
I.J. Information Technology and Computer Science, 2016, 4, 11-18
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.04.02

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Virtual Machine Monitor Indigenous Memory

Reclamation Technique

Muhammad Shams Ul Haq
Beijing Institute of technology, School of Computer science and Technology, Beijing, 10081, China

E-mail: shams_5@yahoo.com

Lejian Liao and Ma Lerong
Beijing Institute of technology, School of Computer science and Technology, Beijing, 10081, China

E-mail: {liaolj, malerong_bit}@bit.edu.cn

Abstract—Sandboxing is a mechanism to monitor and

control the execution of malicious or untrusted program.

Memory overhead incurred by sandbox solutions is one

of bottleneck for sandboxing most of applications in a

system. Memory reclamation techniques proposed for

traditional full virtualization do not suit sandbox

environment due to lack of full scale guest operating

system in sandbox. In this paper, we propose memory

reclamation technique for sandboxed applications. The

proposed technique indigenously works in virtual

machine monitor layer without installing any driver in

VMX non root mode and without new communication

channel with host kernel. Proposed Page reclamation

algorithm is a simple modified form of Least recently

used page reclamation and Working set page reclamation

algorithms. For efficiently collecting working set of

application, we use a hardware virtualization extension,

page Modification logging introduced by Intel. We

implemented proposed technique with one of open source

sandboxes to show effectiveness of proposed memory

reclamation method. Experimental results show that

proposed technique successfully reclaim up to 11%

memory from sandboxed applications with negligible

CPU overheads.

Index Terms—Sandbox, Library OS, Virtualization,

Memory Management, Memory reclamation.

I. INTRODUCTION

Virtualization has become an essential part of operating

system design ranging from traditional resource sharing

among operating systems to innovative designs for

particular problem solving such as process migration,

load balancing, process isolation, process sandbox,

privilege separation and prototype testing. One of the

main reasons, other than semantic isolation, for such

prevalence of virtualization in problem solving is

facilitation from hardware to efficiently perform

virtualization with less or no overheads depending on the

nature of task.

Among innovative and nonconventional use of

virtualization, recent past witnessed a good research

effort for process isolation and application sandboxing.

Many sandboxing schemes are proposed by research

community [1-6]. In sandboxing/isolation schemes,

processes are usually confined in Virtual Machine

equivalent execution environments [3-7] so that

malicious process cannot effect other processes and over

all execution of the system. Such schemes provide each

process with required functionality with in its own

address space in the form of APIs usually termed as

Library OS [6]. This set of APIs encapsulates the system

calls as high level library functions and provide narrow

and controlled interfacing with host kernel. This

provision of Library OS along with Virtual machine

Monitor (VMM) make it possible to sandbox unmodified

applications. Such sandboxing schemes are not only

practically efficient than full virtual machines but also

provide theoretically Virtual machine equivalent isolation.

However, a key drawback with these sandboxing

schemes is that sandboxed application's execution

demands high memory usage than native execution.

Sandbox run time needs its own memory allocation for

each instance of application execution. As for example,

when simple UNIX utility ls (with switch -R) is

sandboxed with dune [7], it incurs 124% memory

overhead as compared to native execution on UNIX. In

the same way gzip consumes 90.1% more memory when

it is sandboxed with dune. This overhead leads to

thrashing and system unresponsiveness when all or most

user applications need to be sandboxed.

Despite the fact that recently prices of memory

decrease significantly, still personal user Desktops and

laptops are not installed with huge memories. We

conducted survey about specifications of computers and

laptops used by students in our campus. We got feedback

from 1453 students. We found some interesting

observations about system specifications and level of user

satisfaction. According to survey, 49% students have

systems with 4 GB or less RAM. Whereas 53% students

prefer one specific freeware antivirus product for reason

that antivirus engine claim to use less memory than others.

This informal survey provides insights that end user is

not enjoying worry free amount of memory in their

systems. All software designs, specifically, security

solutions must address the problem of memory used by

product.

12 Virtual Machine Monitor Indigenous Memory Reclamation Technique

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Dynamic memory management techniques defined for

virtualization world such as memory overcommit [8],

hotplug [9] and KSM [10] does not suit for sandbox

systems. These techniques usually install a driver in guest

OS like ballooning [8] or help native kernel to take

memory back from virtual machines like KSM. In

sandboxes, installing driver or allowing other module to

share sandboxed memory can result in security problems.

In order to fully utilize the benefits of sandboxing, VMM

must have indigenous memory reclamation mechanism to

reclaim memory from sandboxed applications. VMM

based memory reclamation must be independent from

native kernel and guest operating system.

This paper describes a novel method to reclaim

memory from a process sandboxed by Virtual Machine

Monitor (VMM). The proposed method is based on Page

modification logging (PML) introduced by hardware

vendors to automatically log dirty Guest Physical

Addresses (GPAs). This presented work uses PML logs

as predictive active working set of the sandboxed process

and prioritize pages for eviction in this working set.

Majorly, this paper contributes following:

 Explains the process of transitioning an ELF

binary to virtual machine (also termed as process

container) by presenting Dune [7] way of

transition [section IV]. This section provides good

base to understand under the hood details of

process confinement.

 Propose memory reclamation algorithm, based on

Least Recently Used and Working Set algorithms

that works indigenously in VMM [section IV].

Proposed technique reclaimed memory that ranged

from 5% to 11% depending on execution nature of

application and work load. During experiments, 3

out of 5 times less thrashing occur with this

technique under huge memory stress generated by

memory stress tool.

 Implement a prototype for the proposed technique

as extension to Dune on Intel hardware. [Section

V].

 Provides a thorough Experimental Evaluation and

comparison with original dune [section VI]. The

proposed work incur minor CPU overheads in

range of 0.5% to 4.7%

II. RELATED WORK

Even though Dynamic memory management in

virtualization draws sufficient attraction of research

community, we will discuss two dynamic memory

management techniques used by VMWare products and

open source VMMs like KVM[14] and Xen[15]:

Ballooning or memory overcommit[8,16] and memory

hotplug[9]. VMware introduced the concept of memory

ballooning to force guest OS to release pages when native

server is under memory stress. Ballooning works by

adding driver to guest OS to cooperate with VMM. With

the help of balloon driver, VMM reclaim memory from

guest OS by inflating balloon. While on deflation of

balloon, VMM returns memory to guest OS. Although

ballooning has been widely used for memory reclamation

[17-19] but this technique does not suit for VMM meant

for sandboxing. Our proposed technique is quite different

from ballooning because we do not add any driver in

guest environment. Memory Hotplug is considered most

effective and last resort for reducing memory stress on

system. Memory hotplug refers to technique which is

used to add memory to an active system without any

downtime. Hotplug memory needs support from

hardware and kernel. The work presented in [9] adds

memory hotplug functionality to Linux kernel used by

Xen. We believe that memory hotplug does not interfere

with our proposed technique in case underlying

infrastructure support hotplug. In the same way KVM

uses KSM [10] for sharing similar anonymous pages.

KSM Linux module de-duplicates same pages used by

processes to reduce memory burden on the system. KSM

can be useful in sandbox where many instances of same

program such as web browsers are running in different

sandboxes. But security concerns need to be evaluated for

using KSM to reclaim memory from sandbox process.

Sandboxing and process containers represent

techniques used to monitor and control the execution of

the process. As our proposed memory reclamation

technique is used with process sandboxing design so here

we are also providing state of the art for process

sandboxing. Graphene proposed in [1] is one of such

sandbox techniques that confine multi process

applications. Graphene uses picoprocess [20] to

encapsulate each process with in host process. For

multiprocess constructs, graphene defines modified RPC

mechanism which make possible for processes of

application in same sandbox to communicate. Graphene

is different from dune design as Dune sandbox single

process applications. LXC [21] is a process container

shipped with Ubuntu 14.04 with powerful API to

configure process containers. LXC and its variants use

kernel features such as seccomp filters, apparmor, chroot

and Cgroups to create process sandbox. LXC uses kernel

features as opposed to dune that uses hardware

virtualization to confine application. Denali [3], Apiary

[2], Qube [4] and Virtuozzo containers [5] among other

proposed architectures restrict application behavior and

isolate application execution either on system level or

user level. Dune is different from all other architectures

due to user space applications direct execution on

privilege hardware.

Other than sandboxing applications, one direction of

research check reliability of application such as [25]. This

direction is different from sandboxing so we do not

include state of the art in software reliability techniques

PML has been used for traditional purposes of working

set determination in Xen [22] and KVM [14] but NFV

Hypervisors-KVM [23] use PML for out of box solution

for pacing live migration of virtual machines. We did not

witness use of PML for memory reclamation and

thrashing avoidance.

 Virtual Machine Monitor Indigenous Memory Reclamation Technique 13

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Fig.1. Hardware virtualization operation showing VMX root and VMX Non root modes with transition carried out by VMCS

III. HARDWARE VIRTUALIZATION EXTENSIONS

This section briefly explains the virtualization

extensions provided by Intel. We will discuss only Intel

hardware because Dune is implemented on Intel but

discussed extensions are conceptually same for AMD.

 Intel introduces VT-x technology [12] to ease and

simplify the implementation of VMM. VT-x divides the

processor into VMX root and VMX non root modes.

CPU performs transitions between VMX root and VMX

non root mode called VMX transitions. Both modes have

traditional four privilege rings. VMX root mode is used

for VMM or host operating system whereas VMX non

root is used for guest OS. In order to perform transitions

between modes, Intel introduces new instruction set.

New instructions VMLAUNCH and VMRESUME enters

the VMX non root mode and executes the guest OS. This

transition from root to non root mode is called VM entry.

On events that change system state, Hardware performs

VM exit to enter the root mode so that executive software,

either host OS or VMM, may take the control of the

system.

For facilitation of VMX transitions, Intel provides with

memory resident structure called Virtual Machine

Control Structure (VMCS) that is a configurable structure

to meet the individual requirements of different use cases.

VMCS is a CPU readable structure and holds the guest

state when CPU runs in root mode whereas holds host

state when CPU serve the guest OS. This load and store

of machine state is automatically performed by hardware.

The VMX transition through VMCS is shown in fig. 1 in

which transition is controlled by VMCS in both

directions, VM entry and VM Exit. In the same way

VMCS contains large amount of configuration options to

control VM exits. VMM can configure VMCS to cause

VM exit on execution of specific instructions such HLT

or on some events such as page faults.

In the same way Intel introduces extensions to

virtualize memory Management Unit (MMU) for second

level of translations through Extended Page Table (EPT).

In Intel based virtualization, every address translation

goes through two sets of page tables: guest page tables

managed by guest OS and EPT managed by VMM. Guest

page tables translate guest virtual address to guest

physical address whereas EPT performs translation of

guest physical address to host physical address. On VM

entry, CPU automatically stores the guest page table root

in %CR3 to allow guest OS to manage its local page

tables. But actual physical memory (host physical) is only

accessible through EPT.

Intel also introduced different technologies such as

virtual Processor Identifiers (VPIDs), EPT access and

dirty bits (A/D) and page modification loggings to gain

efficiency. VPIDs tag TLBs so that there is no need for

TLB invalidations on each VM Exit. In the same way, as

noted in [24], hardware managed TLB let VMM to cache

guest virtual to host physical address translations. This

cache escapes the two level address translation and hence

provide efficiency.

IV. DUNE DESIGN AND IMPLEMENTATION

Dune provides a process direct but save access to

privilege hardware such as page tables, rings and tagged

TLBs and implement three use cases, a privilege

separation utility wedge, garbage collector Boehm and

process confinement sandbox. Dune sandbox a process

by transitioning it into VMX non root ring 3. Dune make

use of Intel VMX and EPT to provide VM-equivalent

isolation needed to sandbox a process.

The released code base [11] also provides running

examples of sandbox, wedge and user firewall. Dune

make useof Intel VT-x and EPT for providing

applications with direct access to privileged hardware.

User Program

User Program User Program

VMCS VMCS VMCS

Ring 0 (kernel)

Ring 0 (kernel) Ring 0 (kernel)

VMX

non root

VMX
root

VM Exit

VM Entry

14 Virtual Machine Monitor Indigenous Memory Reclamation Technique

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Fig.2. Dune working a) shows function calls to initialize dune mode while b) shows steps for transition of binary into dune mode

In dune implementation there are two parts one is a

core kernel module that installs a driver for enabling VT-

x to extend kernel for VMM functionality while other

part, libdune, provides applications with required

functionality such as CPU(virtual), page table, tagged

TLBs, IDT and GDT to run in virtual machine (dune

mode). In order to confine the application dune

transitions the application in VMX non root ring 0. At the

moment dune only sandbox single process, single

threaded applications. Overall there are three modes for

an application to run on system having dune: 1) run as

native system 2) run in dune mode 3) run in sandbox. The

native application can run as there is no dune involved

while in dune mode application runs in VMX non root

ring 0 where an application has its own VCPUs and

memory.

In order to sandbox a process, dune transitions

unmodified ELF binary into VMX non root ring 3. For

transition binary in ring 3, two ELF loaders are used; first

minimal ELF loader securely loads second ELF loader,

ld-linux.so, into untrusted userspace. This second loader

loads the untrusted ELF in userspace without possibility

to affect the runtime sandbox. All actions from untrusted

binary that change privilege state of the system are

intercepted by sandbox runtime and handled by call back

handler, registered with libdune, to restrict and control

the execution behavior.

The implementation of VMX driver is based on KVM

but is simple as compared to KVM. Dune does not need

many functionalities implemented by KVM such as

nested virtualization, I/O virtualization or backward

compatibility. The dune module can easily be installed

with general UNIX commands insmod or modprobe.

The transition of a process into confined environment

starts by reading binary headers and making arrangement

for memory layouts. In start, text, data, heap, and stack

are provided, along with empty EPT table, for the

execution of the program. As application accesses the

memory, mapping is generated accordingly on page faults.

On need memory layout can be expanded up to full

address space.

Dune provides two functions, dune_enter and

dune_init, which consolidate dune entry for an

application. Fig. 1 shows important function calls made

by both functions to transition a process in dune mode. A

process must call dune_init before entering dune through

dune_enter. The function dune_init provides a process

with access to libdune. dune_init setup the environment

for Execution of process as independent entity. Fig. 1.a

shows that page table initialization, interrupt descriptor

table setup and memory mappings are performed through

dune_init. Dune uses two types of mappings, precise and

full. Precise mapping save memory by mapping only

actually used address space while full mappings map

complete address space of a process. After environment

setup, dune_enter (figure 1.b) transitions the process in

dune mode. This function create vcpu, creates GDT and

call an assembly routine, __dune_enter, to call

dune_enter ioctl to actually transition a process.

V. PROPOSED SYSTEM

On basis of limitations of library OSes [6] and problem

domain, we highlight following design goals for memory

reclamation techniques proposed in VMM based

sandboxes

i) Simple: the proposed technique must be simple and

does not introduce extra CPU overheads otherwise it will

become another source of overheads.

ii) Lightweight: it must be lightweight so that memory

gain, in all levels of memory stress, must be greater than

memory used by this technique.

iii) Indigenous: it must be independent from host and

guest operating systems. In VMM based sandboxes,

Library OS is a collapsed form of operating system which

provides minimum possible execution environment to

process. Under such restricted execution environment,

introducing some sort of driver is not a feasible solution.

It means it should not install any driver in guest and

should not dependent on any channel of communication

with host.

In order to devise a technique that meet above

established goals, we propose a technique that is modified

 Virtual Machine Monitor Indigenous Memory Reclamation Technique 15

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

form of Working set memory reclamation technique. The

proposed technique integrates working set memory

reclamation technique with LRU so that those pages from

working set of confined process that are least recently

used become preferable pages to be evicted. The working

set memory replacement depends on observation that

most frequently used construct of a program consists of a

small set of instructions. As added memory overheads

from isolated process is due to sandboxed environment

that provides a process with local library OS and

execution monitoring, we can confidently establish that

keeping most of these pages in memory results in less

page faults. But to make technique suitable for each level

of system memory stress, we need to further identify the

preferable candidate page for eviction. For maintaining

this preference we categorize the pages with approximate

time of use.

PML

Guest Virtual Address space

Guest Physical Address

space

Host Physical Address space

Write by

guest

Write by

CPU

App

Page

tables

Extend

ed Page

tables

1
2

3

4

Fig.3. Working Set Acquisition through PML

A. Acquisition of working set

In virtualization, working set of a guest mode software

is a set of dirty guest physical pages. Generally collecting

working set of application is a computationally expensive

task due to extra page faults and VMEXITS. But

fortunately, Intel recent processors shipped with

advanced virtualization extension, Page modification

logging [13] that automatically log dirty GPAs. Owing to

be hardware automatic facility, PML provides working

set with negligible overheads.

Before introducing PML, Intel introduces Accessed

and Dirty (A/D) bits for EPT so that memory manager

can check which pages are modified or accessed without

computationally expensive write protected method. As

these bits in EPT are set by processor automatically

without knowledge of VMM, collecting working set of

guest software become expensive. To reduce overheads

for working set collection, Intel added page modification

Log extension so that whenever guest OS access or

modify a page, CPU writes relevant GPA in buffer. Intel

provides in-memory buffer of 4K to store dirty GPAs.

Each entry needs 8 bytes, so Max. 512 dirty GPAs can be

in buffer. A VMEXIT occurs at the event of buffer full so

VMM can use this information on VMEXIT.

To further reduce overheads and to make possible

timely availability of working set, we collect logs on each

VMEXIT instead of buffer full event. One interesting

feature of PML is that CPU treats all type of accesses as

write access. Making all references as write gives actual

set of memory accessed between recent VM Entry and

present VMEXIT.

B. Memory Reclamation Algorithm

We implement PML log per VMCS to provide each

process with its own PML log. This implementation is

straightforward because dune also implements VMCS for

each process. The changes made in VMCS are discussed

in following paragraphs and implementation section.

In order to meet design goals, we aim to use working

set without extensive computation involved as calculating

exact page used time is not feasible. What we have in

hands is the set of pages which are accessed and modified

during execution of the application. As it is not necessary

for our paging scheme to evict pages on each VM Exit,

LRU principle is followed to sort pages according to time

of access so that least recently used pages become

favorite for page eviction. Our technique maintain a

priority stack (fig. 3) which is updated on each VM exit.

Whenever new log is available on VM Exit, paging

algorithm rearrange the stack so that recently used page

must be on top of the stack with least recently used pages

at bottom. On receiving PML log on VMEXIT, the stack

is filled with the GPAs that represent working set of

process. On next VM exit, stack is manipulated to keep

the recently used pages at the top of the stack while least

recently used pages at the bottom. The page reclamation

is from bottom to top so that least recently used pages

should be reclaimed. In this scenario, Re-arrangement of

stack on each VMEXIT is acceptable alternative to build

slow clock for rearrange time to reduce overheads

incurred. This page reclamation algorithm integrated with

hardware managed working set collection meets all

design goals: simple, Indigenous and lightweight.

Example: let’s say first PML log consists of 4 pages

{a,b,c,d}. Activation of Memory reclamation method at

this moment evicts pages in order of {d,c,b,a}. But let’s

say 2 new logs are available on next two VM exits with

pages (e,f,g) and (d,g,h). Fig. 4 shows the re-arrangement

of LRU stack.

VM exit 1 2 3

Working set a b c d e f g d g h

Stack

arrangement

a
b

c

d

e
f

g

a
b

c

d

d

g
h

e

f
a

b

c

Fig.4. Stack arrangement for page reclamation technique with three
working set instances on three VM Exits. VMEXIT 1 has first working

set, VMEXIT 2 has all new pages in working set and VM EXIT 3

contains some previous pages.

On availability of new PML log after VM Exit 2, all

newly modified pages (e,f,g) are added like FIFO (first In

First Out), making pages in working set favorite

candidate for eviction. But new PML log containing

pages that are already in stack, page {d and g} in VM

16 Virtual Machine Monitor Indigenous Memory Reclamation Technique

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Exit 3, requires rearrangement of stack so that newly

modified pages must be treated as most recently

referenced pages. In case of VM Exit 1 and VM Exit 2

page d is most likely to be paged out while after VM Exit

3, it is least likely to be paged.

Our VMM based paging mechanism has two phases:

one phase works in normal low memory condition while

other contingency phase works under very low memory

condition to avoid thrashing. The low memory and very

low memory conditions are assessed on the basis of

number of page faults generated by a process. VMM

Paging system maintain a counter to determine the

number of page faults for each process.

VI. IMPLEMENTATION

We implemented our work on 64 bits Ubuntu 14.04

with kernel version 3.13.0 on 64 bit machines with Intel

broadwell processor. We first develop dune bit by bit

starting with VT-x driver that extend host kernel with

VMM capabilities. After module successful

implementation, we implemented libdune a Library OS to

facilitate ELF binary to run its own Virtual Machine alike

environment. We then incorporated A/D bits in EPT and

implemented PML according to the instructions given in

[13]. In our implementation we keep PML logging all

time active. PML provides 512 entries of dirty GPAs

which are aligned to 4KBytes that means PML writes

effected page frame number. In order to refresh buffer on

writing of 512 frames, A VM Exit is scheduled in VMCS

on buffer full event. On each write in buffer, a counter,

16 bit PML index, initialized with 511 is decremented.

When PML index reaches zero buffer full event is

triggered. We also configure VMCS to flush PML buffer

on every VM Exit.

A. Integration with Dune

In modified dune, dune module detects the availability

of PML support in processor and enable PML logging for

process when detection routine returns true. Otherwise

dune fall back to its own execution flow. As dune creates

VCPU for each VMCS, we enable PML on creation of

each VCPU. In order to create VCPU with PML support,

Dune configure the VMCS to add PML index, base

address of buffer and turn on PML execution control. As

dune already uses VMCALL to perform system calls, we

use this interface to start dirty logging. Modified dune

now kicks start logging after put_cpu and vmx_run_cpu

so a process on entering guest mode (VMX non root

mode) by VMLAUNCH or VMRESUME start logging

GPN. In order to get PML buffers on VM Exit, modified

dune take back all VCPUs assigned to process which

automatically flush buffer. We collect Logs in VMM own

memory to release VMCS encoded buffer before storing

GPAs in list. Modified dune then sort the GPAs

according to algorithm defined so that on activation of

reclamation process, simple pop operation on list head

provide the paging routine with address to be purged out.

VII. EVALUATION

We evaluated our work for two factors: what is

memory gain and what is the overhead, in terms of CPU

time, with respect to original dune sandbox. We used

time utility to calculate RSS and execution times. We

performed first experiments by sandboxing own built

recursive-ls utility used on / directory which recursively

visits in each directly to list contents. Table 1 shows the

percentage of memory gain achieved when programs are

sandboxed with our proposed page eviction scheme.

Utility ls sandboxed with original dune uses 124% more

memory while sandboxed with our implementation, its

overhead reduces to 115%. It means our page reclamation

scheme successfully achieve 9.0% gain in memory with

only 0.18% CPU overhead. For gzip program we

compress and decompress 4.1 GB data consisting of

windows 7 installation package. Proposed technique

successfully reclaimed 11% memory used by sandboxed

gzip.

Table 1. Memory gain in percentage

 Memory gain

ls 9

gcc 11

gzip 7

lighttpd 5

One reason for more gain in gzip execution is due to its

more memory usage than ls and lighttpd which reclaims

only 5% memory.

Table 2 represents execution overheads of both original

dune sandbox (without PML eviction) and enhanced

sandbox (with PML eviction) in percentage. Our time

overheads are different than original paper. Different

configurations can be one reason. All programs ls, gzip

and gcc exhibit very less overheads for execution time; ls,

gzip and gcc incur execution 0.18%, 0.04% and 0.04%

overheads respectively.

Table 2. Execution time overheads in percentage

 Ls -R gzip gcc

Original Dune 4.7 0.89 0.43

Modified Dune 4.95 0.93 0.47

We repeated the experiment of sandboxing lightttpd

with and without our extension to benchmark its

execution by using apache ab benchmark. We used same

machine as server and client to get a static web page

hosted by Lighttpd. In our experiments, time latency of

dune w/o PML is 4.3% instead of 2% as stated in original

paper. This difference can be due to some configuration

differences in ab, Lighttpd and underlying system; and

network stack operational intricacies.

Table 3. lighttpd performance c=1 for latency and c=100 for throughput

 C=1 C=100 %decrease

Linux 5562 18172

Original Dune 5494 17231 5.1

Modified

Dune
5466 17144 0.5

 Virtual Machine Monitor Indigenous Memory Reclamation Technique 17

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

We did not stress on the network stack being on the

same machine. Table 3 shows the average requests per

second of 20 executions for each category with a gap of 4

minutes between each experiment. Table 3 shows 0.5%

reduction in throughput but for the same experiments

memory gain is 5%.

In order to check how proposed solution works under

huge memory pressure of more than 90% memory usage,

we tweak with memory stress tool to generate desired

load. Our method successfully avoided thrashing 3 out of

5 times where original dune failed to avoid. This

experiment also highlights rationale for proposing VMM

based memory reclamation where possible.

Discussion

The amount of memory successfully reclaimed from

isolated process suggests some useful insights. The

amount of memory reclaimed directly depends on the

footprint of process in memory. This direct relationship is

due to fact that Logs generated during execution will

mark more addresses for a process with high memory

footprint. As for example, memory reclaimed from gzip

is highest as its memory usage is high. The results of gcc

are interesting as its memory usage is high but reclaimed

memory is low with 7% gain. One of reason for such low

reclamation can be due to temporal locality and no of

page faults produced by application. In our experiments,

gcc has less temporal locality and high number of major

page faults under high memory stress. This irregular

behavior is worst case scenario for our proposed

technique. The applications that have regular pattern of

memory access (high temporal and spatial locality) get

more benefits from VMM based indigenous techniques.

In order to avoid thrashing, Linux uses swap

management in which some processes are removed from

memory and are stored on hard disk. But this thrashing

management, through swapping processes on disk, in

environment where processes are sandboxed by VMM is

not adequate. This inadequacy is due to semantic gap

between guest view of execution and native host OS. This

semantic gap results in eviction of pages blindly and

results in more page faults. For example in case of multi

process application, host may swap one process while

other process remains in the memory requesting services

from swapped process. Our scheme starts working even

before aggressive swapping start by host OS. VMM

based paging routine start eviction of pages more

aggressively but maintains reasonable eviction rate to

keep number of page faults under certain threshold.

VIII. CONCLUSION

In this paper, we try to open a new research direction

in process sandboxing by explaining that one of major

problems for not using sandboxing at large scale is

memory inefficiency of proposed techniques. We

proposed page reclamation technique which is based on

Intel hardware virtualization extension called Page

Modification logging. The proposed technique does not

require any driver in guest or any other new interface

with guest and host software to reclaim pages. Our

proposed technique efficiently reclaimed memory up to

11%. We believe that reclaimed memory through PML

logs can be increased by devising more sophisticated

page reclamation algorithm. One possible future direction,

to select page for eviction, can be assigning weights to

addresses as function of presence of addresses in number

of VM Exits and keeping history of page faults by

process.

REFERENCES

[1] Chia-Che Tsai , Kumar Saurabh Arora , Nehal Bandi ,

Bhushan Jain , William Jannen , Jitin John , Harry A.

Kalodner , Vrushali Kulkarni , Daniela Oliveira , Donald

E. Porter, Cooperation and security isolation of library

OSes for multi-process applications, Proceedings of the

Ninth European Conference on Computer Systems, April

14-16, 2014, Amsterdam, The Netherlands

[2] Potter S, Nieh J. Apiary: easy-to-use desktop application

fault containment on commodity operating systems. In:

USENIX Annual Technical Conference. Boston, MA,

USA: USENIX Association; 2010.

[3] Whitaker A, Shaw M, Gribble SD. Denali: lightweight

virtual machines for distributed and networked

applications. In: 5th USENIX Symposium on Operating

Systems Design and Implementation. Boston, MA, USA:

USENIX Association; 2002. p. 195-209

[4] Rutkowska J, Wojtczuk R. Invisible things lab, technical

report: Version 0.3 Qubes OS architecture; 2010

[5] Parallels Inc. Virtuozzo containers.

http://www.parallels.com/au/products/pvc46/

[6] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg,

Nadav Har’El, Don Marti, and Vlad Zolotarov, Sv—

optimizing the operating system for virtual machines. In

Proc. USENIX Annual Technical Conference (ATC)

(Philadelphia, PA, June 2014), USENIX Association, pp.

61–72.

[7] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D.

Mazi`eres, and C. Kozyrakis. Dune: safe user-level access

to privileged CPU features. In OSDI, pages 335–348,

2012

[8] Carl A. Waldspurger, Memory resource management in

VMware ESX server, ACM SIGOPS Operating Systems

Review, v.36 n.SI, Winter 2002

[doi>10.1145/844128.844146]

[9] D. Hansen, M. Kravetz, B. Christiansen, and M. Tolentino,

“Hotplug Memory and the Linux VM,” in Proc. Linux

Symp., July 2004, pp. 278–294.

[10] A. Arcangeli, I. Eidus, and C. Wright. Increasing memory

density by using ksm. In Proc. of Linux Symposium, July

2009

[11] http://dune.scs.stanford.edu/ (time accessed: 13th Jan

2016).

[12] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins,

A. Anderson,S. Bennett, A. Kagi, F. Leung, and L. Smith.

Intel Virtualization Technology. Computer, 38(5):48 – 56,

May 2005.

[13] http://www.intel.co.uk/content/dam/www/public/us/en/do

cuments/white-papers/page-modification-logging-vmm-

white-paper.pdf. (Time accessed: 13th Jan., 2016)

[14] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.

kvm: the Linux virtual machine monitor. In OLS '07: The

2007 Ottawa Linux Symposium, pages 225--230, July

2007.

[15] Paul Barham , Boris Dragovic , Keir Fraser , Steven

http://dune.scs.stanford.edu/
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf

18 Virtual Machine Monitor Indigenous Memory Reclamation Technique

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 11-18

Hand , Tim Harris , Alex Ho , Rolf Neugebauer, Ian Pratt ,

Andrew Warfield, Xen and the art of virtualization,

Proceedings of the nineteenth ACM symposium on

Operating systems principles, October 19-22, 2003,

Bolton Landing,NY,USA [doi>10.1145/945445.945462]

[16] Magenheimer, “Memory overcommit. . . without the

commitment,” in Proc. Xen Summit, Jun. 2008, pp. 1–3.

[17] A. Gordon, M. R Hines, D. D Silva, M. Ben-Yehuda, M.

Silva, and G. Lizarraga, “Ginkgo: Automated,

application-driven memory overcommitment for cloud

computing,” in Proc. RESoLVE: Runtime

Environm./Syst., Layering, Virtualized Environ.

Workshop, 2011.

[18] J. Heo, X. Zhu, P. Padala, and Z. Wang, “Memory

overbooking and dynamic control of Xen virtual machines

in consolidated environments,” in Proc. IFIP/IEEE Symp.

Integr. Manage, Jun. 2009, pp. 630–637.

[19] W. Zhao and Z. Wang, “Dynamic memory balancing for

virtual machines,” in Proc. ACM Int. Conf. Virtual

Execution Environ., Mar. 2009, pp. 21–30.

[20] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.

Leveraging legacy code to deploy desktop applications on

the web. In OSDI, 2008.

[21] https://linuxcontainers.org/lxc/introduction/ (time

accessed: 13th Jan., 2016)

[22] Memory hotplug for Xen, 2011, [Online]. Available:

https://lkml.org/lkml/2011/3/28/108 (time accessed 13th

jan., 2016)

[23] https://wiki.opnfv.org/nfv_hypervisors-kvm (time

accessed 13th jan., 2016)

[24] N. Khameesy and H. A. Mohamed “A Proposed

Virtualization Technique to Enhance IT Services” in I.J.

Information Technology and Computer Science.

2012,12,21-30

[25] M. Anjum, M.. A. Haque, N. Ahmad “Analysis and

Ranking of Software Reliability Models Based on

Weighted Criteria Value” in I.J. Information Technology

and Computer Science,2013,02,1-14

Authors’ Profiles

Muhammad Shams Ul Haq was born in

Pakistan in 1980. He got his Masters and

Bachelor degrees in Computer Science from

International Islamic University Islamabad

Pakistan in 2007 and 2004 respectively.

Since 2012, he has been pursuing his PhD

degree in School of Computer Science and

Technology, BIT, Beijing, China.

His research interests include virtualization, computer

security and dynamic memory management

Lejian Liao a professor in School of

Computer Science and Technology, Beijing

Institute of Technology. He acquired his PhD

degree in 1994 and Master degree in 1988 in

Chinese Academy of Sciences. His main

research areas include distributed Artificial

Intelligence and Web Intelligence. He

published, as author or co-author, more than 80 papers in

international conferences and journals, including some top

conferences such as IJCAI, AAAI,and SIGIR..

Ma Lerong is an Associate professor in

Yan'an University, China. Currently, he is

pursuing his PhD in school of computer

Science and Technology, BIT, Beijing,

China. His Research interests are in

Machine learning, data mining, and

information retrieval.

How to cite this paper: Muhammad Shams Ul Haq, Lejian

Liao, Ma Lerong,"Virtual Machine Monitor Indigenous

Memory Reclamation Technique", International Journal of

Information Technology and Computer Science(IJITCS), Vol.8,

No.4, pp.11-18, 2016. DOI: 10.5815/ijitcs.2016.04.02

https://linuxcontainers.org/lxc/introduction/
https://lkml.org/lkml/2011/3/28/108
https://wiki.opnfv.org/nfv

