up the services,

calculate average response time, average waiting time

and server‟s throughput on different web servers. At the

end of the paper, we presented an experimentation of

running proposed system which proves the proposed

algorithm is effic ient in terms of speed of processing,

response time, server utilization and cost efficiency.

Index Terms—Load balancing, Distributed and Parallel

Systems, Heterogeneous systems, response and waiting

time.

I. INTRODUCTION

A critical challenge today is to process huge data from

multip le sources. Today, people are very much reliant on

Internet. Users are becoming progressively more

dependent on the web for their daily activit ies such as

electronic commerce, on-line banking, reservations and

stock trading. Therefore the performance of a web server

system plays an important role in success of many

internet related companies. Due to huge Internet traffic,

requests on only single server will not serve the purpose.

Hundreds or thousands of requests can come at a single

point of t ime. Web developers need to process mult i-

terabyte or petabyte sized data sets. Handling these

datasets shall not be possible using single server. Today,

a big challenge is how to handle this traffic with good

response time and replication at minimum cost. One of

the best ways for these huge requests and data processing

is to perform parallel and distributed computing in cluster

environment. Web Cluster has proved to be a best

solution than using an overloaded single server.

The need for a web server cluster system arises from

the fact that requests are distributed among these web

servers in an efficient manner. Over a period of time, the

performance of each system may be identified and the

informat ion can be used for effective load balancing.

Such systems are extremely suitable for job processing.

For load balancing various factors like I/O overhead, job

arrival rate, processing rate may be considered to

distribute the jobs to various nodes so as to derive

maximum efficiency and minimum wait time for jobs.

There is a vast responsibility of data in various areas

viz. Physics, astronomy, health care, finance and web

scale. There is a necessity of data intensive processing

and to design algorithms for real world datasets. For

these data intensive workloads, a large number of cluster

servers are preferred over small number of high end

servers. There are lots of data processed by various

companies. During 2010, data processed by Google

everyday was 20 petabyte, and by Facebook was 15

Terabyte. This data processing requires very quick

processing but Input/output is slow. The data needs to be

shared also. But sharing is d ifficult as it leads to the

problem of synchronization, deadlocks, finite bandwidth

and temporal dependency. There is a need of departure

from this type of data processing technology to High

Performance Computing (HPC). To do large scale data

processing, say we want to use 1000‟s of CPUs without

28 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

hassle of managing things . Various algorithms have been

proposed for load balancing in distributed job processing

systems. The algorithms can be classified into Static and

Dynamic. While, the Static algorithm relies on a

predetermined distribution policy, the Dynamic Load

balancing algorithm makes its decisions based on the

current state of the system.

This framework uses the dynamic algorithm to analyze

the current system load and various cost factors in

arriving at the best target processor to handle the job

processing. This can be implemented on proposed

framework. It allows experimenting distributed

computations on massive amount of data. It is designed

for large scale data processing. It parallelizes the

computation across large scale cluster of machines.

The primary contribution of this research is to propose

a framework for running web server cluster system in

web environment based on collected requirements and to

present its implementation on one of the web services.

The second contribution is to present an experimental

analysis of running this framework in web environment

to prove the proposed research and to present the

evaluation of experiments based on the various

parameters such as speed of processing, response time,

server utilization and cost efficiency.

This paper is organized as follows:

Section 2 exp lains the approach of proposed

framework. Sect ion 3 exp lains set of data and

requirements to develop the proposed framework.

Section 4 exp lains proposed framework and its

implementation. Section 5 gives experimental results and

analysis. Section 6 provides conclusion.

II. RELATED WORK

Recently, cluster servers are used for fast information

retrieval on internet. The load balancing on effective

parameters has been studied by many researchers. Alan.

Massaru. T. N. Anitha et al describes the load status of

web servers as a solution for load balancing. Manoj

Kumar Singh et.al presents an optimal traffic distribution

concept to distribute dynamic load based on traffic

intelligence methods. Jianhai shi presents two steps static

and dynamic scheduling for load balancing. He describes

a strategy of distributed load balancing based on hybrid

scheduling. Jorge E. Pezo et al propose a reliability solution
for improving reliability in Heterogeneous Distributed

systems . He demonstrated the results and testbed solutions.
Y.S. Hong et al propose a DNS based load balancing

solution using ring and global manager for distributing the

traffic overflow. A. Khunkitti propose TCP-handoff and
multicast based load balancing that allows immediate and

complete connection transfer to another available server.
Shardal Jain et.al proposes load balancing solution using

prioritization of nodes which is done by comparing the
efficiency factor and processing power of each and every

node in it.

III. APPROACH

In this section, we will discuss about our framework

for load balancing mechanism. For load balancing,

various factors are needed to be considered. Whenever

there is a new request at any web site, the algorithm has

to decide that this incoming request should be assigned to

which web server so that the load among web servers

remains balanced. For this, we take into consideration

various aspects that are involved for fu lfilling any request.

These are number of servers, intervals, jobs generated

and jobs expected execution time.

There are „n‟ numbers of servers. The value for „n‟ is

variable. Server is having basic parameters as server‟s

memory, processing speed and memory left over.

Server‟s memory leftover will be modified whenever

there is any job allocation to server or completion of job

from that server. Total numbers of jobs are designated by

„x‟. Jobs generated for an individual interval can be

defined as:

J[y] = Q, where J = { J1, J2 …Jn}, „y‟ is the interval

generated and Q is the job generated for the respective

interval and Q={0, 1….xn } where „xn‟ can be defined as

maximum number of jobs that can be generated for an

individual interval. Job parameters are job memory, job

processing speed and total expected execution t ime. Here,

job‟s memory and processing speed means how much

memory and processing of the server required by job for

execution. Job‟s expected execution time is the

maximum time required by the job for execution.

In our approach, total t ime is div ided into intervals and

there is a fixed time slice of 5 milliseconds. At the time

of initialization of intervals, jobs are generated,

initialized and allocated to the servers. These jobs are

recorded in “main array”. In addition, there are three

types of arrays.

They are defined as follows:

a) Main Array: contains all the allocated jobs to

respective servers. It contains all o ld jobs which

are already executing and transferred in next

interval and new jobs from main array.

b) New Job Array: contains all the jobs that are

generated, when the interval begins.

c) Waiting Array: the jobs that are initialized, but

waiting for allocation to server and execution.

There are various processes also running in the system.

They are as follows:

i) Distribution of Jobs among Servers : Jobs are

distributed among various servers on the basis of

job‟s memory and processing requirements. Both

these parameters are compared with server‟s

memory left over and processing speed. If

satisfied, the job is allocated to the respective

server. If all the servers are checked and job is still

unallocated, it will be in waiting queue.

 Improving Performance of Dynamic Load Balancing among Web Servers by 29

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

ii) Checking for Load Balance (LB): In the

proposed approach, LB is taken care at the time of

job allocation. The job is allocated to respective

server only if it is greater than the job‟s memory

and job‟s processing requirement. Th is makes the

respective server even, or load balanced.
iii) Job Completion Process: Remain ing expected

execution time (init ially same as maximum

expected execution) is decremented with the

reduction value of the respected server (to which

job is allocated) after every cycle. If it becomes

zero or less than zero, job is completed and done.

At the same t ime, the memory left of that server is

incremented with the value of job that is currently

completed.
iv) Reduction value Process: Reduction value is

calculated which is associated with each server.

The reduction value is the value with which job‟s

expected execution time is decremented. It d iffers

from server to server, on the basis of the

processing speed of each server.

IV. DATA REQUIREMENTS TO DEVELOP FRAMEWORK

The basic goal of load balancing techniques in a

cluster of Web servers is that every request will be served

by the more lightly loaded node in the cluster. This

section describes the various aspects which are specific to

architectural design that we are going to implement for

the development of software model where the incoming

load from the client can be distributed efficiently over the

web server system. Following are the data to be used in

the proposed framework:

1. Time Interval: It is a definite length of time marked

off by two instants . Our algorithm uses the concept of

time interval which would be generated randomly for

every 5 milliseconds.

2. Jobs Generated: A job is a task performed by

computer system. In the algorithm, jobs are generated

randomly in each t ime interval. Jobs that are generated

have various parameters like processing time, memory

requirement and total expected execution time. The

performance of algorithm is measured by various factors

that depend upon jobs generated like jobs in wait ing

queue, how many jobs are completed in an interval and

response time, waiting time and total job runtimes.

3. Server: A server is a computer program which

servers the requests made by clients. Servers have

various parameters like processing speed, memory,

memory left and jobs assigned. Server‟s performance is

also measured through its utilizat ion levels, server‟s

status and server‟s throughput.

4. Scheduling Technique: In the proposed algorithm,

SJF (shortest job first) scheduling technique is used. It

will be applied twice: one in itially on total burst time,

while allocating jobs to servers and secondly, on

„remaining-burst time‟ on main array.

V. PROPOSED FRAMEWORK AND ITS IMPLEMENTATION

This section describes the algorithm and flowchart that

depicts the functioning of proposed system.

A. Algorithm

Step 1 : Server Initialization

Step 2 : Interval Initialization

Step 3: If Job/Jobs Generated

Then a) They are queued in NEW_JOB_ARRAY

b) SJF will be applied on NEW_JOB_ARRAY

on the basis of BURST_TIME

Step 4: if INTERVAL_VALUE == 0

Then a) Allocation of Jobs that are in

NEW_JOB_ARRAY starts

b) If A llocation is successful, the Jobs are

queued to MAIN_ARRAY

c) If Allocation of Job is not done, the JOBS are

queue to WAITING_QUEUE

Step 5: if INTERVAL_VALUE > 0

Then a) Firstly, the Jobs that are in WAITING_QUEUE

will be allocated

 If A llocation is successful, then, the

jobs are queued to MAIN_ARRAY

 Else, they remain in WAITING queue

b) Go to Step -4

Step 6: MAPPER FUNCTION

a) SJF applied on MAIN_ARRAY on the basis

of REMAIN_BURST

Step 7: REDUCER FUNCTION

a) Execution of Job/JOBS starts, that are in

MAIN_ARRAY

b) REMAIN_BURST value of JOBS/JOB are

reduced by the Server‟s RAD_VALUE

c) Once, job‟s REMAIN_BURST value == 0, its

execution completed

Step 8: If JOB_ARR_VALUE >= 0 AND

WAITING_VALUE >= 0 AND

INTERVAL_VALUE >=

MAX_JOB_INTERVAL

Then,

a) Repeat Step -3 to Step -8

Else

STOP

B. Flowchart

This section describes the pictorial representation of

proposed approach.

30 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.1. Flowchart shows overall representation of proposed approach

VI. EXPERIMENTAL RESULTS AND ANALYSIS

Performance Measurement:

In the experiment, following notations are being used:

T.I.G.: Total Interval Generated, T.J.G.: Total Job

Generated, T.S.: Total Server, E.E.T.: Expected

Execution Time, F.E.T: Final Execution time, A.W.T.:

Average Waiting Time, A.R.T: Average Response Time

and J.R: Job Runtime

The Performance of proposed load balancing algorithm

is measured by following parameters

A. Calculating Performance with low, medium and high

load jobs

The first and foremost parameter is to calculate

performance of servers w.r.t number of jobs . Jobs

generated per interval may be div ided into low jobs (0-

10), medium jobs (0-40) and high load jobs (0-70). If

there are different jobs coming at different time interval,

following table and chart show the average waiting t ime

and response time of each server.

Table 1. Perfomance with Different No. of jobs

No. of Jobs A.R.T . A.W.T.

0-10 2 1

11-40 4 12

41-70 4 16

Fig.2. Graphical Representation of Table 1

B. Calculate mean response time and mean waiting time

Following experiment shows average response,

average waiting time and job run time w.r.t jobs

generated per interval.

Table 2. Mean Response and Waiting T ime

T .J.G A.R.T A.W.T J.R

370 52 73 50

715 52 93 90

458 53 80 82

510 85 85 89

2
4 4

1

12

16

0

5

10

15

20

0-10 11-40 41-70

A

R

T

,

A

W

T

No. of Jobs

A.R.T.

A.W.T.

START

SERVER INITILIZATION

INTERVAL INITILIZATUON

IF JOB
GENRA

TED?

SJF on NEW_JOB_ARRAY

[BURST_TIME]

If
INTERVA
L == 0 ?

Allocation of WAINITING_QUEUE

ALL

OC

IN WAITING_QUEUE

Queue to MAIN_ARRAY Allocation starts

ALL

OCA

TIO

Re - Allocated, when the new Interval

starts

MAIN_ARRAY [Allocation started]

MAPPER FUNCTION

SJF on MAIN_ARRAY
[REMAIN_BURST]

Execution of JOBS in MAIN_ARRAY

REMAIN_BURST will be deducted with the

SERVER‟S RAD_VAL

REDUCER FUNCTION

Job Finished, leave the server

If JOB_ARR_VAL >= 0

AND
WAITING_VALUE >= 0

AND

SERVER_VALUE >=

MAX_Sever VALUE ?

STOP

Yes

Yes

Yes

Yes

Yes

No No

No No

No

 Improving Performance of Dynamic Load Balancing among Web Servers by 31

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.3. Graphical Representation of Table 2

C. Results with various Intervals, Jobs and Servers

In this experiment, we have taken 4 cases (with

different Intervals generated, jobs generated, total servers

and expected execution time) and then calculated

following in each interval:

C.1 Final execution time

Experiments are performed on the algorithm in four

cases, and they are defined in the table below:

Table 3. Different Cases

Cases T.I.G. T.J.G (Per Interval) T.J.G(All Intervals) T.S. E.E.T F.E.T.
1 20 0-50 508 10 0-20 105

2 20 0-80 768 10 0-20 105

3 20 0-50 495 8 0-20 101

4 20 0-50 354 10 0-40 113

Fig.4. Different Cases

C.2 Results for Server’s Utilization

Following table shows the Server‟s Status in each

interval i.e. how much each server is utilized.

Let interval generated be „x‟.

total time=total intervals * time per interval (1)

In our experiment, the intervals generated are 19. So

total time for job execution is 95ms (19intervals *

5ms/interval).

Also, let Server S be busy for „m‟ intervals, where S є

s0, s1,……, sn.

Total busy period = (m * time per interval) (2)

server utilization = total busy period / total time. (3)

The tables below show the total busy period and the

server utilization.

Case -1: Server: 10 (S0-S9), Total Job Generated: 0-

50 per interval, Interval: 10 (1-19), EET: 0 – 20. The data

collected is listed in Table 4 and shown in Figure 5 below.

Table 4. Case 1

Servers Total Busy Period ServerUtlization

S 0 65 68.42%

S 1 85 89.47%

S 2 90 94.74%

S 3 90 94.74%

S 4 85 89.47%

S 5 70 73.68%

S 6 70 73.68%

S 7 40 42.11%

S 8 0 0.00%

S 9 0 0.00%

0

20

40

60

80

100

370 715 458 510

A
.R

.T
,A

.W
.T

,J
.R

.

T.J.G

A.R.T

A.W.T

J.R

508

768

495

354

105 105 101 113

0

200

400

600

800

1000

1 2 3 4

T.J.G(All Intervals)

F.E.T.

32 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.5. Case 1

Case 2: Server: 10, Total Job Generated: 0-80 per

Interval, Interval: 19, EET: 0-20

The data collected is listed in Tab le 5 and shown in

Figure 6.

Table 5. Case 2

Servers Total Busy Period ServerUtilization

S 0 80 84%

S 1 80 84%

S 2 90 95%

S 3 90 95%

S 4 80 84%

S 5 80 84%

S 6 85 89%

S 7 70 74%

S 8 45 47%

S 9 5 5%

Fig.6. Case 2

Case 3: Server: 8, Total Job Generated: 0-50 per

Interval, Interval: 19, EET: 0-20

The data collected is listed in Tab le 6 and shown in

Figure 7.

Table 6. Case 3

Servers Total Busy Period ServerUtilization

S 0 80 84%

S 1 70 74%

S 2 95 100%

S 3 75 79%

S 4 75 79%

S 5 55 58%

S 6 55 58%

S 7 20 21%

68.42%

89.47%
94.74% 94.74%

89.47%

73.68% 73.68%

42.11%

0.00% 0.00%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9

84% 84%

95% 95%

84% 84%
89%

74%

47%

5% 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9

ServerUtilization

ServerUtilization

 Improving Performance of Dynamic Load Balancing among Web Servers by 33

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.7. Case 3

Case 4: Server: 10, Total Job Generated: 0-50 per

Interval, Interval:19, EET: 0-40

The data collected is listed in Tab le 7 and shown in

Figure 8.

Table 7. Case 4

Servers Total Busy Period ServerUtilization

S 0 90 95%

S 1 90 95%

S 2 65 68%

S 3 55 58%

S 4 40 42%

S 5 30 32%

S 6 80 84%

S 7 45 47%

S 8 15 16%

S 9 0 0%

Fig.8. Case 4

C.3 Response Time, Waiting Time and Job Runtimes Per

Interval

Throughput is the output per interval. In this

experiment, we have calculated the throughput after each

interval. The results show the average waiting time,

average response time and total Job run time (fo r all

above 4 cases).

84%

74%

100%

79% 79%

58% 58%

21%

0%

20%

40%

60%

80%

100%

120%

S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7

ServerUtilization

ServerUtilization

95% 95%

68%

58%

42%

32%

84%

47%

16%

0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9

ServerUtilization

ServerUtilization

34 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Case 1:

Table 8. Throughput-Case 1

Interval T.J.G. A.R.T. A.W.T. J.R.

0 20 2 3 2
1 37 4 11 13
2 24 3 4 3

3 22 3 3 1
4 14 2 3 1
5 8 2 2 2

6 15 2 2 1
7 20 3 4 2
8 25 2 3 3
9 1 3 2 0

10 16 3 2 0
11 29 3 3 1
12 14 2 2 1
13 36 3 7 7

14 13 3 6 1
15 12 2 2 2
16 6 3 2 0
17 14 2 3 3

18 14 2 3 2
19 30 3 6 5

Fig.9. Throughput-Case 1

Case 2:

Table 9. Throughput-Case 2

Interval T.J.G. A.R.T. A.W.T. J.R.

0 0 3 15 0
1 54 3 12 8
2 58 3 15 5

3 35 3 10 10
4 16 3 13 2
5 56 3 7 7
6 12 3 13 3

7 69 3 11 6
8 29 3 13 2
9 46 2 9 7

10 21 2 9 2

11 7 3 14 1
12 59 3 15 5
13 46 2 11 8
14 29 2 9 4

15 24 2 8 1
16 13 3 13 2
17 53 3 11 8
18 35 3 13 4

19 53 0 0 5

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 1

A.R.T.

A.W.T.

J.R.

 Improving Performance of Dynamic Load Balancing among Web Servers by 35

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.10. Throughput-Case 2

Case 3:

Table 10. Throughput-Case 3

Interval T.J.G. A.R.T. A.W.T. J.R.
0 3 2 0 0
1 6 2 1 3

2 29 3 5 6
3 34 3 5 5
4 36 3 7 8

5 6 2 1 1
6 34 3 3 3
7 23 3 5 5
8 29 3 4 4

9 15 3 3 3
10 35 3 6 8
11 31 3 4 4
12 30 3 7 7

13 0 3 5 0
14 34 3 5 6
15 36 3 4 4
16 14 3 8 2

17 33 3 6 10
18 11 2 1 2
19 19 0 0 1

Fig.11. Throughput-Case 3

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

A.R.T.

A.W.T.

J.R.

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

A.R.T.

A.W.T.

J.R.

36 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Case 4:

Table 11. Throughput-Case 4

Interval T.J.G. A.R.T. A.W.T. J.R.

0 36 5 18 9
1 24 5 20 14
2 38 5 21 15

3 28 4 16 9
4 38 4 19 15
5 24 5 20 11

6 17 4 17 5
7 26 4 14 9
8 21 4 12 5
9 18 4 13 5

10 13 4 14 1
11 39 4 19 13
12 33 5 22 20
13 20 4 20 16

14 29 4 17 10
15 38 5 21 18
16 12 4 19 13
17 38 5 20 15

18 5 2 4 5
19 13 4 11 4

Fig.12. Throughput-Case 4

D. Traffic Intensity

Traffic Intensity is a measure of the average occupancy

of a server or resource during a specified period of time,

normally a busy hour.

In our experiments, we have calculated

Traffic Intensity (T.I.) = A.R.T / A.W.T, where T.I. < = 1

 (4)

Idle Server = 1 – T.I. (5)

Table 12. Traffic Intensity

Interval A.R.T. A.W.T. T.I Idle server

0 2 3 0.67 0.33

1 4 11 0.36 0.64

2 3 4 0.75 0.25

3 3 3 1.00 0.00

4 2 3 0.67 0.33

5 2 2 1.00 0.00

6 2 2 1.00 0.00

7 3 4 0.75 0.25

8 2 3 0.67 0.33

9 2 2 1.00 0.00

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10111213141516171819

A.R.T.

A.W.T.

J.R.

 Improving Performance of Dynamic Load Balancing among Web Servers by 37

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

Fig.13. Traffic Intensity and Idle Server

Above results shows the performance of proposed load

balancing algorithm among web servers by using number

of effect ive parameters such as server‟s performance,

utilization, traffic intensity and throughput.

VII. CONCLUSION

In this paper, we have proposed a framework for load

balancing in heterogeneous web server clusters. Based on

the various factors which include processing capacity,

memory size, expected execution time and t ime intervals,

the jobs are distributed among different web servers and

load is balanced simultaneously. Preliminary evaluation

reveals that use of this algorithm is necessary to improve

the performance of web servers by proper resource

utilizat ion and reducing the mean response time by

distributing the workload evenly among the web servers.

We present here a cost effective framework for a

distributed job processing system that adapts to the

dynamic computing needs easily with efficient load

balancing for heterogeneous systems. The proposed

algorithm shows its efficiency in terms of server

utilizat ion, average response time, average wait ing time

and server‟s throughput.

REFERENCES

[1] Ramamritham, K. and J.A. Stankovic, “Dynamic Task

Scheduling in Hard Real-Time Distributed Systems”,

IEEE Software, 2002. 1(3): p. 65-75.
[2] Konstantinou, Ioannis; Tsoumakos, Dimitrios; Koziris,

Necta/8532.rios, “Fast and Cost-Effective Online Load-

Balancing in Distributed Range-Queriable Systems”

Parallel and Distributed Systems, IEEE Transactions on

Volume: 22, Issue: 8 (2011), Pages 1350 - 1364.
[3] J. H. Abawajy, S. P. Dandamudi, "Parallel Job Scheduling

on Multi-cluster Computing Systems," Cluster Computing,

IEEE International Conference on, pp. 11, Fifth IEEE

International Conference on Cluster Computing

(CLUSTER'03), 2003.
[4] Dahan, S.; Philippe, L.; Nicod, J.-M., “The Distributed

Spanning Tree Structure”, Parallel and Distributed

Systems, IEEE Transactions on Volume 20, Issue 12, Dec.

2009 Page(s):1738 – 1751.

[5] Wei Zhang, Huan Wang, Binbin Yu,” A Request
Distribution Algorithm for Web Server Cluster”, Journal

of Networks, Vol. 6, No. 12, December 2011.

[6] Chandra, P. Pradhan, R. Tewari, S. Sahu, P. Shenoy."An

observation-based approach towards self-managing web

servers", Computer Communications, 2006, pp1174- 1188.
[7] V. Cardellini, E. Casalicchio, M. Colajanni, S. Tucci,

"Mechanisms for quality of service in web clusters",

Computer Networks, vol.37, No.6, 2001, pp761-771.

[8] Yasushi Saito, Brian N. Bershad, and Henry M. Levy.

"An approximation-based load-balancing algorithm with
admission control for cluster web servers with dynamic

workloads", Journal of Supercomputing, vol.53, No.3,

2010, pp 440-63.

[9] Tiwari A., Kanungo P.,” Dynamic Load Balancing

Algorithm for Scalable Heterogeneous Web Server
Cluster with Content Awareness”, IEEE, 2010.

[10] Mehta H., Kanungo P. and Chandwani M., “Performance

Enhancement of Scheduling Algorithms in Clusters and

Grids using Improved Dynamic Load Balancing

Techniques,” 20th International World Wide Web
Conference 2011, Hosted by IIIT, Banglore at Hyderabad,

28 March-01 April 2011, pp. 385-389.

[11] Chen, X., Chen, H. and Mohapatra, P., “An Admission

Control Scheme for Predictable Server Response Time for

Web Accesses,” Proceedings of the 10th World Wide
Web Conference, Hong Kong, May 2001, pp. 545-554.

International Symposium on Distributed Objects and

Applications (DOA 2000), Antwerp, Belgium, Sept. 2000,

OMG

[12] Castro, M. Dwyer M., Rumsewicz, M., “Load Balancing
and Control for Distributed World Wide Web Servers,”

Proceedings of IEEE International Conference on Control

Applications, Hawaii, USA, 22-27 Aug. 1999, pp.1614-

1618.

[13] Priyesh Kanungo , “ Study of server load balancing
techniques”, International Journal of Computer Science &

Engineering Technology (IJCSET) , Vol. 4 No. 11 Nov

2013 , ISSN : 2229-3345

[14] Abdelzaher, T.F., Shin, K.G. and Bhatti, N., “Performance

Guarantee for Web Server End Systems: A Control
Theoretical Approach,” IEEE Transactions on Parallel and

Distributed Systems, Vol. 13, No. 1, Jan. 2000, pp. 80-96.

[15] Cardellini V. et al., “The State of Art Locally Distributed

Web-Server Systems,” ACM Computing surveys, Vol. 34,

No.2, 2002, pp. 264-311.
[16] H.Mehta,P.Kanungo and M.Chandwani, “A modified

delay strategy for Dynamic Load balancing in cluster and

Grid Environment” International Conference on

Information Science and applications, Seoul Korea, ICISa

2010(IEEE) , April 2010.
[17] Sandeep Singh Waraich, “Classification of Dynamic Load

Balancing stratergies in a network of workstations” fifth

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10

T.I

Idle server

38 Improving Performance of Dynamic Load Balancing among Web Servers by

Using Number of Effective Parameters

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 12, 27-38

International Conference on Information technology.

Washington,USA 2008: 1263-1265.

Authors’ Profiles

Ms. Deepti Sharma is an Asst. Professor

in Department of Computer Science at

Jagan Institute of Management Studies,

Rohini, Delhi. She is MPhil, MCA and
pursuing her PhD in Computer Science

from IGNOU. She has more than 12 years

of teaching experience. Her research areas

include “Load Balancing in Heterogeneous

Web Server Clusters”, Big Data Analytics, Distributed Systems
and Mobile Banking on which papers have been published in

National and International conferences and journals. Various

seminars, workshops and AICTE sponsored FDP have been

attended.

Dr. V.B. Aggarwal was awarded Ph.D

Degree by University of Illinois in USA

in 1973 for his research work in the areas

of Super Computers, Array Processors,
Cray XMP and Data Base Management

Systems. He has been faculty member of

Computer Science Deptt at Colorado State

University and University of Vermont in
USA. Dr. V.B. Aggarwal has been Head & Professor of

Computer Science at University of Delhi and Professor at Dept

of Electrical Engg and Computer Science at University of

Oklahoma, USA. Currently he is Dean (Infotech), DIT, JIMS,

Rohini, Delhi. In 2001 Dr. V.B. Aggarwal was elected to the
prestigious office of Chairman, Delhi Chapter, Computer

Society of India. He has been associated as a computer subject

Expert with NCERT, CBSE, AICTE and Sikkim Govt

Technical Education Department. Presently he has been

nominated as Computer Subject Expert in Academic Council of
Guru Govind Singh Indraprastha University in Delhi. Prof. V.B.

Aggarwal has authored more than 20 Computer Publications

which are very popular among the students of Schools, Colleges

and Institutes.

How to cite this paper: Deepti Sharma, Vijay B. Aggarwal,

"Improving Performance of Dynamic Load Balancing among

Web Servers by Using Number of Effective Parameters",
International Journal of Information Technology and Computer

Science(IJITCS), Vol.8, No.12, pp.27-38, 2016. DOI:

10.5815/ijitcs.2016.12.04

