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Abstract—A parallel approach for solving a large-scale 

Traveling Salesman Problem (TSP) is presented. The 

problem is solved in four stages by using the following 

sequence of procedures: decomposing the input set of 

points into two or more clusters, solving the TSP for each 

of these clusters to generate partial solutions, merging the 

partial solutions to create a complete initial solution M0, 

and finally optimizing this solution. Lin-Kernighan-

Helsgaun (LKH) algorithm is used to generate the partial 

solutions. The main goal of this research is to achieve 

speedup and good quality solutions by using parallel 

calculations. A clustering algorithm produces a set of 

small TSP problems that can be executed in parallel to 

generate partial solutions. Such solutions are merged to 

form a solution, M0, by applying the “Ring” method. A 

few optimization algorithms were proposed to improve 

the quality of M0 to generate a final solution Mf. The loss 

of quality of the solution by using the developed 

approach is negligible when compared to the existing 

best-known solutions but there is a significant 

improvement in the runtime with the developed approach. 

The minimum number of processors that are required to 

achieve the maximum speedup is equal to the number of 

clusters that are created. 

Index Terms—TSP, parallelization, combinatorial 

optimization, clustering. 

 

I.  INTRODUCTION 

Traveling Salesman Problem (TSP) is NP-hard 

therefore, for large-scale problems, it is challenging to 

produce optimal solutions in a reasonable time. Many 

problems in integrated circuit manufacturing, scheduling, 

analysis and synthesis of chemical structures, logistic 

problems, robotics, etc. can be modeled and solved as 

TSP problems. A lot of research has been done on using 

various techniques to generate good quality solutions that 

are close to the optimal [14, 15, 16, 20, 22, 39, 40, 43].  

Local heuristic approaches are one of the main 

approaches to obtain near optimal tours for large 

instances of TSP in a short time [28, 39]. Both discrete 

optimization [28, 29] as well as continuous optimization 

[30, 31, 32] methods are used to solve the Euclidean as 

well as non-Euclidean TSP.  

Many existing heuristic solutions for solving TSP with 

n points have O(n2) or higher complexity hence they are 

not efficient for solving large-scale TSPs. Lin-Kernighan 
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heuristic is based on “tour-improvement” – it accepts a 

given tour and modifies it to obtain an alternative tour of 

lesser cost [20]. Chained Lin-Kernighan heuristic 

improves an existing solution and it overcomes some 

drawbacks in local optimization algorithms [2]. 

Applegate et al. [1] have calculated the optimal solution 

for a 85,900-points TSP - the largest problem that is 

solved optimally until now. This experiment required 

nearly 136 years of CPU time. Well-known test-cases for 

large-scale TSP problems contain up to 107 points [24] 

but, until now, there are no optimal solutions found for 

such problems. Interesting results were achieved in the 

challenge usa115475 problem, started by Cook, that has 

115,475 points [25]. This large-scale problem started by 

Cook was solved independently by Clarist, Helsgaun, and 

Nagata [26]. Although the tour length of the solutions 

presented by these three researchers is exactly the same 

and is equal to 6,204,999, the three tours are mutually 

different. This problem inspired us to find optimal 

solutions for such large-scale problems. Using the 

heuristic presented in this research, we generated a 

solution with length 6,205,118, which is 0.0019% worse 

than the solution presented independently by Clarist, 

Helsgaun, and Nagata. 

There have been a number of studies of human 

performance on the TSP [33, 34, 35, 36, 37, 38]. It is 

quite certain that human subjects do not search the whole 

or even substantial parts of the problem space when 

solving the combinatorial optimization problems because 

of memory and cognitive processing limitations, in spite 

of massive parallel processing of brain. This means that 

human subject might be using a kind of abstraction of 

data in solving the TSP. Many researchers have shown 

that humans produce close-to-optimal solutions to TSP in 

a time that is (on average) proportional to the number of 

cities [34, 35]. Note that the TSP instances were small 

(less than 150 cities) when experimenting with human 

subjects.  Motivated by the human vision system, more 

specifically the vision fovea, the authors in [14, 22, 35, 

38] used hierarchical representation (pyramid) to achieve 

abstraction of the data (cities). The main processes in 

obtaining a hierarchical model are clustering methods 

using merging or division principles [41]. For example, 

the cities are merged into bigger and bigger modes (called 

clusters), then an initial tour solution on the modes is 

produced [14]. A splitting strategy could be followed as 

well. The whole data space is split over and over again 

into cells of cities, creating modes [22].  Afterward, a 

refinement on this initial solution is done on modes, 

mimicking a human fovea, until the tour contains all the 

cities, producing an approximate solution for the TSP. 

This strategy is in fact a divide-and-conquer strategy, 

which seems to be plausible, taking the limiting 

processing power and space limitation of human brain.  

Some TSP algorithms can be executed in parallel by 

decomposing the given set of points into clusters [4, 5, 6, 

7, 8]. Bazylevych et al. [7] have proposed a “Ring” 

method that merges the TSP solutions obtained from 

different clusters into a complete initial solution. The goal 

of the current research is to reduce the computing time by 

using a large number of parallel processors.  The 

maximum speedup was achieved when the number of 

processors is equal to the number of clusters into which 

the given set of points is divided. The current research is 

an extension to the work of Bazylevych et al. [8] that 

used a single processor. In the current research, the 

experiments are conducted on a distributed system that 

consists of many processors (a maximum of 64 

processors) running in parallel. 

The rest of the paper is organized as follows. Section 2 

focuses on the problem formulation. Section 3 describes 

the parallel ring method, including the decomposition of 

given points into clusters, solving the TSP for each such 

cluster to generate partial solutions, merging the partial 

solutions to generate a complete initial solution, and 

optimizing the complete initial solution. Implementation 

and experimental results are presented in Sections 4 and 5 

respectively. Finally, conclusions are presented in Section 

6. 

 

II.  PROBLEM FORMULATION 

Given a set P = {p1, p2, …, pN} of n points that are 

described by their coordinates pi = (xi, yi),  i = 1 to n and 

the Euclidean distance function dist: P×P → ℝ  that 

defines the distance between any two points then the 

problem is to find out a closed route M, with minimal 

length L, that starts from a point and visits each and every 

point only once and returns back to the starting point.  

If dist(pi, pj) = dist(pj, pi) then this problem is 

symmetric else it is asymmetric. The problem considered 

in this research is of symmetric type.  The problem is a 

kind of Hamilton cycle problem – finding a cycle in an 

undirected graph that visits each vertex exactly once and 

have a minimal length. The main goal of the current 

research is to develop a methodology to find a high 

quality shortest solution by using a large number of 

parallel processors. 

 

III.  THE PARALLEL RING METHOD 

A.  Main Stages 

The ring method presented in this research is used to 

solve TSPs with a very large number of points. Currently, 

the best approaches for solving TSP are Concorde [9] and 

LKH heuristics [16]. Non parallel and non distributed 

algorithms can be applied directly for small-scale TSPs. 

Distributed and decomposition approaches to solve TSPs 

were described in [12, 13, 17, 18, 19, 23].  

The developed parallel approach for solving a large-

scale TSP consists of the following stages:  

 

1. Decomposing the set, P, of given points into 

clusters along with constrains on the number of 

points in each cluster. 

2. Finding the partial TSP solutions for each of these 

clusters independently and in parallel.  

3. Merging the partial solutions to get a complete 
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initial solution Mo. 

4. Optimizing Mo to get the final solution Mf. 

 

The input set of points, P, is divided into two or more 

clusters (subsets) with each of these clusters contain a 

limited number of points. Several decomposition 

algorithms are investigated to divide P into clusters [6, 7, 

8]. The maximum number of points in each cluster is 

n0max. The decomposition of P into different clusters can 

be done very fast without using parallel algorithms. As 

shown in the later sections of this research (see Table 1), 

if P contains 106 points then it requires around 15 

seconds time for the decomposition using sequential 

algorithms. That is why we did not develop parallel 

algorithms for decomposition, although it is possible. 

Great reduction in the overall computational time is 

achieved during the second and the third stages i.e., while 

finding the partial TSP solutions for each of the clusters 

and while merging them. To find the partial TSP 

solutions for each of the clusters, we used LKH software 

[16]. The result of the second stage is the partial TSP 

solutions for each of the clusters. The sum of the length 

of all these partial TSP solutions is represented as MƩps.  

The runtime of the complete initial solution Mo (i.e., 

the runtime of the TSP solution for the entire P) of the 

developed approach is equal to T = tc + tps + tms, where tc 

is the time to divide the set P into clusters, tps is the time 

required to find all the partial TSP solutions and tms is the 

time required to merge these partial solutions. The 

maximum degree of parallelism (i.e., the maximum 

number of processors that can be used in parallel) for 

finding the partial TSP solutions is equal to the total 

number of clusters: however, in this research, the 

maximum number of processors is not used: only a 

maximum of 64 processors are used in parallel. The 

duration of finding the partial TSP solutions in parallel is 

tps ≈ t0, where t0 is the time to solve the TSP in a single 

cluster that has n0max points. The partial solutions are 

merged to form a complete initial solution Mo. The 

merging process uses adjacent clusters. All the clusters 

together form a planar graph, if the border between any 

two adjacent clusters is considered as an edge and the 

ends of those edges are considered as vertices of the 

planar graph. Three or more different borders meet at 

every vertex. The chromatic number of that planar graph 

is 4, according to the four color theorem [3]. This number 

determines the number of steps needed to find, in parallel, 

the complete initial solution at the third stage. More 

details on this matter are provided in Section 3C. 

The number of groups of vertices of the planar graph, 

when each group painted in a different color, shows the 

maximum degree of parallelism achieved while merging 

the partial solutions. If the number of points in the ring is 

same as that of a cluster then the time for finding the TSP 

solution in one ring is approximately equal to the time for 

finding a partial TSP solution for the cluster. More 

precisely, the time for finding the TSP solution in one 

ring is little bit more than that of finding a partial TSP 

solution for the cluster because there are additional 

operations such as finding the temporary route segments 

(see Section 3C for more details). The time required to 

perform these additional operations is not much when 

compared to the time for finding the TSP solution within 

the ring. 

In general, tms > 4 . t0. This is because a pair of rings 

may overlap even if they are not adjacent (see Section 3C 

for more details) hence such rings must be considered 

sequentially but not in parallel to find their TSP solutions. 

In that case, the number of steps required to join the 

clusters (i.e., Stage 3 of the developed approach) will be 

more than 4, where 4 is the chromatic number of the 

created planar graph. 

Based on the experimental results, tc << t0. For 

example, for Mona Lisa test-case [21] with 100,000 

points, tc ≈ 1.5 seconds and t0 = 956 seconds. The runtime 

for the complete solution T > tc + t0 + 4 . t0. More 

precisely, T > 5 . t0. 

The maximum speedup for solving the entire TSP was 

achieved when the number of available processors is 

equal to the total number of clusters formed. Some 

procedures for optimization of the complete solution 

(Stage 4) can also be performed in parallel. The main 

restriction for the optimization is that the local 

optimization areas (Section 3D contains more details 

about the local optimization areas), where parallel 

optimization is performed, should not overlap with each 

other and different optimization algorithms must be 

applied successively.  

The speedup, g, of the developed approach is: 
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where T(n) is the runtime to solve the entire TSP without 

decomposition, k is the total number of clusters formed, n 

is the total number of points in P, and  t0 = T(n0max) is the 

runtime to solve TSP in a cluster that contains n0max = n / 

k points. 

Consider a TSP algorithm that has k clusters and has 

time complexity O(nm), where m is a nonnegative integer, 

for a data set with n points. The speedup g that can be 

achieved by the developed decomposition approach, 

when compared to the considered TSP algorithm is: 
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The minimum number of processors required to 

achieve the maximum speedup is determined by the 

number, k, of clusters that are created. Because n0max << 

n and k = n / n0max, a significant gain in the runtime is 

achieved while obtaining the complete solution in parallel. 

B.  Decomposition 

During the first stage of TSP solution process, the 

input set of points, P, is divided into clusters. The 
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Delaunay triangulation [10, 42] is applied on P. The 

result is a set of triangular faces. By having Delaunay 

triangulation, no element of P will be inside the 

circumcircle of any triangle. The total length of Delaunay 

triangulation edges is minimal. Only the edges of the 

Delaunay triangulation are considered while finding the 

solution (i.e., while dividing the points into clusters). The 

algorithm for clustering consists of the following main 

steps: take one triangle from the center of the surface and 

consider its points as a first fragment of the first cluster; 

create the new cluster around the current fragment by 

adding new triangles in every next front (step) of the 

equal wave propagation from the current fragment by 

triangles in Delaunay triangulation that are adjacent to the 

triangles of previous front or by successively adding new 

triangles having the smallest area in each step; stop 

building the current cluster if the number of points in it is 

“close” to the maximum number n0max; take one of the 

adjacent triangles of the already created clusters and 

consider it as the first fragment of new cluster and create 

if there are more free triangles available; recursively 

repeat this operation; end the clustering process if there 

are no more free triangles available; search for all small 

clusters that have less than n0min points, merge such two 

adjacent clusters together, or with a neighboring smallest 

cluster even if the merged cluster has more than n0max 

points.      

In Fig. 1, the set P has 160,000 points, the number of 

clusters is 156, the number of clusters after merging the 

smallest clusters is 135, approximate number of points in 

each cluster is 1000, and the lowest number of points in a 

cluster is 800.  

 

 
       

(a)                  

 

    
(b)                                                      (c) 

Fig.1. Pareja160K (TSP Art [23]) is in (a). Decomposition by using 

equal wave propagation from the current fragment is shown in (b). 
Successive addition of new triangles is shown in (c).  

Pareja160K (TSP Art [24]) is shown in Fig. 1(a). Its 

decomposition by using equal wave propagation from the 

current fragment is shown in Fig. 1(b). The result by 

successively adding new triangles (having the smallest 

area) in every step is shown in Fig. 1(c). 

C.  Finding and merging the partial solutions 

In the second stage, separate TSP solutions are found 

for each cluster. These solutions are merged together in 

the third stage to create an initial solution Mo for the 

whole problem. Fig. 2 contains the partial TSP solutions 

for some pieces of the Vangogh test-case. In the second 

stage, each partial solution can be found in parallel, as the 

calculations for finding the partial solutions are 

independent of each other. 

The ring method [7, 8] is used to merge the partial 

solutions into one complete initial solution Mo. The 

process consists of the following steps (Fig. 3):  

 

1. Build an initial ring: Randomly select a cluster. 

The border of this cluster is created by the points 

that belong to the border triangles’ edges of this 

cluster (see Fig. 4). Every border edge has two 

incident triangles, one is internal and the other one 

is external to the cluster. The points of these 

triangles create an initial ring. These triangles are 

considered as the first front (step) for wave 

propagation. Every next front of wave propagation 

is performed by adding new points, from the 

adjacent triangles, to the current ring’s fragment. 

 

 
(a)                                                       (b) 

Fig.2. Pieces of Vangogh test-case (Fig. a) and the partial solutions for 
these pieces (Fig. b). 

2. Build the full ring: It consists of all the points that 

are obtained by wave propagation from the initial 

ring to a given number rin of internal triangles and 

a given number rout of external triangles. If the 

number rin is large enough, the final ring covers 

the entire cluster. The number of steps that needs 

to be performed for wave propagation is a 

parameter of the algorithm and this parameter 

depends on the number of points that must belong 

(approximately) to the ring. The ring creates 

overlapping zone that consists some points of the 

cluster that is currently considered (could be full 

but not necessarily) and some points of all the 

adjacent clusters. The number of wave propagation 

steps that needs to be performed in the internal and 

external cluster zones of the ring could be different. 



 A Parallel Ring Method for Solving a Large-scale Traveling Salesman Problem 5 

Copyright © 2016 MECS                                              I.J. Information Technology and Computer Science, 2016, 5, 1-12 

3. Replace all the pieces of routes that belong to the 

ring’s outside zones (external and internal) by 

temporary, fixed, and single edges having zero 

length. Let us call these temporary, fixed, and 

single edges as “temporary route segments”. 

4. Solve the TSP in the ring, by considering all its 

points in the ring and the temporary route 

segments (formed in Step 3) by applying the 

chosen TSP algorithm.  

5. Replace the temporary route segments by the real 

route pieces that have been removed in Step 3. 

6. Repeat all the previous steps for all other clusters 

that are not yet considered.   

 
Algorithm: Merging the partial solutions. 

Input data: Set of partial solutions, ring’s internal depth rin, 

ring’s external depth rout, and base TSP algorithm. 

Output: Complete initial solution M0. 

For each cluster 

1. Create the internal area of the ring using wave propagation, 
from the cluster’s border, on rin triangles.  

2. Create the external area of the ring using wave propagation, 
from the cluster’s border, on rout triangles. 

3. Replace all the rout segments, which are outside of the ring, 

by temporary segments. 
4. Find a solution for the ring using a base TSP algorithm by 

considering the temporary route segments. 
5. Replace the temporary route segments by the real route 

pieces and produce a complete initial solution M0. 

Fig.3. Algorithm for merging partial solutions. 

  

Fig.4. Clusters merging zone – “Ring”.  

For parallel implementation, in Step 1, all the clusters 

whose rings do not overlap with each other will be 

considered simultaneously. The number of such steps is 

more than 4 as the chromatic number of a planar graph is 

4. As a result, we receive one complete initial solution M0 

that passes through all the points of P. 

D.  Optimization of the solution 

The initial solution M0 requires further optimization. It 

can be achieved by reducing the length of the route in the 

local optimization areas (LOA). The LOA consists of a 

small number of nearest points where there is a 

possibility of finding a better TSP (i.e., revising M0). The 

LOA could be in the form of a circle, rectangle, or 

another kind of area. If better pieces of the route are 

found in the LOA then the existing segments of the route 

are replaced by the corresponding better ones. 

To improve the initial solution, M0, the entire surface 

(all points of set P) should be covered by such LOAs and 

the adjacent LOAs must overlap with each other. The 

quality of the final solution depends on the following 

parameters of the algorithm: the size (number of points) 

nsa in the LOA and the size of the overlapping areas noa 

between LOAs. Increasing these sizes will improve the 

quality of the solution but it will increase the runtime. 

Some tradeoff must be made between these sizes. We 

proposed several methods to cover the entire surface by 

LOAs to improve the quality of the initial solution: 

 

1. SCB - by scanning along the cluster’s border with 

LOAs (Fig. 5). The centers ci and ci+1 of the LOAs 

are at the cluster’s border points. The points in the 

LOA are determined by wave propagation around 

its center with triangles. The border areas of all 

clusters must be considered. 
 

Fig.5. Scanning by LOA along the cluster border (SCB) – one step. 

2. SR - by scanning along the route (i.e., overall 

solution) for LOAs (Fig. 6). The centers ci and ci+1 

of LOAs are on the points of the route. The points 

in a LOA are determined by wave propagation 

around its center. 

 

 

Fig.6. Scanning by LOA along the route (SR) – one step. 

3. SGA - by scanning over the whole surface by 

given geometrical LOAs such as rectangles (Fig. 7) 

or other. All the points of every LOA are 

considered. Some scanning strategy (i.e., the order 

of sequential steps), for example, horizontal, 

vertical, zigzag, or spiral, is chosen for this 

purpose. 

Si

Foa 
Si+1

Cluster border

ci

ci+1
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a

b

a

b

a/2

a

b
b/2

a

b

a/2

b/2

 

Fig.7. Scanning by rectangle LOA (a x b, shaded) over the whole 
surface (SGA) with shifting for every next sequential step in a/2 in 

horizontal and b/2 in vertical with 50% of overlapping. 

4. SCZ - by considering the specific critical zones 

that consist of a given number of neighboring 

points of three or more nearest (adjacent) initially 

created clusters (Fig. 8). 

 

Cluster 

border

Adjacent

clusters

 

Fig.8. Optimization areas (shaded) for specific critical zones (SCZ). 

For the first three strategies, optimization is performed 

by scanning the entire surface with LOAs. The 

parameters for these strategies are:  

 

1. Size, nsa, of LOA (i.e. the number of points). 

2. Size, noa, of the overlapping area Fsa (i.e., the 

number of common points or the % of cluster’s 

points that are common) between adjacent Si and 

Si+1 LOAs used by the sequential steps of the 

scanning process. In addition, the distance (i.e., 

number of points in the route) between the centers 

of the considered neighboring LOAs can be used, 

specifically for SCB and SR methods. 

3. Basic algorithm, for example LKH [16]. 

 

Based on the experimental results obtained, it is 

appropriate to choose nsa between 800-1200 points, in 

order to obtain high quality solutions with a reasonable 

runtime. Experimental results show that if noa is within 

30-50% range of nsa then we get good quality results.  

Parallel algorithms can be used to optimize a few 

 

different non-adjacent LOAs whose full scanning areas 

do not overlap with each other. The new solution is 

accepted for the given area if the route’s length is less 

than that of the existing solution. The number of subsets 

of clusters a planar graph that can be considered 

independently (i.e., to apply the optimization on LOAs in 

parallel) is not less than 4 – the chromatic number of the 

planar graph whose vertices represent the clusters and the 

edges join such vertices whose full scanning areas 

overlap each other. For all clusters in each subset, the 

TSP can be performed simultaneously.  

The experimental results show that the quality of 

optimization increases with the extension of the scanning 

and overlapping areas. However it increases the runtime. 

An optimal trade-off has to be found. It is suggested to 

repeat the scanning by changing the parameters and the 

scanning order (for example, scan in anti-clockwise 

direction rather than clockwise). Experimental results 

also show that an improvement is achieved through no 

more than 3-4 full cycles of optimization by using the 

same scanning parameters. 

Specific critical surface zones (Fig. 8) include 3 or 

more adjacent clusters. These zones require additional 

improvements. For optimization in such zones, we use 

enlarged LOAs with 1200-1500 points or more.  

Unfortunately, different optimization strategies cannot 

be executed in parallel because each optimization strategy 

requires the whole set of points P. However, some 

procedures in a single optimization strategy that don’t 

overlap with each other can be executed in parallel.  

 

IV.  SOFTWARE FOR THE RING METHOD 

Parallel implementation requires efficient 

communications between the processors. In our 

experiments, Message Passing Interface was used for 

communications between the computer nodes. It allows 

scaling of TSP solver to a distributed system without 

major changes to the software architecture. The main 

stages of parallelization using different CPUs are shown 

in Fig. 9. 

One CPU (CPU1) divides the given set of points into k 

different clusters. Each cluster is then assigned to a 

separate CPU. Partial TSP solutions are simultaneously 

produced from each of the clusters. These partial 

solutions are merged to form an initial and complete 

solution M0. A final optimized solution Mf  is developed 

from this solution. In the last stage, we use several 

optimization algorithms to produce a good quality final 

solution Mf . 

 

V.  EXPERIMENTAL RESULTS 

The developed parallel ring method was investigated in 

terms of the quality of the solution and runtime. The TSP 

test-cases were taken from [11, 24, 25]. Experiments 

were conducted on a distributed system that contains Intel 

Xeon E5640 @ 2.67 GHZ CPU processors. 
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Fig.9. Main stages of Ring method. 

The following parameters were used for merging the 

partial solutions:  

 

 the number of points in cluster nsa = 900; 

 the internal depth of the ring rin = 9 triangles (i.e., 

the ring covered 9 Delaunay triangles when 

propagating the wave from inside to the given 

cluster); 

 the external depth of the ring rout = 24 triangles 

(i.e., the ring covered 24 Delaunay triangles when 

propagating the wave from outside to the given 

cluster). 

 

The relations between different parameters of the 

clustering process, i.e., triangulation time tt, number of 

points in clusters n0, runtime tc, and the number of 

clusters k, are shown in Table 1. Triangulation time tt 

takes approximately 10-15% of the entire decomposition 

process.  

Table 2 shows the dependency of the sum of partial 

solutions, MƩps, on the size of the clusters (that are used 

for decomposition) for Mona-lisa test-case [21]. The table 

shows that an increment in the number of points in the 

clusters gives better results but it needs more runtime (the 

best-known length is 5757191).  

Table 3 shows the comparison between the tour lengths 

before merging (sum of partial solutions MƩps) and after 

merging (the initial solution M0) for some tests from TSP 

Art library [24]. The average quality improvement is 

approximately 1%. Better results (≈5%) were obtained 

for test usa115475 because we used larger inside and 

outside zones.  

The dependencies between the duration, speedup, and 

efficiency (the ratio of speedup to the number of cores) of 

finding the partial solutions in parallel are shown in Fig. 

10 (test E10M.0). The duration and efficiency are going 

down but speedup is increasing with the number of cores, 

but not proportionally, because the communication 

between the cores is increasing. 

Table 1. Dependencies in the decomposition process 

Test-case 
Number  

of points n 

Triangulation 

 time (sec) 

Number  

of points n0 
 in cluster 

Runtime tc 

(sec) 

Number of 

clusters k 

Mona-L. 

100k 

100000 0.290 1000 1.505 96 

  2000 2.471 48 

Vang. 

120k 

120000 0.357 1000 1.803 117 

  2000 2.961 58 

Venus 

140k 

140000 0.422 1000 2.094 137 

  2000 3.471 68 

pareja 

160k 

160000 0.480 1000 2.387 157 

  2000 3.996 77 

courbet 

180k 

180000 0.541 1000 2.679 177 

  2000 4.454 88 

earring 

200k 

200000 0.602 1000 2.960 198 

  2000 4.939 96 

sra 

104815 

104815 0.198 1000 1.379 100 

  2000 2.351 51 

ara 

238025 

238025 0.492 1000 3.131 232 

  2000 5.359 116 

lra 

498378 

498378 1.090 1000 6.820 475 

  2000 11.51 238 

E1M.0 
106 3.799 1000 15.03 987 

  2000 24.80 493 

E10M.0 
107 74.41 1000 420.9 9906 

  2000 566.6 4961 
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Table 2. Dependency of Partial Solutions Sum MƩps from Cluster Sizes 
for Mona-Lisa Test Case [21]  

n 0 k tps  (sec) MƩps  

500 
800 

1100 

1400 
1700 

197 
122 

89 

69 
57 

808 
3104 

3560 

4408 
4144 

5856165 
5844204 

5830572 

5816598 
5811076 

 
We tried to optimize the solution by scanning along the 

cluster border several times with the same values for the 

parameters. The experiment is aimed to find the number 

of iterations when further optimizations with the same 

parameters did not give further improvement. Fig. 11 

shows the results with the test usa115475 [25] when 900 

points were taken in LOAs with a distance of 54 points 

between them. As we can see, the fifth and further 

iterations did not give any further improvement in the 

quality of the solution. Therefore, to improve the quality 

of the solution further, the best way is to increase the size 

of LOA and decrease the distance between the LOAs 

(increasing the overlapping zone) and use different 

optimization algorithms. 

Table 3. Comparison of Tour Lengths before and after Merging for Tests from TSP Art Library [24] 

Test-case 
MƩps (sum  of 

 partial 

solutions) 

Number  

of points  

in cluster 
n0 

Inside  
depth 

rin 

Outside 

depth rout 

M0 
(initial 

solution)  

% of 

reducing the 

ledge after 
merging 

Mona- 

lisa 
100K 

5818357 2500 

3 6 5763878 0.9452 

6 6 5761695 0.9834 

9 6 5760264 1.0085 

Vangogh 

120K 
6624291 1600 

3 6 6551963 1.1039 

6 6 6549447 1.1428 

9 6 6548668 1.1548 

Venus 
140K 

6889593 1600 

3 6 6819620 1.0261 

6 6 6816208 1.0766 

9 6 6814392 1.1036 

Pareja 

160K 
7699030 1600 

3 6 7630644 0.8962 

6 6 7626749 0.9477 

9 6 7624413 0.9787 

Courbet 

180K 
7989912 1600 

3 6 7902880 1.1013 

6 6 7899127 1.1493 

9 6 7896762 1.1796 

Earring 
200K 

8256382 1600 

3 6 8184591 0.8771 

6 6 8180071 0.9329 

9 6 8177299 0.9671 

Usa 
115475 

6519843 2000 

10 10 6216748 4.8755 

10 15 6213891 4.9237 

10 20 6210871 4.9747 

10 25 6209467 4.9984 

 

 

Fig.10. Dependencies between duration, speedup, efficiency, and 
number of cores for finding the partial solutions in parallel for test 

E10M.0. 

To improve the results, we investigated the possibility 

of sequential use of several optimization algorithms. 

Optimization by scanning around the cluster borders 

 

 

 

(algorithm SCB, 9 steps 1-9) was performed during the 

first phase by taking the merged solution M0 = 6294001 

as an initial solution (Fig. 12 and Table 4). Specific 

critical zones (algorithm SCZ, 8 steps 10-17) were 

considered for the second phase. 

 

 

Fig.11. Optimization process with the same parameters for the test 

usa115475. 
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Table 4. Two phases of sequential optimization on test-case usa115475 

# of 
step 

noa noa Length 
Improvement 

(%) 

Total 

improvement  

(%) 

Runtime 
(min) 

Total runtime 
(min) 

PHASE 1. Sequential optimization by the scanning along the cluster border  

0 
M0 = 6294001 

 

1 700 38 6235901 0.932 0.932 19 19 

2 725 40 6224553 0.182 1.116 18 37 

3 750 42 6218796 0.093 1.209 17 54 

4 775 44 6215947 0.046 1.256 14 68 

5 800 46 6213997 0.031 1.287 16 84 

6 825 48 6211757 0.036 1.324 17 101 

7 850 50 6210921 0.013 1.338 17 118 

8 875 52 6210578 0.006 1.343 18 136 

9 900 54 6209838 0.012 1.355 20 156 

PHASE 2. Continuation of sequential optimization by considering the critical zones 

10 925  6208202 0.026 0.026 42 198 

11 950  6207820 0.006 0.033 44 242 

12 975  6207647 0.003 0.035 43 285 

13 1000  6207549 0.002 0.037 46 331 

14 1025  6207514 0.001 0.037 48 379 

15 1050  6207500 0.000002 0.038 50 429 

16 1075  6207484 0.000003 0.038 52 481 

17 1100  6207446 0.001 0.039 50 531 

 

The experiment shows that it is useful to change the 

optimization algorithms to improve the quality of the 

solution. For the first phase, we received 1.4% 

improvement; and for the second phase, a 0.0001% 

improvement. Intel Xeon CPU E5-2620 v2 2.10GHz 

processor was used and parallel calculations were not 

used in this experiment. 

 

 

Fig.12. Optimization process with two algorithms for the test usa115475. 

A significant feature of the developed approach is its 

near linear computational complexity (Table 5 and Fig. 

13). Table 5 shows the dependency between the size of 

the problem, runtime, and the quality without 

parallelization.  Experiments were conducted on a PC 

with Athlon II X2 240 processor with 2.8 GHz CPU and 

2 GB RAM. The following parameters were used:  

 

 The number of points in a cluster nsa = 800 to 900 

and the size of the overlapping area noa = 400.  

 Internal depth of a ring rin = 10 triangles (i.e., the 

ring covered 10 Delaunay triangles while 

propagating the wave inside the given cluster). 

External depth of a ring is rout =15 triangles (i.e., 

the ring covered 15 Delaunay triangles while 

propagating the wave outside the given cluster). 

Table 5. Experimental results for TSP Art library tests 

Test 

with 

size 

Length of  

the initial 

solution 

Length of  

optimized 

solution 

Run 

time 

(min) 

Length of 

the 

 best  

solution 

Tour 

qualit

y (%) 

Mona-L. 100K 5758988 5757516 121 5757191 0.006 

vangogh120K 6545620 6544127 178 6543622 0.008 

venus140K 6812666 6811271 213 6810696 0.008 

pareja160K 7622498 7620636 229 7619976 0.008 

courbet180K 7891519 7889462 280 7888759 0.009 

earring 200K 8174726 8174507 295 8171712 0.034 

 

The results shown in Fig. 13 demonstrate that the 

developed approach is suitable for large-scale TSP 

problems to get high quality solutions in a reasonable 

amount of time.  

 

 

Fig.13. Time vs. size for TSP Art tests.
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VI.  CONCLUSIONS 

1. The developed approach for parallelization has 

near linear computational complexity and is 

suitable for large-scale TSPs.  

2. The developed methods provide a significant 

reduction in runtime with a slight decrease in the 

quality of the received solutions, when compared 

with the other best known methods. 

3. Higher speedup is achieved by using the problem 

decomposition to split the problem into several 

independent sub-problems that are solved in 

parallel.  

4. Several optimization algorithms have been 

developed and investigated. To improve the 

quality of the solution, it is useful to successively 

apply different optimization algorithms. 

5. The biggest problem solved by the developed 

implementation contains 107 points. It needed 13 

days time for calculations when a single CPU 

(Intel Xeon E5640 2.67GHz) was used. However, 

the same problem was solved in 28 hours by using 

cluster computing resources that contain 64 cores. 

In either case, the loss of the quality of the solution 

is very small (0.086% below when compared to 

the other best known solutions). 
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