
I.J. Information Technology and Computer Science, 2016, 4, 86-95
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.04.10

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

Automated Client-side Sanitizer for Code

Injection Attacks

Dnyaneshwar K. Patil
Department of Computer Engineering, VIIT, SPPU University, Pune, India

E-mail: dnyaneshwar11.patil@gmail.com

Dr. Kailas R. Patil
Department of Computer Engineering, VIIT, SPPU University, Pune, India

E-mail: kailas.patil@viit.ac.in

Abstract—Web applications are useful for various online

services. These web applications are becoming

ubiquitous in our daily lives. They are used for multiple

purposes such as e-commerce, financial services, emails,

healthcare services and many other captious services. But

the presence of vulnerabilities in the web application may

become a serious cause for the security of the web

application. A web application may contain different

types of vulnerabilities. Cross-site scripting is one of the

type of code injection attacks. According to OWASP

TOP 10 vulnerability report, Cross-site Scripting (XSS) is

among top 5 vulnerabilities. So this research work aims

to implement an effective solution for the prevention of

cross- site scripting vulnerabilities. In this paper, we

implemented a novel client-side XSS sanitizer that

prevents web applications from XSS attacks. Our

sanitizer is able to detect cross-site scripting

vulnerabilities at the client-side. It strengthens web

browser, because modern web browser do not provide

any specific notification, alert or indication of security

holes or vulnerabilities and their presence in the web

application.

Index Terms—Web application, Cross-site scripting,

Vulnerability, Sanitizer.

I. INTRODUCTION

Security is the important factor to be considered in the

web engineering. A web application may contain

different types of vulnerabilities. For example: if a web

application is vulnerable, it may contain vulnerabilities

like Injection, Broken Authentication and Session

Management, Cross-Site Scripting (XSS), Insecure Direct

Object References, Security Misconfiguration, Sensitive

Data Exposure, Missing Function Level Access Control,

Cross-Site Request Forgery (CSRF), Using Components

with Known Vulnerabilities, Unvalidated Redirects and

Forwards. Among these vulnerabilities, Cross-site

scripting is among top 5 web application vulnerabilities

[4]. In general, cross-site scripting may happen due to

insertion of untrusted script code into a web page. For

preventing cross-site scripting attacks existing systems

contain Sanitizers like Xss Sanitizer Plugin, Jsoup

Sanitizer and Haskell-xss-sanitize. Xss Sanitizer Plugin

has used the OWASP ESAPI library to sanitize request

parameters. Xss Sanitizer Plugin is able to detect XSS

attacks, but they did not specify exactly which type of

XSS may be detected by their sanitizer. Next Jsoup

Sanitizer is allowing known-safe tags and attributes and

values through into the cleaned output. This Jsoup

Sanitizer works only with whitelist provided to it.

Haskell-xss-sanitizer uses Tagsoup for parsing HTML,

but it does not maintain all white spaces. This research

work implements an idea by considering the limitations

of the existing cross-site scripting sanitizers. Our

technique considers all possible scripts for cross-site

scripting vulnerabilities. According to a survey [6]

conducted by Cenzic Inc. 96 percent of tests web

applications in 2013 have at least one or more serious

security vulnerability. The application layer is

continuously targeted by attackers as a soft way for attack.

99 percent of vulnerabilities found in their tested web

applications in year 2012 and 96 percent of

vulnerabilities found in the year 2013. A median of these

vulnerabilities per web application is 13 for year 2012

and 14 for year 2013 respectively. Cross-site scripting is

the topmost vulnerability among web applications. Most

of the web applications are vulnerable due to

unawareness of web application developers about

security practices. Current browsers are having the

extensions for detecting specific vulnerability attacks, but

none of the browser having all in one solution for the

detection of all these web vulnerabilities. Our proposed

system makes a path for developing all-in-one solution

for the detection of the web application vulnerabilities. In

summary, we make the following three contributions to

enhancing web security:

(1) We study the web application vulnerabilities and

identified their security mechanisms with limited

solutions.

(2) We build robust and client-side based security

mechanism to protect web applications from cross-

site scripting vulnerabilities.

(3) Our evaluation result shows the effectiveness of

the system.

 Automated Client-side Sanitizer for Code Injection Attacks 87

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

In the remaining sections of this paper, Section 2

describes the background of the web application working

scenario and different types of cross-site scripting

vulnerabilities, Section 3 describes the motivation for

choosing this research work, Section 4 describes research

works on cross-site scripting Vulnerabilities and their

preventive measures. Section 5 describes our

observations on this entire topic of the cross-site scripting

vulnerabilities, Section 6 describes proposed system with

its architecture, Section 7 describes Implementation

details, Section 8 describes the results of the implemented

system, Section 9 describes the limitations of the

implemented system in discussion and section 10

describes a conclusion about this research work on cross-

site scripting vulnerabilities.

II. BACKGROUND

Web application is the software that is able to run in a

web browser. Such web applications can be developed

with the help of programming languages (for example:

HTML, CSS and JavaScript, etc.) that are supported by

the web browser. These programming languages rely on

the web browser for rendering web applications. Due to

the ubiquitous nature of the web browser web

applications are becoming more popular. Another reason

for the popularity of the web application is its attractive

graphical user interface. The main reason for becoming

popular of the web application is that to maintain its

adaptability excepting the trouble of installing the

software on strongly millions of web client computers.

Web application borrows itself towards multi-tiered

perspective by its occurrence. Figure 1 shows a web

application with its working on the client-side mechanism

and server-side mechanism. The client-side mechanism

can be used by web browser for rendering web

application. It may contain JavaScript, Flash, etc. and by

using this Client-side mechanism user can use a web

browser for searching the content on the web or to do his

intended work. Web users may use multiple web

browsers like Mozilla Firefox, Google Chrome, Safari

and many more for making requests to the web server

[17].

Web browser works at the interface between web

application user and web server. Web user enters a URL

into the address bar of the web browser for making

requests to the web server or web user can use the search

engine for making requests to the web server and using

web application. In between web browser and web server

once the web user enters a keyword into the search

engine at that time web browser generates HTTP request

and sends it to the web server. Here security of the

generated request depends on the HTTP headers used by

the web application developers as well as policies used

by the web application developers. So it is necessary to

focus on the Client-side mechanism to make stronger

protection for the web application to save important data

from cyber criminals. Continuous growth in web

application development without considering its

vulnerable status is an important factor for web security.

Web application is useful for e-commerce services,

financial organizations, governmental websites and social

media like Facebook, Twitter, etc., all these service

providers and information users require online security

for their important information, but due to different types

of vulnerabilities present in the web application, an

attacker can easily access this valuable information of

user or of the organization. Now we are coming to web

application vulnerability that is one of the top 5 web

application vulnerabilities. It is cross-site scripting

vulnerability.

Fig.1. Web application working scenario

Cross-site scripting vulnerabilities are common

vulnerabilities in most of the web applications. Following

are the types of cross-site scripting attacks:

2.1 Stored XSS Vulnerabilities

Stored cross-site scripting vulnerability is the most

powerful type of the XSS attack. When web application

user provides information to the web application that

information is stored permanently on the server and later

displayed on the webpage by the web application without

encoding it with entity encoding of the HTML language.

Stored XSS vulnerability is also known as second order

vulnerability [3].

Figure 2 shows a mechanism for stored XSS.

Unstrusted data accepted from the web user through web

browser may be stored on the server-side database

permanently. In this scenario, if the user gives executable

script as an input it will be stored on the server-side

database permanently and will be executed always

whenever request come to that webpage. A real world

example of this vulnerability is Samy Myspace Worm.

88 Automated Client-side Sanitizer for Code Injection Attacks

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

Fig.2. Stored XSS

2.2 Reflected XSS Vulnerabilities

When data provided by the web application user are

used for reflection by the server according to the

requested web page for generating the expected result,

then this mechanism can become sources for the reflected

XSS type of the vulnerability. It can be used for denial of

service attacking. For example, consider the following

case: By using <meta> tag .php page can be reloaded

As shown in the above script in PHP, particular page

will be refreshed after each second. So it will become as

an infinite loop for refresh requests which will cause

database server down due to flooding of requests. In this

way denial of service attack may happen on web

application.

2.3 DOM-based XSS Vulnerabilities

DOM-based XSS vulnerabilities can occur in web page

client-side script itself. Suppose JavaScript accesses a

URL request parameter and takes that information to

write some HTML to its own page which is not encoded

using HTML entities, then DOM-based XSS

vulnerability will be present there. This written data will

be reinterpreted by web browsers that can include

additional client-side script [4]. For example: We have

web application as

an attacker can write code for DOM-based attack for

above mentioned url as

So the above code will generate DOM-based XSS

attack for that particular webpage.

III. MOTIVATION

Web applications are becoming popular and ubiquitous

in our daily lives due to their importance in the current

era of digital world. It is necessary to use web browser

for web application user to access the web application.

And these web applications are useful in following

important fields: Online Banking, Government Services,

Social Media Websites, e-commerce. All these fields are

important for maintaining fast online transactions with

their intended purposes, but these services must have a

secure mechanism to handle their services for the web

application users. But today’s web applications are most

vulnerable to cross-site scripting. On the other hand web

application, web browser and web developers are the

motivating factors for this research work. Because if web

application has not implemented security policies for

prevention of the XSS attack, then it will be vulnerable to

the XSS attacks. Browser is also important to consider

because it is responsible for executing untrusted code

provided by the user. Further, how these factors are

important for web security are explained as:

1) Web Application: Before deploying web

applications on the server, it must implement

security policies for avoiding attacks like cross-

site scripting. Otherwise that web application may

be vulnerable to the cross-site scripting attacks as

well as vulnerable to other possible attacks.

Therefore, web application should have security

policies for avoiding cross-site scripting attacks.

2) Web Browser: The web browser is the medium for

accessing web applications. When a user enters

input to the web application, web browser

executes it, if it contains executable scripts

otherwise treats that input as plain text.

For example: suppose we took URL form vulnerable

web site

http://yourwebsite.com/entity5/worldencapsultaed/f

origendata/returnpage11.php

http://yourwebsite.com/entity5/worldencapsultaed/f

origendata/returnpage11.php?<script>alert(“DOM

−BASED XSS ATTACK”)</script>

<META HTTP−EQUIV=Refresh CONTENT=”1;

URL= h t t p : / / www.

somethingonursite.com/ururl . php?>

 Automated Client-side Sanitizer for Code Injection Attacks 89

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

This web page has source code as

When a user enters script in the URL field, it will be

executed directly at the client-side by the web browser.

it will directly affect the source code of the web page as

given below:

Here browser does not consider URL as the only URL

but it treated that URL as executable code. Hence

browser does not have a specific mechanism for treating

user given input on the basis of their contents. On the

other hand, there are multiple web browsers available for

accessing web applications like Mozilla Firefox, Google

Chrome, Internet Explorer and so on. But all of these

available web browsers do not provide any specific alert

related to web application vulnerability to the user.

3) Web Developer: A web developer may use

multiple web technologies for developing web

applications like HTML, JavaScript, CSS,

VBScript, PHP and many more. But Web

developers are developing web applications

continuously without considering the factor of

security of the web application and this may

become cause for an attacker to steal sensitive

information of the web user or the valuable

information about the organization. There are

alternative security practices available for

developing web applications, but web application

developers are not aware about these security

practices. So it is necessary for web application

developers to pay attention towards secure

practices for developing web applications which

will reduce risks of web application vulnerabilities.

Cross-site scripting is the most effective

vulnerability among web vulnerabilities. Existing

solutions for XSS are weak for protecting web

applications. Next section gives brief idea about

cross- site scripting vulnerabilities.

IV. LITERATURE SURVEY

Literature survey is broadly classified into three

categories:

4.1 Existing XSS Sanitizers

XSS Sanitizer Plugin [8], Jsoup Sanitizer [5] and

Haskell-xsssanitize [7] are the existing XSS sanitizers.

XSS Sanitizer Plugin [8] has used the OWASP ESAPI

library for sanitizing request parameters. This XSS

sanitizer plugin automatically works for cleaning the

browser from XSS code, but it does not provide

information whether it detects all types of XSS or detects

only particular XSS. Jsoup Sanitizer [5] is the XSS

sanitizer that performs by parsing the input HTML by

creating a safe sand-boxed mechanism. Later on iterating

through parse tree and only permitting known secure tabs

and attributes through the sanitized output. Haskell-xss-

sanitize is the XSS sanitizer that allows user to accept

html from untrusted sources initially filtering it through a

whitelist. The whitelist filtering is comprehensive with

including support of CSS style attributes. Haskell-xss-

sanitize uses the TagSoup parser to parse the HTML. But

this TagSoup does not maintain all white space. For

Example: TagSoup is not able to distinguish between the

following cases:

4.2 String solvers for web application security

S3 [24] and Z3-str [28] are the string solvers for web

application vulnerability detection and analysis

respectively. S3 [24] is the symbolic string solver based

on its own constraint language. Their algorithm initially

makes use of a symbolic representation in such a way that

membership in a set termed by the regular expression

may be encoded as equations of strings. Z3-str is nothing

but the general purpose string solver. It treats strings as a

primitive type that avoids the inherent shortcomings

observed in many existing solvers which encode strings

in terms of other primitives. Their logic of the plugin is in

three sorts boolean, int and string. Strings sorted terms

are having functions as replace, concatenation and sub-

string. Strings sorted terms are included with the string

constant and variables of arbitrary length.

4.3 JavaScript based vulnerability detection systems

Yue, C. and Wang, H. [26], M. Cova, Kruegel, G.

Vigna [12] and Finifter M., Weinberger J., Barth, A. [14]

have considered vulnerabilities occurring due to the

JavaScript programming language. Yue, C. and Wang, H.

[26] presented an analysis of insecure JavaScript

practices and suggested alternative JavaScript practices

for it. They examined 6805 unique websites for the

,

<a href>, <a href >

<a>, <a/>

http://public−firing−range.appspot.com/reflected/p

arameter/body ?q=a

<html>

<body>

a

</body>

</html>

http://public−firing−range.appspot.com/reflected/p

ara meter/body?q=a<script>alert(”U r

Attacked ”)</script>

<html>

<body>

a<script> alert(“ U r Attacked”)</script>

</body>

</html>

90 Automated Client-side Sanitizer for Code Injection Attacks

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

measurement and an analysis of JavaScript. According to

their analysis they found 66.4% of analyzed websites

convicts unsafe practices with inclusion of JavaScript

into the top level documents of their web pages. 44.4% of

their measured websites used eval () function for dynamic

generation and execution of JavaScript codes in their web

pages. And they also found the function document.write ()

of the JavaScript and property of innerHTML are very

popular instead of alternative secure practices for them.

But they have specific solutions for avoiding web

application vulnerabilities that are related to avoiding

insecure JavaScript practices. M. Cova, Kruegel, G.

Vigna [12] presented the solution for detection of the

attacks which are possible due to execution of the online

downloaded files. For implementation they have

developed a system that uses machine learning

techniques and a number of features to establish the

features of the usual JavaScript code. Their system is also

capable to detect the behavior of abnormal JavaScript

code by imitating its behavior and equating it to launch

prominence [4]. This solution presented by authors

cannot protect web applications from JavaScript malware.

Finifter M., Barth, A. [14] introduced a special solution

for preventing capability leaks of the subsets of

JavaScript. In this paper they proposed new technique for

preventing capability leaks of JavaScript by improving

statically verified JavaScript subset [14]. They explained

about one-third of Alexa Top 100 web applications is

exploitable by an advertisement by the ADsafe which is

verified. They proposed an updated mathematically

verified subset of the JavaScript which uses namespaces.

It is only possible to prevent web application from

capability leaks of JavaScript codes it means the authors

have considered only capability leak problem of

JavaScript.

4.4 Other web vulnerability detection systems

Prophiler [9], SecuBat [17], [13], [15], [11], [27] are

the web application vulnerability detection systems.

Prophiler [9] is the filter that executes fast for detecting

malicious web pages. It explains the concept of the

attacks that are happening at the time of downloading and

prevention techniques for it. For preventing drive by

download attacks, they have built a filter named

as ’Prophiler’ which is used for detection of the harmful

web pages. SecuBat [17] is the web application

vulnerability scanner. SecuBat gives way for how to find

potentially vulnerable websites. By usefulness of the

SecuBat authors were able to detect many potential

vulnerable websites. For validating the performance and

accurateness of the SecuBat authors picked 100

interesting websites from the potential list of victims for

the purpose of further analysis as well as to confirm

exploitable flaws in the recognized web pages. They also

mentioned all of their victims were from well known

industrial companies and of vulnerable web sites about

possible security problems. The only limitation of this

proposed solution is we have to submit websites to this

scanner means it is not based on the client-side approach.

[13] Proposes solution for analysis of the websites of the

design flaws that are visible to the user. User visible

security design flaws may contain flaws that can become

a risk for web user. Further authors examine that the

influence of user visible security by examining websites

from 214 United States commercial institutes. They

intentionally chose commercial web applications because

of their high demand for security [13]. After

experimentation they found lots of faults which may

direct web clients to make worse security permissions.

According to their survey, 76 percent of their examined

websites containing a minimum one design fault which

indicates that these design flaws have not understood

widely even experts who have information about security

and responsibility of security. Therefore finally they

implemented solution to recover from these security

design flaws which are user visible design flaws. This

paper detecting only design flaws which are user visible.

[15] Explains the concept of web password habits of web

users. It gives protection to the password given by the

user to his system and which stored on a web browser

[15]. This system is having client-side approach, but

related to the protection of passwords that are stored in

web browsers. [11] Is the research work over security

flaws in GUI logic. As per their perspective for achieving

security at the end point, conventional security techniques

are incapable if the integrity of HCI is compromised by

third party. Authors are totally focusing on the

vulnerabilities, which are only relate to GUI logic means

they have implemented their solution with the specific

consideration of the problem. [27] is the research work

related to browser saved passwords. According to their

perspective web application users are facing problems

with the intimidating challenges of forming, memorizing

and using safe as well as strongest passwords for

maintaining their important assets on respective web

applications. They have suggested that their system can

be implemented in other global browser. They have

implemented a different approach for the protection of

browser saved passwords rather than the conventional

password manager systems. [23] explains the analysis of

existing malware detection systems. [20] is the system

that maintains security for personal information. [16] is

the practical approach by applying a mathematical

formulation of web vulnerabilities. [25] is the research

work related to reduction of denial of service attacks

using web service filters. [18] is the system for analyzing

the relationship between customer and organization on

the Internet. [10] is the novel technique for web page

classification on the basis of a specific domain. [21] is the

system that predicts the navigation of the user by using

weighted association rules. [22] is the research work

related to the reliability assessment of the web application.

[19] is the system prevents web applications from forgery

attacks.

4.5 Motivational Survey

Security header for every web application plays an

important role in maintaining web application security, so

it is necessary to provide security headers for web

application. For checking different security headers

 Automated Client-side Sanitizer for Code Injection Attacks 91

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

provided by web applications, we have calculated

statistics shown in figure 3. Strict Transport Security

(HSTS) header is used for HTTPS connections and it is

used in 12 percent of our tested web applications. Only 8

percent web applications are using content security policy

for protection from cross-site scripting vulnerabilities. X-

Frame-Options headers are used for preventing web

application from clickjacking attacks. X-Frame-Options

are applied for 60 percent of our tested web applications.

X-XSS-Protection is the security header used in 40

percent of tested web applications.

Fig.3. Security Headers Analysis

V. OUR OBSERVATIONS

Existing solutions for XSS vulnerabilities are very

specific and these mechanisms are easily breakable. On

the other hand recent web applications are consisting very

complex structures, but due to security loopholes inside

these structures, they are prone to various web application

vulnerabilities. Web development teams are not aware

about secure web development practices and they are

developing web applications without considering the

security factor. Therefore, it is necessary to construct all-

in-one solution for web application vulnerabilities in the

web applications.

VI. PROPOSED SYSTEM

Proposed system architecture consists of modules

DOM, Input field capture, Input analyzer, Links, Text

area, Sanitizer and XSS Notification.

6.1 System architecture overview

Our proposed system architecture gives the exact idea

about prevention of cross-site scripting vulnerabilities.

DOM module will access the current webpage’s DOM

and that DOM will help to Input field capture module for

capturing different inputs. The further Input analyzer will

analyze each input field data from the input field capture

module. Analyzed data will be forwarded for Links

module, and Text area module. Next Sanitizer is used to

sanitize user provided input with the help of Links

module and a Text area module. Finally, the XSS

notification module generates a notification for the user

about input provided by the user.

6.2 System Architecture

Figure 4 shows system architecture. Following are the

modules of the proposed system.

1. DOM (Document Object Module): A programmer

can build documents, navigate their structure or

delete elements and contents with the help of the

DOM. Anything found in an HTML or XML

document can be manipulated using the DOM. It

creates a DOM tree for each document.

2. Input field capture: The input field capture module

accepts inputs provided by the web user. Input

provided may be link or text area by the web user.

3. Input Analyzer: This module takes all input fields

of the current loaded web page. Further, it

categorizes inputs into links and Text area fields

and forwards it to the next module according to

the inputs categorization. 4. Links: The links

module maintains a queue for links present on the

loaded web page. Further, it feeds these links one

by one to the sanitizer module for XSS

vulnerability checking.

4. Text area: The text area module accepts texts

entered by the web user through previous modules

and maintains queue for all text area fields present

on the current web page.

Fig.4. System Architecture

5. XSS Notification: Once the XSS vulnerability is

detected in that webpage, the XSS Notification

module will generate a notification message for

the web user. For capturing the user’s attention we

92 Automated Client-side Sanitizer for Code Injection Attacks

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

are applying a red border to the XSS vulnerable

web page. These all notifications will be generated

automatically when a web user will access web

applications through the web browser.

6.3 Algorithm

Algorithm of the proposed architecture gives an exact

working scenario of the system. Input is text entered by

the web user or link provided by the web user and output

is notification from browser to the user about XSS

vulnerability.

Algorithm 1: DetectXSS

(1) Initialize user request

//Take input from web user and it will either text

area or link.

(2) Capture input fields

//Text area or link entered by user and forward

these fields to input analyzer.

(3) Analyze input fields

//categorization of the input fields into text area

and links

(4) Links or text area

If user enters link as input

Feed this link to sanitizer

Else

Feed text area to sanitizer

EndIf

(5) Sanitization

Process user entered input and generate message

for XSS notifier.

(6) XSS notifier

At last notify to the user whether the current web

page is vulnerable or not.

The user may request by giving input through the URL

address bar. The user may also input through text box or

by clicking on the link present on the web page or user

may enter text in text area fields present on the web page.

Once the request is initialized by web user, it will be fed

to the input capture module of the system. Further that

input will be analyzed through input analyzer. Input

analyzer will categorize inputs into the links and text area

fields. Further Sanitizer processes input fields and

forwards message to XSS notifier about the status of user

entered input.

VII. IMPLEMENTATION DETAILS

We have implemented a browser extension for

prevention of cross site scripting vulnerability at the

client-side. A total line of code is approximately 2200.

We have used Jetpack framework for implementation of

the system. JavaScript is the programming language used

for implementation. APIs [2] used in the system are tabs,

page-mod, page-worker and notifications. Tabs API is

used for checking currently loaded tab in the web browser.

Page-mod and page-worker API are used for running

scripts in the context of web pages and for creating

invisible pages and accessing its DOM.

VIII. RESULTS ANALYSIS

Our implemented system gives effective results for

prevention of cross-site scripting vulnerabilities. We

tested our system for the inputs given by a web user. If

the user provides normal input to the web application,

then our system will work normally. But if the user gave

executable scripts as normal input to the web application

then our system generates notification about vulnerable

status of web applications to the user.

8.1 Effectiveness

As we explained example, in motivation for web

browser that have url as:

when user will try to insert XSS vulnerable script in the

URL at the same time our implemented system will give

notification to the user about it’s vulnerable status. This

shows the effectiveness of our system. We have also

considered following example for the checking

effectiveness of our system.

Fig.5. Vulnerable web application before user input

Figure 5 shows web application that is vulnerable to

the cross-site scripting attacks. Initially, when user enters

a URL into the address bar it loads the web application

into web browser.

Figure 6 shows how our proposed system will protect

user from cross-site scripting. Initially the URL is loaded

and if the user tried to insert cross-site scripting

attackable scripts as an input to the web browser. It will

mark web page by red colored border for user attention.

http://public−firing−range.appspot.com/reflected/pa

rameter/body ?q=a

 Automated Client-side Sanitizer for Code Injection Attacks 93

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

Fig.6. Vulnerable web application after user input

Fig.7. Notification

Fig.8. Occurrence of the XSS String

and it will also create notification to the user about web

application’s vulnerable status as shown in Figure 7.

Notification to the user may be seen at the right-bottom

corner of the web browser or at the right-top corner of the

web browser.

Figure 8 explains the details about the exact location of

the XSS attackable script in the user input. We have used

Linux operating system for implementation of the system.

JavaScript is the programming language for developing

the system.

8.2 Performance Overhead

We checked performance of the system using Dromaeo

[1].

Table 1. Performance testing of our system

Test Names
Without Our

System (runs/s)
With Our

System (runs/s)

Arrays 1046.97 1107.37

Base 64 Encoding

and Decoding
1716.55

1611.21

Code Evaluation 594.74 497.75

Compute Bits in Byte 24375.40
24372.80

DOM Attributes 2787.35 3253.39

DOM Modification 385.14 389.73

DOM Traversal 508.86 515.66

Validate User Input 814.22 822.92

Above table summarizes performance of our

implemented system with a real world web browser.

8.3 Compatibility

We tested our approach with 100 real world web

applications. In our tested environment, it doesn’t affect

the working of real world web applications. None of our

tested web applications have affected, this shows

compatibility of the system.

IX. DISCUSSION

The user may give input to the web application through

two ways: Links and Text area. Considering these input

fields we have implemented our system. Once user gives

input to the web application that input will be examined

through the implemented system and final notification

may be generated on the basis of the vulnerable status of

the web application. This implemented system is limited

to the capture and analyze user inputs from the web user.

It is able to detect vulnerable scripts present in the system.

User may enter script in any scripting language so we

have considered this issue for implementation. Our

system may become more powerful by adding features

like Artificial Intelligence techniques to input capture

module and input detection module of the system. This

system may become a path for prevention of the all web

application vulnerabilities.

94 Automated Client-side Sanitizer for Code Injection Attacks

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

X. CONCLUSION

Existing solutions for web application vulnerabilities

are specific for particular vulnerability and applicable to

particular web applications. Our proposed system is the

state-of-the-art solution for the detection of the cross-site

scripting vulnerabilities among the web applications. In

specific our system is able to detect reflected cross-site

scripting as well as the stored cross-site scripting

vulnerabilities. The future scope of the proposed system

will be the all-in-one solution for all kinds of the web

application vulnerabilities. Another perspective of the

proposed system in future will be to focus on solutions

for making aware of web developer about secure

practices in web development. These secure practices will

make stronger security for web application and that will

be another solution for protecting web applications from

web vulnerabilities. self protection Our proposed system

may also use artificial intelligence algorithms to detect

web application vulnerabilities.

REFERENCES

[1] Dromaeo javascript performance testing. Available at

http://dromaeo.com/, JavaScript Performance Testing.

[2] Mozilla developer network. Available at

https://developer.mozilla.org/en-US/Add-ons, Mozilla.

[3] Mozilla firefox extensions. Available at https:

//addons.mozilla.org/en-US/firefox/extensions/, Mozilla

Firefox.

[4] New international project on web vulnerabilities.

Available at https://www.owasp.org/index.php, OWASP.

[5] Prevent xss with jsoup sanitizer. Available at

http://jsoup.org/cookbook/cleaning-html/whitelist-

sanitizer, JSOUP.

[6] Survey by cenzic inc. application vulnerability report..

Available at https://www.info-

pointsecurity.com/sites/default/files/cenzic-vulnerability-

report-2014.pdf, Vulnerability Report 2014.

[7] The xss sanitize package. Available at

https://hackage.haskell.org/package/xss-sanitize, The XSS

Sanitizer.

[8] Xss sanitizer plugin. Available at

https://grails.org/plugin/xss-sanitizer,XSS Sanitizer Plugin.

[9] Davide Canali, Marco Cova, Giovanni Vigna, and

Christopher Kruegel. Prophiler: A fast filter for the large-

scale detection of malicious web pages. In Proceedings of

the 20th International Conference on World Wide Web,

WWW ’11, pages 197–206, New York, NY, USA, 2011.

ACM.

[10] Vivek Chandra and Nidhi Saxena. Article: An improved

technique for web page classification in respect of domain

specific search. International Journal of Computer

Applications, 102(4):7–10, September 2014.

[11] Shuo Chen, Jose Meseguer, Ralf Sasse, Helen Wang, Yi

min Wang, Shuo Chen, Jos Meseguer, Ralf Sasse, Helen J.

Wang, and Yi min Wang. A systematic approach to

uncover gui logic flaws for web security, 2006.

[12] Marco Cova, Christopher Kruegel, and Giovanni Vigna.

Detection and analysis of drive-by-download attacks and

malicious javascript code. In Proceedings of the 19th

International Conference on World Wide Web, WWW ’10,

pages 281–290, New York, NY, USA, 2010. ACM.

[13] Laura Falk, Atul Prakash, and Kevin Borders. Analyzing

websites for user-visible security design flaws. In

Proceedings of the 4th Symposium on Usable Privacy and

Security, SOUPS ’08, pages 117–126, New York, NY,

USA, 2008. ACM.

[14] Matthew Finifter, Joel Weinberger, and Adam Barth.

Preventing capability leaks in secure javascript subsets. In

Proceedings of the Network and Distributed System

Security Symposium, NDSS 2010, San Diego, California,

USA, 28th February - 3rd March 2010, 2010.

[15] Dinei Florencio and Cormac Herley. A large-scale study

of web password habits. In Proceedings of the 16th

International Conference on World Wide Web, WWW ’07,

pages 657–666, New York, NY, USA, 2007. ACM.

[16] Mohamed Ghazouani, Sophia Faris, Hicham Medromi,

and Adil Sayouti. Article: Information security risk

assessment a practical approach with a mathematical

formulation of risk. International Journal of Computer

Applications, 103(8):36–42, October 2014.

[17] Stefan Kals, Engin Kirda, Christopher Kruegel, and

Nenad Jovanovic. Secubat: A web vulnerability scanner.

In Proceedings of the 15th International Conference on

World Wide Web, WWW ’06, pages 247–256, New York,

NY, USA, 2006. ACM.

[18] Navjot Kaur and Himanshu Aggarwal. Article: Web log

analysis for identifying the number of visitors and their

behavior to enhance the accessibility and usability of

website. International Journal of Computer Applications,

110(4):25–30, January 2015.

[19] M. V. Kishore, G. Pandit Samuel, N. Aditya Sundar, M.

Enayath Ali, and Y. Lalitha Varma. Article: A novel

methodology for secure communications and prevention

of forgery attacks. International Journal of Computer

Applications, 96(22):5– 12, June 2014.

[20] Anuradha K. Kudlikar and Meghana B. Nagori. Article:

Refinement in personalize web search system with

privacy protection. International Journal of Computer

Applications, 117(6):1–6, May 2015.

[21] Zeynab Liraki, Ali Harounabadi, and Javad Mirabedini.

Article: Predicting the users’ navigation patterns in web,

using weighted association rules and users’ navigation

information. International Journal of Computer

Applications, 110(12):16–21, January 2015.

[22] Laxmi Shanker Maurya and Anil Kumar Malviya.

Article:Web application reliability assessment using error

and workload data obtained from server error and access

logs. International Journal of Computer Applications,

97(15):6–9, July 2014.

[23] Smita Ranveer and Swapnaja Hiray. Article: Comparative

analysis of feature extraction methods of malware

detection. International Journal of Computer Applications,

120(5):1–7, June 2015.

[24] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A

symbolic string solver for vulnerability detection in web

applications. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’14, pages 1232–1243, New York, NY, USA, 2014.

ACM.

[25] Sonali Utsai and Ram B. Joshi. Article: Dos attack

reduction by using web service filter. International

Journal of Computer Applications, 105(14):4–9,

November 2014.

[26] Chuan Yue and Haining Wang. A measurement study of

insecure javascript practices on the web. ACM Trans. Web,

7(2):7:1–7:39, May 2013.

[27] Rui Zhao and Chuan Yue. All your browser-saved

passwords could belong to us: a security analysis and a

cloud-based new design. In Elisa Bertino, Ravi S. Sandhu,

Lujo Bauer, and Jaehong Park, editors, CODASPY, pages

 Automated Client-side Sanitizer for Code Injection Attacks 95

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 86-95

333–340. ACM, 2013.

[28] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str:

A z3-based string solver for web application analysis. In

Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, ESEC/FSE 2013,

pages 114–124, New York, NY, USA, 2013. ACM.

Authors’ Profiles

Dnyaneshwar K. Patil: Post-graduate

student for master degree for computer

engineering in Vishwakarma Institute of

Information Technology (VIIT, Pune of

SPPU University, interested in web security.

Dr. K. R. Patil: KAILAS PATIL eceived

the PhD in Computer Sci- ence, National

University of Singapore (NUS), Singapore,

in 2014. He is currently a Professor with the

Department of Computer Engineering at

Vishwakarma Institute of Information

Technology (VIIT), University of Pune,

India. He is a Mozilla Rep in India. His research interests

include information security, cloud security, and web security.

He also served as a reviewer in many SCI-index journals, other

journals, other conferences.

How to cite this paper: Dnyaneshwar K. Patil, Kailas R.

Patil,"Automated Client-side Sanitizer for Code Injection

Attacks", International Journal of Information Technology and

Computer Science(IJITCS), Vol.8, No.4, pp.86-95, 2016. DOI:

10.5815/ijitcs.2016.04.10

