
I.J. Information Technology and Computer Science, 2016, 2, 41-46
Published Online February 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.02.05

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

Inverse Matrix using Gauss Elimination Method

by OpenMP

Madini O. Alassafi and Yousef S. Alsenani
Computer Skills Unite, King Abdualziz University, Jeddah, 21571, Saudi Arabia

E-mail: {malasafi, yalsenani}@kau.edu.sa

Abstract—OpenMP is an implementation program

interface that might be utilized to explicitly immediate

multi-threaded and it shared memory parallelism.

OpenMP platform for specifications multi-processing via

concurrent work between interested parties of hardware

and software industry, governments and academia.

OpenMP is not needs implemented identically by all

vendors and it is not proposed for distributed memory

parallel systems by itself. In order to invert a matrix,

there are multiple approaches. The proposed LU

decomposition calculates the upper and lower triangular

via Gauss elimination method. The computation can be

parallelized using OpenMP technology. The proposed

technique main goal is to analyze the amount of time

taken for different sizes of matrices so we used 1 thread,

2 threads, 4 threads, and 8 threads which will be

compared against each other to measure the efficiency of

the parallelization. The result of interrupting compered

the amount of time spent in all the computing using 1

thread, 2 threads, 4 threads, and 8 threads. We came up

with if we raise the number of threads the performance

will be increased (less amount of time required). If we

use 8 threads we get around 64% performance gained.

Also as the size of matrix increases, the efficiency of

parallelization also increases, which is evident from the

time difference between serial and parallel code. This is

because, more computations are done parallel and hence

the efficiency is high. Schedule type in OpenMP has

different behavior, we used static, dynamic, and guided

scheme

Index Terms—OpenMP in C++, Gauss elimination,

Examples of OpenMP, OpenMP directives.

I. INTRODUCTION

A. Gauss Elimination Algorithm

Gauss elimination is an algorithm involving

elementary row operation in a matrix which is employed

for numerous applications in linear algebra. Some of the

applications of this method are: 1) Calculation of rank of

a matrix 2) Solution of linear algebraic equations 3)

Inversion of invertible matrix. In this paper, the

computation is done using OpenMP. Analyzing the

amount of time taken for deferent size of matrices. We

are also concerned with measuring the speed up and

efficiency in deferent cases.

The algorithm can be subdivided into two parts

1. Forward Elimination: This process is used to

convert the matrix into reduced row echelon form

2. Backward Substitution: This process is uses reduced

row echelon matrix to find the solution.

Calculation of inverse of an invertible matrix [A] is

based on the fact that the matrix does not have more than

one inverse.

Now consider a non-singular matrix n nA R as

expressed below:

 (1)

Then, in order to compute its inverse, we introduce an

augmented matrix by adding an augmented matrix to the

right of original matrix such that:

 (2)

Suppose that the diagonal entry is non-vanishing,

then introducing a multiplier such that:

 (3)

The elements under the first elements
11(a) of original

matrix A can be eliminated by multiplying each element

of row-1 by i1m and then subtracting with the element of

corresponding column from row-2 to final row. The

mathematical operation can be written as:

 (4)

ijb is the element in the right side of augmented matrix

[]Ã .

The resultant matrix after element row operation on

2nd row will take the following form:

42 Inverse Matrix using Gauss Elimination Method by OpenMP

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

(5)

In the similar fashion, all the rows subsequent to row-1

can be modified by element row operation and elements

below the diagonal elements can be eliminated. After the

row operation for all the rows has been completed, the

right side of augmented matrix takes the form of reduced

row echelon as shown below:

 (6)

It can be seen that right side matrix of augmented

matrix is no more an identity matrix. This completes the

forward elimination process. The backward substitution

process starts with the last row and goes upward until

row-2. A multiplier is defined for each row and all rows

above that row such that:

 (7)

Elementary row operation is then preceded to eliminate

all elements above the diagonal elements of right side of

augmented matrix [Ã] :

 (8)

After completing the process upward for all the rows

below row-1, the matrix takes the following form:

 (9)

Each row is then divided by corresponding diagonal

element of right matrix to make the right side matrix

an identity matrix:

 (10)

Hence the matrix takes following form:

 (11)

It can be observed that left side matrix has completely

been transformed into identity matrix. So, the
corresponding right side matrix is the inverse of original

matrix:

 (12)

B. Decomposition of the Matrix Problem

In this section we discussed how to start creating the

parallel program. As we explained before we use a simple

LU factorization method to factorize the matrix into

lower triangular matrix and upper triangular matrix.

These lower and upper triangular matrices are then used

to calculate the inverse of the matrix. LU decomposition

is done using Gaussian elimination method and involves

less computation as compared to conventional matrix

inversion technique.

Let us say that we need to invert matrix A. If B is the

inverse of A, then:

 (13)

Where, I is the identity matrix.

If we can break A into two matrices such that one is

lower triangular matrix and the other is upper triangular

matrix then:

 (14)

Where, L is lowering triangular and U is upper

triangular matrix. Hence,

 (15)

 (16)

(Where X = U.B)

We can solve the below two equations:

 (17)

 (18)

Solving the above two equations will yield as B, which

is the inverse of A.

The computation of L and U can be parallelized as the

computations do not depend on the previous steps.

Similarly the computation of inverse can be parallelized,

as the computation of each column of the result is

independent of each other. The same logic is utilized for

parallelizing the serial code using OpenMP directives.

C. OpenMP

OpenMP (Open Multiprocessing) is an API that

supports multi-platform shared memory multiprocessing

programming in C, C++, and Fortran, on most processor

architectures and operating systems, including Solaris,

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Processor_architecture
http://en.wikipedia.org/wiki/Processor_architecture
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Solaris_(operating_system)

 Inverse Matrix using Gauss Elimination Method by OpenMP 43

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

AIX, HP-UX, GNU/Linux, Mac OS X, and Windows

platforms. It consists of a set of compiler directives,

library routines, and environment variables that influence

run-time behavior" (wikipedia). OpenMP is administered

by the noncommercial technology society OpenMP

Architecture Review Board, together explained by a

group of major computer hardware and software vendors,

such as IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC,

Microsoft, Texas Instruments, Oracle Corporation, and so

on. OpenMP involves a migratory, scalable model which

grants programmers a simple and flexible interface for

improving parallel applications for platforms ranging of

the standard desktop computer to the supercomputer.

OpenMP is an enforcement of multithreading, a process

of parallelizing however the master thread (a category of

directive completed consecutively) a specified number of

slave threads and a task is separated all of them. The

threads then run concurrently, with the runtime

environment allocating threads to another processors.

The part of code which is proposed to run in parallel is

marked as, with a preprocessor directive that will motive

the threads to form before the part is accomplished. Each

threads have an id related to it that can be acquired using

a function (called omp_get_thread_num()). The thread id

is an integer, and the master thread has an id of 0. After

the enforcement of the parallelized code, the threads enter

back into the master thread, whose continues onward to

the end of the program. In general, each thread

accomplishes the parallelized part of the code

independently. Work-sharing constructs can be used to

split a task all of it and the threads while all thread

executes its allocated part of the code. Both tasks is

similarity and data parallelism can be done using

OpenMP in the same path.

D. Advantages Limitation and Features of OpenMP

There are some advantages of OpenMP such as the

applications are relatively easy to implement and it is low

latency and high bandwidth. So it also allows to run time

scheduling and dynamic load balancing so the most

advantage of OpenMP is the implicit communication [4].

Despite of all the benefits of OpenMP, there are some

disadvantages such as parallel access to memory might

decrease performance and also when the size of the

parallel loop is too small the overheads can become an

issue and explicit synchronization is required. The main

features of OpenMp are as below:

 Support for accelerators: A mechanism will be

delivered to define regions of code where data

(and/or) computation should be progressed to any of

a wide variety of computing devices.

 Error handling: it is capabilities of OpenMP that

well-defined to improve the resiliency and stability

of OpenMP applications in the presence of system-

level, runtime-level, and user explained errors.

 Thread affinity: Users give way to describe where to

execute OpenMP threads. Platform data and

algorithm properties specific are separated,

contribution a deterministic behavior and simplicity

in use. The benefits for the user are better locality,

less false sharing and more memory bandwidth.

 Tasking extensions: The new tasking extensions

being considered are task deep synchronization,

dependent tasks, reduction support for tasks, and

task-only threads. Task-only threads are threads that

do not take part in work sharing constructs, but just

wait for tasks to be executed.

Fig.1.OpenMP Language Extension

E. Goals and Directives of OpenMP

There are some objectives of using OpenMP such as

standardization, lean and mean, ease of use and

portability. Each one has its own specifications. For

standardization it provides a standard along with a

diversity of shared memory architectures/platforms and

together declared and allowed by a group of major

computer hardware and software merchants. The other

goal that create a simple and limited set of directives for

programming shared memory machines and important

parallelism can be implemented by using three or four

directives called Lean and Mean [6]. Ease of Use

provides ability to parallelize a serial program, not like

message-passing libraries which typically involve an all

or nothing approach and it provides the ability to

implement parallelism for coarse-grain and fine-grain. In

the last goal, which is the portability the API is only used

for C/C++ and Fortran which is public forum for API and

membership.

 OpenMP directives utilize shared memory

http://en.wikipedia.org/wiki/IBM_AIX
http://en.wikipedia.org/wiki/HP-UX
http://en.wikipedia.org/wiki/GNU/Linux
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Library_(computing)
http://en.wikipedia.org/wiki/Environment_variable

44 Inverse Matrix using Gauss Elimination Method by OpenMP

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

parallelism by defining different types of parallel

regions (table 1). Parallel regions can contain

iterative and non-iterative parts of program code [8].

Table 1. OpenMP Directives

#pragma

omp

directive-

name
[clause, ...] Newline

Compulsory

for all

OpenMP C

& C++

directives.

A usable

OpenMP

directive.
Requirement

implements

after the
pragma and

it also before

all clauses.

Noncompulsor

y. Clauses can

be in any
order, and

repeated as

important
except else

classified.

Necessary.

Precedes the

arranged
block that is

enclosed by

this directive.

II. PERFORMANCE ANALYSIS

This section investigates the illustrates of environment

and the computer system information where the results

from the proposed technique with IDE by Microsoft®

Visual Studio 2010 Professional Edition and the

application type is Win32 Console Application. So, the

processor which used is Intel® Core™ i7- Q740 CPU @

1.73 GHz with Microsoft Windows 7 Professional edition

64-bits operating system while the memory 4.00GB. the

programming language e is C\C++. The following (table

2) illustrates the amount of time required of the

computation of different size of matrices:

Table 2. Computation of Different Size of Matrix

Matrix

size

1 Thread

time

2 Threads

time

4 Threads

time

8 Threads

time

500 35.077 25.316 20.373 12.475

1000 278.649 209.647 164.357 103.859

1500 943.088 692.289 518.232 309.041

2000 2046.7700 1554.950 1230.251 736.783

2500 3882.028 3113.930 2460.715 1523.236

3000 6416.146 5133.884 4053.464 2369.652

A. Efficiency & Speed Up

As it shown below from the tables and figures we

compared the amount of time spent in all the computation

using one thread, two threads, four threads, and eight

threads. The computations were done for the different

sizes of the matrices and the results are summarized in

the table above. We can conclude that if we increase the

number of threads the performance will be increased (less

amount of time required). Also as the size of matrix

increases, the efficiency of parallelization also increases,

which is evident from the time difference between serial

and parallel code. This is because, more computations are

done parallel and hence the efficiency is high. The for

loops are parallelized in a manner that blocks of matrices

are decomposed by dividing the work among parallel

threads.

a. In Fixed size of matrix and P is increasing Speed up

is increased and Efficiency is decreased [9].

Table 3. Case #1

N 1000 1000 1000

P 2 4 8

Speed Up 1.33 1.69 2.69

Efficiency 0.66 0.42 0.33

b. In increasing the size of matrix and P is fixed Speed

up is decreased and Efficiency is decreased slowly.

Fig.2. Dynamic Performance for Different Matrix Size

Table 4. Case #2

N 1000 2000 3000

P 4 4 4

Speed Up 1.69 1.67 1.58

Efficiency 0.42 0.41 0.39

c. In Fixed size of big matrix and P is increasing Speed

up is increased and Efficiency is decreased.

Table 5. Case #3

N 3000 3000 3000

P 2 4 8

Speed Up 1.24 1.58 2.7

Efficiency 0.62 0.39 0.33

B. Schedule (type, chunk size)

In a static scheme and a specified chunk size, all

processor is statically assigned chunk iterations. The

distribution of iterations is completed at the beginning of

the loop, and each thread will only accomplish these

iterations assigned to it [10]. If using static with no a

specified chunk size indicates the system default chunk

size of n/p. Using a dynamic scheme, each thread is

assigned a chunk of iterations at the beginning of the loop,

so the exact set of iterations that are assigned to each

 Inverse Matrix using Gauss Elimination Method by OpenMP 45

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

thread is not recognized. The guided scheme gives a

system dependent chunk of iterations among threads at

the beginning of the loop. It is like to dynamic scheduling

such that once a thread has done its work it is assigned a

new chunk of iterations. The modification is that the new

chunk size of iterations decreases exponentially as the

iterations available decreases to a specified minimum

chunk size. If the chunk size is NOT specified, the

minimum is 1.

C. Behavior of the Schedule

For reduced values of N, all three schemes effort very

well. With the dynamic scheme, the reduction in

performance is greatly slower than it is with the others

[11]. Since the amount of effort to be distributed is

constantly changing during the algorithm, the dynamic

scheme shows to work best because of its ability to

distribute new iterations while other threads remain

unavailable [12]. However as much as thread is getting

executing static is performing better than dynamic and

guided. For example in 8 threads static perform 30%

better than dynamic and guided. While dynamic and

guided perform better in 4 and 2 threads.

Fig.3.Computation for1000 by 1000 Matrix

Fig.4.Computation for1500 by 1500 Matrix

Fig.5.Computation for 2500 by 2500 Matrix

Fig.6.Computation for 2000 by 2000 Matrix

Fig.7.Computation for 3000 by 3000 Matrix

III. CONCLUSION

In summary, we have presented case which is inverse

matrix using Gauss elimination method by openMP.

After we fixed workload the decomposition was faster

when more threads are executing in parallel. The

execution was comparatively faster on larger workload

due to the fact, parallelism was more effective. For a

fixed number of cores the time increased exponentially

with increase in matrix size. The parallelism was

ineffective on relatively smaller loads. In Fixed size of

matrix and P is increasing Speed up is increased and

Efficiency is decreased. In increasing the size of matrix

and P is fixed Speed up is decreased and Efficiency is

decreased slowly. In Fixed size of big matrix and P is

increasing Speed up is increased and Efficiency is

decreased. In terms of the schedule’s behavior in 8

threads static perform 30% better than dynamic and

guided. While dynamic and guided perform better in 4

and 2 threads.

46 Inverse Matrix using Gauss Elimination Method by OpenMP

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 2, 41-46

ACKNOWLEDGMENT

We wish to thank our families and friends for all

support and concern. Both authors contributed equally to

this work.

REFERENCES

[1] Murthy, K.N.B. and C.S.R. Murthy, Gaussian-

elimination-based algorithm for solving linear equations

on mesh-connected processors. Computers and Digital

Techniques, IEE Proceedings -, 1996. 143(6): p. 407-412.

[2] Allande, C., et al., A Performance Model for OpenMP

Memory Bound Applications in Multisocket Systems.

Procedia Computer Science, 2014. 29(0): p. 2208-2218.

[3] Park, I. and S.W. Kim, Study of OpenMP applications on

the InfiniBand-based software distributed shared-memory

system. Parallel Computing, 2005. 31(10–12): p. 1099-

1113.

[4] Guo, X., et al., Developing a scalable hybrid

MPI/OpenMP unstructured finite element model.

Computers & Fluids, 2015. 110(0): p. 227-234.

[5] Zhang, S., et al., Parallel computation of a dam-break

flow model using OpenMP on a multi-core computer.

Journal of Hydrology, 2014. 512(0): p. 126-133.

[6] Marongiu, A., P. Burgio, and L. Benini, Supporting

OpenMP on a multi-cluster embedded MPSoC.

Microprocessors and Microsystems, 2011. 35(8): p. 668-

682.

[7] Jeun, W.-C., et al., Overcoming performance bottlenecks

in using OpenMP on SMP clusters. Parallel Computing,

2008. 34(10): p. 570-592.

[8] Doroodian, S., N. Ghaemian, and M. Sharifi. Estimating

overheads of OpenMP directives. in Electrical

Engineering (ICEE), 2011 19th Iranian Conference on.

2011.

[9] Jian, G., Y. Su, and J. Jian-Ming, An OpenMP-CUDA

Implementation of Multilevel Fast Multipole Algorithm

for Electromagnetic Simulation on Multi-GPU Computing

Systems. Antennas and Propagation, IEEE Transactions

on, 2013. 61(7): p. 3607-3616.

[10] Barlas, G., Chapter 4 - Shared-memory programming:

OpenMP, in Multicore and GPU Programming, G. Barlas,

Editor. 2015, Morgan Kaufmann: Boston. p. 165-238.

[11] Shengfei, L., et al. Performance Evaluation of

Multithreaded Sparse Matrix-Vector Multiplication Using

OpenMP. in High Performance Computing and

Communications, 2009. HPCC '09. 11th IEEE

International Conference on. 2009.

[12] Jian-Jun, H. and L. Qing-Hua. Dynamic Power-Aware

Scheduling Algorithms for Real-Time Task Sets with

Fault-Tolerance in Parallel and Distributed Computing

Environment. in Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International.

2005.

[13] S.F. McGinn and R.E. Shaw. Parallel Gaussian

elimination using OpenMP and MPI. In Proceedings of

the International Symposium on High Performance

Computing Systems and Applications, 2002.

[14] Sibai, Fadi N., 2013. Performance modeling and analysis

of parallel Gaussian elimination on multi-core computers.

Journal of King Saud University – Computer and

Information Sciences. Elsevier, Vol. 26, pp. 41–54.

[15] Michailidis, P. D. and Margaritis, K. G. (2011). Parallel

direct methods for solving the system of linear equations

with pipelining on a multicore using OpenMP. Journal of

Computational and Applied Mathematics, 236(3):326–341.

Authors’ Profiles

Yousef S. Alsenani born in Saudi Arabia.

Alsenani received Master’s degree in

Advance Computer Science from

California Lutheran University, Thousand

Oaks, USA, 2013. He works as lecture at

King Abdualziz University, Saudi Arabia.

Now he is a PhD student at Southern

University Illinois Carbondale, USA. His

current research interest is Cloud Computing.

Madini O. Alassafi born in Saudi Arabia.

Alassafi received Master’s degree in

Advance Computer Science from

California Lutheran University, Thousand

Oaks, USA, 2013. He works as lecture at

King Abdualziz University, Saudi Arabia.

Now he is a PhD student at Southampton

University, UK. His current research

interest is Cloud Computing.

How to cite this paper: Madini O. Alassafi, Yousef S.

Alsenani,"Inverse Matrix using Gauss Elimination Method by

OpenMP", International Journal of Information Technology and

Computer Science(IJITCS), Vol.8, No.2, pp.41-46, 2016. DOI:

10.5815/ijitcs.2016.02.05

