
I.J. Information Technology and Computer Science, 2016, 9, 49-61

Published Online September 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.09.07

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

Design of Fuzzy-Based Traffic Provisioning in

Software Defined Network

Anju Bhandari and V.P. Singh
Department of computer science and engineering, Thapar University, Patiala, Punjab

E-mail: er.anjugandhi@gmail.com

Abstract—This Software defined networks helps to

realize extraordinary services that can be easily

embedded in network operations of switch. It provokes

the decomposition of the control and data planes. The

control plane is more extensible, as it is unproblematic to

change or introduce any new functionality into the

network. It is studied that any new integration can be

easily added up with a very low line of code (LOC). The

work proposes a fuzzy based approach for traffic

provisioning in SDN. Fuzzy Logic Control System

(FLCS) is a controller comprising of two fuzzy systems-

Label Switched Path setup System (LsS) and Traffic

Splitting System (TSS). The computation of dynamic

status of Load and Delay is utilized by LsS to arrange the

paths in preference order. The attained Link Capacity and

Utilizat ion Rate are employing by TSS for maintain ing

congestion free path. Created three different topologies

and performed ping reachability test and executed iperf

testing tool for performance analysis on Mininet

framework.The impact of this is to facilitate better

decision making for splitting the traffic for different

capable paths. Simulat ion setup is deployed using

OpenFlow Switches and Controllers to study their

performance. The packet delivery rat io remained above

98%, showing rare chances of congestion and delay was

below than 2.6 seconds with TTL in range of 60-80

milliseconds.

Index Terms—OpenFlow, Software Defined Networking,

Mininet, Fuzzy Controller, POX.

I. INTRODUCTION

Many , independent research scholars and technicians

have recommended that the promotion of packet based

technologies is now an absolute necessary only then the

reduction of Operational Expenses (OpEx) and Capital

Expenses (CapEx) in their networks can be achieved for

the time being. Therefore, it is overbearing on part of

many research institutes to take up this work in this area

implement reliable solution like Mult i Protocol Label

Switching (MPLS) based solutions as SDN.

In SDN, the network control is partit ioned from the

forwarding mechanis m and is d irectly programmable.

SDN is believed to be a new networking technology that

adds potential benefits for the Next Generation Internet.

The controller is a logically centralized having a broad

view of network and controls multip le packet-forward ing

devices (switches) that can be configured via an

OpenFlow interface. An OpenFlow model consists of

two key components OpenFlow Switch and OpenFlow

Controller. These components communicate via the

OpenFlow Protocol. The benefits include the simplified

MPLS control plane architecture allows to introduce any

new protocol to work. It reduces protocol load in router

CPUs (LDP, IS-IS, MP-BGPLMP, RSVP-TE, I-BGP and

OSPF). As, control plane is more extensible so it is new

functionality can be effortlessly introduced in the

network. It also enhances MPLS base recovery Fast

Reroute Recovery (FRR) and Auto-bandwidth [1-3].

SDN provides dynamic network architecture that

facilitates transformat ion from tradit ional network

backbone into rich service delivery platfo rms. Software

defined Networking is having following features: - (1)

Highly Dynamic (2) Easily Manageable (3) Cost

Effective (4) Adaptable and suitable for the high volume

traffic. Researchers are working for developing more

optimize and efficient SDN controllers [4], switches in

different programming languages (pyretic, python 2.7,

Perl).

The paper is prepared as follows. The section II,

presented preliminaries on the subject of this work, i.e.

Software Defined Networking, Multi Protocol Label

Switching (MPLS), OpenFlow, Mininet and deployed

approach FLCS. The section III, described the proposed

fuzzy approach and its implementation. Section IV

presented the simulation settings . Analysis is described in

section V and finally, conclusions are discussed in

section VI.

II. PRELIMINARIES

An SDN instance consists of three major parts:

application, control plane, and data plane. The

application label indicates a part that explo its the

decoupled control and data plane to achieve specific

goals, such as a security mechanism or a network

measurement solution.

Applications communicate with a controller at the

control plane via the northbound interface of the control

plane. The control plane manipulates forwarding devices

through a controller to achieve the specific goal of the

target application. The controller uses the southbound

interface of the SDN-enabled switch to connect to the

data plane as shown in Fig.1. The data p lane supports a

shared OpenFlow protocol with the controller and

50 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

handles the actual packets based on the configurations

that are manipulated by the controller [5,6]. W ith the

SDN, operators have the capability to make an offline

optimization tool to online. The controller can access the

results of tool and use OpenFlow to directly efficiently

manipulate the forwarding tables of all LSRs [1-3].

Fig.1. Functionality of data plane and control plane

Fig.2. Communication between OpenFlow Switch and OpenFlow
Controller

A. Open Programming Extended Network (OpenFlow)

Architecture

OpenFlow provides an open programmable,

virtualized platform for the switches and routers. An

OpenFlow simulat ion model has two key components:

OpenFlow switch and OpenFlow controller. These

components channelized via the OpenFlow protocol [14,

15]. OpenFlow Switches consists of Flow Tables [FT1,

FT2 ... FTn] and Group Table [GT] and perform packet

lookups and forwarding [23]. Each OpenFlow switch has

a chain of flow tables, and each table keeps a set of flow

entries. A flow is defined as the set of packets that match

a pair of source and destination MAC addresses [7, 8].

The forwarding/routing ru les are defined by flow entry. It

is composed of a bit pattern indicating the flow attributes

a list of act ions, and a collection of counters. Each flow

entry states ―execute the set of measures on all packets in

the flow‖. As illustrated in algorithm 1, act ions like

forward the packet ―a‖ from port A, drop the packet ―b‖

from port B [23] and etc.

OpenFlow acts as a Switch-API that dynamically

updates flow table state and therefore LSP state. It results

in the emerging of multiple LSP in parallel that reduces

network blend [1, 2, 11, 17, 23]. When a packet arrives

at a switch, the switch searches for matched flow entries

in the flow tables and executes the corresponding lists of

actions. If no match is d iscovered for the packet, the

packet is queued, and an inquiry event propels to the

OpenFlow controller. The controller responds with a new

flow entry for handling that queued packet. Subsequent

packets in the same flow will be handled by the switch

without contacting the controller, and will be forwarded

at the switch’s full line rate. The set of communicat ion

messages between switch and controller is shown in Fig

2.

An OpenFlow switch has one or more forwarding

tables that are controlled by a centralized controller, thus

realizing programmability in the control plane.

Forwarding tables are used to control packets

(forwarding or dropping). Therefore, accord ing to the

controller strategy that handles the forward ing tables, an

Open Flow switch can take action as a router, switch,

NAT, firewall, or exh ibit similar functions that depend

on packet-handling ru les. The functionality of controller

is studied using algorithm below.

Algorithm 1: Functioning of OpenFlow Controller

begin

1. import python header files which includes topology.

 /* openflow_controller.cc openflow_controller.h

 openflow_session.cc openflow_session.h

 openflow_interface.cc openflow_interface.h

 openflow_messager.cc openflow_messager.h

 openflow_switch_session.cc openflow_switch_session.h

 openflowlib */

2. build network

3. test connectivity of all switch and host

 /*successful connectivity of all links are tested*/

4. process

 1. (modify_field) Check and update flow table entry.

 2. (Drop) Drop packet if miss found.

 3. (add_field) Add a new flow entry determining how to forward similar kind of

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 51

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

 packet in future.

end

B. MPLS-TE module

The prevalence of smartphones and streamed audio

and video services causes explosive increase in t raff ic

which can be excellently managed by MPLS networks.

MPLS is deployed by carrier due to its exceptional

features like MPLS data plane possess basic mechanis ms

of pushing on, swapping and popping off MPLS labels in

label switched path (LSP) [18]. These mechanis ms are

done by control driven protocols. In this paper, we are

proposing fuzzy based control driven protocol provid ing

traffic provisioning in the network. The work is

accomplished using extensible OpenFlow & SDN. The

significant advantage of doing so is this that control

driven using fuzzy can be easily acceptable by control

plane. Th is is so that MPLS would be able to provide

more services than today. The aim is to universally

optimize the resources, making them more and more

vigorous by program networking applications [18]. New

capabilit ies are 0=-not tied with the layers of protocols.

The best part is this that in OpenFlow, there is no need to

make changes in MPLS control p lane algorithms. The

results of using this novel approach have been a great

significance that fits its well and makes control

architecture ideal for next generation networks. The

approach is proposed for MPLS flow based usage Model

in which LSPs are set-up in the network by edge routers

(Ingress-Egress) consists of attributes like :- (1) Packets

are classified into forward equivalence class (FEC). (2)

Resource Reservation Protocol (RSVP) forwards the

paths. Following features are responsible for successful

performance:-

1) Supplementary deterministic behavior in IP

networks. (2) Superior efficiency in the utilization of

network resources. (3) Ease of management, operations,

utility of tunnels. (4) Most important features are Auto

route, Auto bandwidth, Tunnel priorit ies, Differentiat ing

services aware traffic engineering (DS-TE), Load

Balancing, Explicit Routes and Re-Optimizat ion times [1,

2, 11, 17, 18].

C. The implication of OpenFlow

OpenFlow base SDN design supports map abstraction

that allows the network to become programmable and

manageable, scalable and agile. It validates that the

proposed intelligent approach is able to allocate resources

dynamically. The SDN concept reduces routing trouble

by abolishing the need of many protocols (LDP, IS -IS,

MP-BGPLMP, RSVP-TE, I-BGP and OSPF) [1, 2, 11,

12, 18]. So, hence lines of code (LOC) are also optimized.

This is the big motivation for implementation in real

network scenario, so that researchers can easily deploy

new protocols [13]. The comprehensive study of SDN

has been performed. Here, the practical details are listed

below in Table 1.

Table 1. Practical Details

Limitations of other
technologies

Need for new architecture Key Motivation Factors

 Complexity

 Incapability to scale

 Vendor dependence

 Inconsistent policy

 Changing utilization rates

 Consumerization of IT

 Argument of cloud application

 Link Quality /Data handling

 Numerical unstable metric computations

 Control plane- Data plane

programmability

 Platform independency

 User-driven control

 Deployment is easy

III. DEPLOYING FUZZY LOGIC CONTROLLED SYSTEM

(FLCS) IN CONTROL PLANE

We leverage our previous work [19] on a Mininet

emulation system. In this research work, we have

exploited the behavior of OpenFlow-based SDN

controller to deal with potential performance issues like

(1) State Consistency (2) Scalability (3) Flexib ility (4)

Security (5) Availability. The techniques are not only

improving the simulation performance, but are also

valuable for designing scalable SDN controllers [23].

We have proposed fuzzy approach composed of two

sets of fuzzy rule matrix or fuzzy mixed metric (FMM) –

LsS and TSS. In LsS, rule base of 25 rules are processed

on the dynamic input values of traffic statistics (load,

delay). It generates the matrix after the execution of

complete fuzzy inference system (FIS). The computed

values from the lowest to highest fuzzy value of LSPs,

generates the list of LSPs in preference order. It fulfills

an appropriate QoS requirement of network. In TSS, rule

base of 35 rules are p rocessed on the updated value of

frequency of using particular LSP

i.e. utilization rate and the link capacity of LSP. It

performs traffic splitting among paths in order to realize

TE in network. A prototype of design of fuzzy traffic

provisioning approach for MPLS-TE shown in Fig. 3.

The pseudo code of proposed fuzzy based methodology

is described in next subsection A. The main algorithm

and sub-algorithms (LsS and TSS) are fo llowed by the

description of data structure and variables used. The

approach is strongly justifying the alarming need of load

balancing in network [16, 17, 20]. Our approach is

simple. So, it can be easily adaptable with the accessible

design. The proposed effort assist researchers to set an

appropriate and meaningful direction for future SDN

52 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

research [21, 22, 24]. The technique Ternary Content

Addressable Memory (TCAM), in which each

forwarding rule is added to TCAM memory as an

OpenFlow entry is well suited and applied in this

designed approach. As, the computed fuzzy predictions

get saved in TCAM as shown in Fig. 3. The entry has the

label value as the l2 destination and wildcard for other

fields. Also the corresponding action of the rule is to send

the packet to a specified port on the switch [25].

Fig.3. Prototype of proposed fuzzy based open flow controller

A. Pseudo codes of Proposed fuzzy based routing: Fuzzy

Logic Controlled System (FLCS):-

Description of Data Structures and Variables used in

building algorithm are as follows:-

1. Link Matrix describing connectivity between two

nodes. Link[i] [j] is equal to 1 if connectivity

exists between nodes i and j otherwise 0.

2. Link capacity matrix LC[i][j] giving bandwidth

value of each link.

3. Utilization rate matrix UR[i][j] specifying

utilization rate of each link.

4. Delay matrix D[i][j] specifying delay of each link.

5. Load matrix L[i][j] specifying number of packets

waiting to be sent on each link.

6. LsS Value Matrix LsS[i][j] storing LsS value o f

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 53

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

each link used to identify paths .

7. TSS Value Matrix TSS[i][j] storing TSS value o f

each link used to compute number of paths

required for operation.

8. Variable ingress to store the identifier of source

node.

9. Variable egress to store the identifier o f

destination node.

10. Variable n number of nodes in the network.

11. Variables Lak, Lbk, Lck for storing the limits of

linguistic terms of linguistic input variable Load

of LsS.

12. Variables Dak, Dbk, Dck for storing the limits of

linguistic terms of linguistic input variable Delay

of LsS.

13. Variables LsSak, LsSbk, LsSck for storing the

limits of linguistic terms of linguistic output

variable LsS_value of LsS.

14. Variables URak, URbk, URck for storing the

limits of linguistic terms of linguistic input

variable Utilization Rate of TSS.

15. Variables LCak, LCbk, LCck for storing the limits

of linguistic terms of linguistic input variable Link

Capacity of TSS.

16. Freq[i][j] storing the frequency of a particular

link used.

17. Final decision LSS FDlss[i][j] and Final decision

TSS FDtss[i][j] store the final defuzzified values

of LsS_value with respect to each link and

TSS_value with respect to each link respectively.

18. Nlsps gives the number of required LSPs.

19. Tlsps gives the total number of LSPs.

20. Slsp[i] give the selected LSP for operation

according to optimal LsS_value.

21. L, D, UR, LC, LsS, TSS, L are membership

functions of load, delay, utilization rate, link

capacity, LsS_value and TSS_value respectively.

22. Lk, Dh, URk, LCk LsSk, TSSk are membership

functions of linguistic terms of load, delay,

utilizat ion rate, link capacity, LsS and TSS

respectively.

23. RLsS[i]j[], RTSS[i][j] stores the rules of LsS and

TSS respectively.

24. Variables i, j, k, m, n used for the loop control

Main algorithm

1. Read n

2. Repeat steps 3 to 10 for i, j =1 to 8

3. Read Link[i][j]

4. Read L[i][j], D[i][j] , UR[i][j]& LC[i][j]

5. LsS_value = Call LsS(D,L) /*call LsS() to

compute LsS_value to identify links for the

selection of LSPs.*/

6. Freq[i][j] =0.0 /* Initialization*/

7. Nlsps = Call TSS(UR, LC) /*call TSS() to

compute TSS_value to obtain the number of LSPs

required for operation. */

8. Repeat steps 9 & 10

while(L[1][j]!=0) /*Transmission will be

continue till load at node 1(ingress) is non zero*/

for k= 1 to Nlsps /*Traffic splitting takes p lace

among the Nlsps */

9. Slsp[k]=min(LSS[i][j] && Freq[i][j]) /*list of

optimal LSPs(LSP having minimum LsS_value)

in preference order is used for congestion free

operation*/

10. Freq[i][j] = Freq[i][j] +1 /* respective frequency

of LSP is updated */

Sub- Algorithm LsS(L,D)

1. Read limits of linguistic terms of input load and

delay as

k=1
5
{(Lak, Lbk, Lck), (Dak, Dbk, Dck)}.

2. Read limits of linguistic terms of output

LsS_value as

k=1
7
{(LsSak, LsSbk, LsSck)}.

3. Display the Degree of Strength (DS) for entered

values of load and delay

Repeat steps 3.1 to 3.4 for i, j =1 to 8 and steps

3.1 & 3.2 for p=1 to 5

3.1 DS of L[i][j] and D[i][j] are obtained by

identifying the area

in which input value lies, to obtain linguistic terms

on applying TMF

L[p]=k=1
5
{Lk}

D[p]=k=1
5
{Dk}

3.2 Composition and aggregation

RLsS[i][j] =min(L[p], D[p])

LsS [p]= i,j=1
5
 RLsS[i][j]

3.3 Defuzzification using centroid method

for h= 1 to 7

LsS[i][j]=
7

k=1 (LsS [p]) *LsSbk/LsS [h])

3.4 Apply TMF on LsS[i][j] for m=1 to 7, n=1 to

2, obtain

Final decision as FDlss[m][n]

Return(Slsps[i]=max(FDlss[m][n])) /*final

decision is obtained

by applying TMF on computed fuzzy value is

returned to

main algorithm for the selection of optimal path*/

Sub-Algorithm TSS (UR, LC)

1. Read limits of linguistic terms of input Ut ilization

54 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

rate and Link capacity as

k=1
7
{(URak, URbk, URck)}, h=1

5
 {(LCah, LCbh, LCch)}.

2. Read limits of linguistic terms of output

TSS_value as

k=1
5
{(TSSak, TSSbk, TSSck)}.

3. Display the DS for entered values of utilization

rate and link capacity

Repeat steps 3.1 to 3.4 for i,j =1 to 8,

Steps 3.1 & 3.2 for p=1 to 7 and steps 3.1 & 3.3

for l=1 to 5

3.1 DS of UR[i][j] and LC[i][j] are obtained by

identifying the area in which input value lies,

to obtain linguistic terms on applying TMF

UR[p] =k=1
7
{URk}

LC[l] =h=1
5
{LCh}

3.2 Composition and aggregation

RTSS[i][j] =min(UR[p], LC[l])

TSS[l]= i=1
5

,j=1
7
 RTSS[i][j]

3.3 Defuzzification using centroid method

TSS[i][j]=
7

k=1 (TSS[l] *TSSbk/TSS[l])

3.4 Apply TMF on TSS[i][j] for m=1 to 5, n=1 to

2, obtain

Final decision as FDtss[m][n]

Return(Nlsps= max (FDtss[m][n]))

IV. EXPERIMENTAL SETUP

We have created network in Min inet environment. It is

an open source network emulator that creates a network

consists of Switches, Controlle r and Hosts. It works on

Linux kernel. It easily creates virtual networks for swift

prototyping of SDN designs using OpenFlow. This is the

command line interface (CLI) which is high ly flexib le,

scalable and realistic deployable. The basic installation

procedure is discussed in [7,8, 11].

We proposed the use of MPLS data plane with an open

control plane. An introducing fuzzy logic in control plane

is demonstrated with this platform. We have assembled a

network prototype to verify architecture constructs and

authenticate the simplicity and extensibility of proposed

approach. We have implemented the features of traffic

engineering (TE) and Quality of Serv ice (QoS) to

optimize MPLS-TE. LOC is also shorter than using a

traditional approach [1,2, 5,6, 12, 17]. In this paper, we

have proposed the prototype of fuzzy based traffic

management approach for OpenFlow controller. The

design of Fuzzy Logic based System is significantly

simple and providing elasticity to the system.

A. Mininet Framework

It is a network simulation tool that runs a collection of

hosts, switches, routers and links on a single Linux kernel.

Mininet host runs standard Linux Network software and

its switches support OpenFlow for versatile custom

routing [21]. It allows emulating arb itrary OpenFlow

network on machine. Min inet also enables ping, iperf

softwares to study and generate traffic. It measures

performance parameters like throughput, delay, packet

drop.

B. MPLS-TE

We have implemented this prototype of the algorithm

in the POX controller and measure its performance in

three different topologies. By adding changes in load

balancing module and traffic type aware routing module

[20, 21]. The traffic type aware routing module ensures

that only those flows of a certain traffic type (voice,

video, web) are permissible for routing activ ities. Tab le 2

describes the configurations of simulation setup. We used

POX controller and implemented proposed algorithm. In

this paper, a performance analysis is done by testing

network connectivity between nodes. TCP and UDP

throughput bandwidth monitoring is evaluated. Network

connectivity is tested by ping, which correspond by

ICMP echo request message and wait for reply indicat ing

IP connectivity between defined nodes [9, 10, 18].

The simulation work has been done using the available

Mininet commands [9, 10, 18, 20]. The snapshots of

performed simulation tests are given in Appendix A. The

details of snapshots are listed in below Table 3.

Table 2. Simulation Settings

Parameter Settings

Mininet Environment 2.1.0

OpenFlow software
switch (ofdatapath,

ofprotocol)

1.3.0

Open vSwitch 2.3.90 (OF versions 0x1:0x1)

Reference controller

(OVS-controller)
2.0.1

System Ubuntu 14.04 (trusty) 64 bit

Controller POX 0.2.0

Language support Python 2.7

Processor
Intel® Core™2 Duo CPU T6670 @
2.20GHz × 2

Number of controllers 1

Number of Switches 1

Number of edges 5,4,3(respective to topology)

Testing Tool Ping, Iperf

Testing time 30 sec

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 55

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

The simulation is performed on three topologies as

shown in Fig. 4. The topology with 4 host (host h1,host

h2, host h3 and host h4) in Fig. 4 (a), 1 switch, 1

controller second topology consists of with 3 host (host

h1,host h2 and host h3) in Fig. 4(b), 1 switch, 1

controller and third topology consists of 2 host (host h1

and host h2), 1 switch, 1 controller in Fig. 4(c).

The following Steps are performed on these network

topologies:- (1) Generated hosts each one with dissimilar

IP address as defined Algorithm 1. (2) Establish

Connection of hosts (h1, h2, h3, h4) with Switch S1 with

the Ethernet cable (eth0, eth1, eth2). (3) Set up of MAC

address of host (h1, h2) to its IP address [18]. (4)

Configures the s1 for the connection with the remote

controller c0.

(a) (b) (c)

Fig.4. (a)Topology with 4 hosts created (b) Topology with 3 hosts created (c) Topology with 2 hosts created

Table 3. Snapshots of Linux machine executing Mininet Console

Snapshot Caption Illustration

Fig.5.
1controller, 1switch, 2hosts, IP
routing table, ping, iperf

Creation of topology consists of one controller, one switch and two hosts. The IP
routing table is also shown here. Ping and iperf are executed successfully.

Fig.6.

(a) Controller Remote Port-

6633
(b) Internet connections OVS

Controller

The port information of remote controller is shown. The details of the Internet
connections between TCP servers and localhost are depicted.

Fig.7.

(a) Specifications of OVSSwitch,
OVSController and creation of

network (h1, h2;s1;c1)
(b) Design and connectivity of c0,
s1 and h1,h2

Specifications of OVSSwitch, OVSController are shown. Creation of network (h1,

h2;s1;c1) and Specifications of other Components are shown. Design and
connectivity of controller (c0), switch(s1) and hosts (h1,h2).

Fig.8.
 (a) Topology (1 switches, three
hosts, one controller) (b) POX

controller

Processing of POX CONTROLLER for first topology to study the results.

Fig.9.
Execution of Xterm s1,c0,h1 and

h2
Execution of Xterms s, c0, h1 and h2 presenting the interaction of active nodes.

Fig.10.
. Internet performance test by ping
giving ping statistics (RTT,
LOAD, DELAY)

Clear execution of ping testing tool is visible. ping statistics giving values of Round
Trip T ime (max, min, avg, mdev).One echo request packet is transmitted and
successfully received by node h2. It has been verified that host can ping each other.

Fig.11.
Iperf testing TCP bandwidth with
set of values of load and delay

Iperf testing TCP bandwidth with set of values of load and delay are obtained.

Fig.12.
Performance of iperf and

installation of POX Controller

Testing of TCP bandwidth between h1-h2 is done by Performance testing tool iperf

and installation of POX Controller is also shown.

Fig.13. Internet performance test by ping Ping statistics of h1 and h2 are depicted.

Fig.14
Creating topology of 4 switches, 4
hosts and 1 controller

Creating topology of 4 switches, 4 hosts and 1 controller is depicted.

Fig.15.
 (a) TCP traffic analysis (b)

UDP traffic analysis

The communication of iperf h1 and iperf h2 for TCP Connection at default port 5001
with TCP Window Size 85.6 Kbyte is depicted. The communications of iperf h1 and

iperf h2 for UDP Connection at default port 5001 with UDP Window Size 208 Kbyte
along with the performance analysis results are depicted.

V. ANALYSIS

Empirical results show that, when the capacity of the

high volume traffic lines is above 10 gigabits per second

(Gb/s). The previous algorithms metric calculations

become asymptote in nature and rate of change is become

nearly constant while measuring some metrics. Th is

situation becomes more unclear when we t ry to measure

multip le variables influencing each other. Especially,

when the work in mix bag of old and new switches and

routers are also upgraded for scalability needs. The

computation of the routing paths, priorit ies and delay

becomes numerically unstable. The main reason for this

the fuzzy nature of the metric values and overlapping

56 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

boundaries of the metrics. Our research work overcomes

these numerical instability p roblems by separating the

data plane and control plane. Th is way a specialization of

task is introduced in the network and processing of

control functions are separated from the data operations.

Our work is based on the principles of open switch

architecture. The main benefit is maximizat ion of agility

and choice with a fu ll portfolio o f from 1/10gbe and

10/40gbe. This implementation helps to act as a flexib le

building block for mult iple data centres. The approach

also forces us to think beyond the metrics like link speed

(b/s), such as packets per second (p/s), connections per

second (c/s), transactions per second (t/s), and maximum

concurrent connections (mcc). As, the behaviour changes

in case of stateful devices in high volume bandwidth

switch networks. Our results show, even that higher rate

the packet delivery rat io remain close to 99%, show that

there is rare cases of congestion even if concurrent

connections and packet volume increases exponentially

and the delay remain below 2.6 milliseconds (end-to end).

The values of the TTL also remained in good range(60-

80 milliseconds) for all the experiments with proposed

algorithm.

VI. CONCLUSION AND FUTURE RECOMMENDATIONS

SDN is becoming popular due to its interesting

features, design and organization of networks. However,

there are still important challenges to be solved before

realizing successful SDN. In th is paper, existing SDN

related technologies has been introduced and discussed

several future directions to realize data plane and control

plane programmability. In fact, current southbound

Application Programming Interface (API) is not supple

and mostly translated as Open Flow protocol. In

traditional network arch itecture, the control p lane and the

data plane cooperate within a device v ia internal

protocols. But, in SDN, the control plane and the data

plane are separated.

Along with this the control logic is moved to an

external controller. This external controller is answerable

for monitoring and managing all of the states in the

network. The controller release signals to the data plane

using the OpenFlow protocol. It defines the

communicat ion between the controller and the data

planes of all the forward ing elements. The controller sets

rules about the data-forwarding behaviors of each

forwarding device through the OpenFlow protocol,

including ru les including drop, forward, modify, or

enqueue of packets. The proposed algorithm combined

with the decision making based on fuzzy ru les has

exposed superior results. LOC also get reduced as well as

the smooth integration of the various external modules

and libraries have been done. Therefore, we believe that

understanding of the design of SDN, functionality of

OpenFlow and applying Fuzzy Logic maximizes the

potential benefits of SDN. A ping performance test

connected with assumed nodes has been executed. Echo

request packets are channelized which have been

fortunately received and ping stats have also been

obtained. The verification that host can ping each other is

depicted using Xterms. Internet Performance Test is done

by Iperf, which is network testing tool and can generate

TCP and UDP data streams and estimate the Max TCP

Bandwidth and illustrates UDP specifications

(Bandwidth, jitter, datagram loss, and speed). Thus to the

highest degree, it clarifies the implementation of the

algorithms and decision making system.

APPENDIX A SNAPSHOTS OF SIMULATION RESULTS ON MININET CONSOLE

Fig.5. 1controller, 1switch, 2hosts, IP routing table, ping, iperf

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 57

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

(a)

(b)

Fig.6. (a) Internet connections OVS Controller (b) Controller Remote Port -6633

(a)

(b)

Fig.7. (a) Specifications of OVSSwitch, OVSController and creation of network (h1, h2;s1; c1)

 (b) Design and connectivity of c0, s1 and h1,h2

(a)

58 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

(b)

Fig.8. (a) Topology (one switch, three hosts, one controller) (b) POX controller

Fig.9. Execution of Xterm s1,c0, h1 and h2

Fig.10. Internet performance test by ping giving ping statistics (RTT, LOAD, DELAY)

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 59

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

Fig.11. Iperf testing TCP bandwidth with set of values of load and delay

Fig.12. Performance of iperf and installation of POX Controller

Fig.13. Internet performance test by ping

60 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

Fig.14. Creating topology of 4 switches, 4 hosts and 1 controller, ping reachability test

(a)

(b)

Fig.15. (a) TCP traffic analysis (b) UDP traffic analysis

REFERENCES

[1] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,

G., Peterson, L., Rexford, J., ... & Turner, J. (2008).

OpenFlow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communication

Review, 38(2), 69-74.
[2] Das, S., Sharafat, A., Parulkar, G., & McKeown, N. (2011,

March). MPLS with a simple OPEN control plane. In

Optical Fiber Communication Conference (p. OWP2).

Optical Society of America.

[3] Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W.
(2014). A roadmap for traffic engineering in SDN-

OpenFlow networks. Computer Networks, 71, 1-30.

[4] Foster, N., Guha, A., Reitblatt, M., Story, A., Freedman,

M. J., Katta, N. P., & Walker, D. (2013). Languages for

software-defined networks. Magazine, IEEE, 51(2), 128-
134.

[5] Kreutz, D., Ramos, F. M., Esteves Verissimo, P., Esteve

Rothenberg, C., Azodolmolky, S., & Uhlig, S. (2015).

Software-defined networking: A comprehensive survey.

Proceedings of the IEEE, 103(1), 14-76.
[6] Jarraya, Y., Madi, T., & Debbabi, M. (2014). A survey

and a layered taxonomy of software-defined networking.

Communications Surveys & Tutorials, IEEE, 16(4), 1955-

1980.
[7] Mininet, An Instant Virtual Network on your Laptop (or

other PC), http://mininet.org/, last accessed on June 2014.

[8] Team, T. M. (2012). Mininet: An Instant Virtual Network

on Your Laptop (or Other PC).

[9] Ko3bayashi, Masayoshi, Et al., ―Maturing of OpenFlow
and Software – defined Networking through

deployments,‖ Science Direct Computer Networks, 2013.

[10] Kobayashi, M., Seetharaman, S., Parulkar, G.,

Appenzeller, G., Little, J., Van Reijendam, J., &

McKeown, N. (2014). Maturing of OpenFlow and
Software-defined Networking through

deployments. Computer Networks, 61, 151-175.

[11] Saurav Das, Et al.(2013), ―Handbook of Fiber Optic Data

Communication a Practical Guide to Optical Networking

Chapter 17, 4th edition‖, Academic Press.
[12] Agarwal, S., Kodialam, M., & Lakshman, T. V. (2013,

April). Traffic engineering in software defined networks.

In INFOCOM, 2013 Proceedings IEEE (pp. 2211-2219).

IEEE.

[13] Demestichas, P., Georgakopoulos, A., Karvounas, D.,
Tsagkaris, K., Stavroulaki, V., Lu, J., & Yao, J. (2013).

 Design of Fuzzy-Based Traffic Provisioning in Software Defined Network 61

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 9, 49-61

5G on the horizon: key challenges for the radio-access

network. Vehicular Technology Magazine, IEEE, 8(3),

47-53.

[14] The Open Networking Foundation, ―OpenFlow Switch

Specification version 1.4.0,‖ October 14, 2013.
[15] Molina, E., Jacob, E., Matias, J., Moreira, N., & Astarloa,

A. (2015). Using software defined networking to manage

and control IEC 61850-based systems. Computers &

Electrical Engineering, 43, 142 154.

[16] Kanai, K., Muto, T., Kisara, H., Katto, J., Tsuda, T.,
Kameyama, W., & Sato, T. (2014, December). Proactive

content caching utilizing transportation systems and its

evaluation by field experiment. In Global

Communications Conference (GLOBECOM), 2014 IEEE

(pp. 1382-1387). IEEE.
[17] BELLESSA, J. (2015). Implementing MPLS with label

switching in software-defined networks (Doctoral

dissertation, University of Illinois at Urbana-Champaign).

[18] Bholebawa, I. Z., Jha, R. K., & Dalal, U. D. (2015).

Performance Analysis of Proposed OpenFlow-Based
Network Architecture Using Mininet. Wireless Personal

Communications, 86(2), 943-958.

[19] Bhandari, Anju, and V.P.Singh -. "Proposal and

Implementation of MPLS Fuzzy Traffic Monitor",

International Journal of Advanced Computer Science and
Applications, 2016.

[20] Thamarakuzhi, Ajithkumar, and John A. Chandy. "Design

and implementation of a nonblocking 2-dilated flattened

butterfly switching network", 2010 IEEE Latin- American

Conference on Communications, 2010.
[21] Farhady, Hamid Lee, HyunYong Nakao, Akihiro.

"Software-Defined Networking: A survey.", Computer

Networks The International Journal of Computer and

Telecommunications Networking, April, 2015.

[22] Dotcenko, Sergei, Andrei Vladyko, and Ivan Letenko. "A
fuzzy logic-based information security management for

software-defined networks", 16th International

Conference on Advanced Communication Technology,

2014.

[23] Jin, D., & Nicol, D. M. (2013, May). Parallel simulation
of software defined networks. In Proceedings of the 2013

ACM SIGSIM conference on Principles of advanced

discrete simulation (pp. 91-102), ACM.

[24] Gagandeep Garg, Roopali Garg,"Accurate Anomaly

Detection using Adaptive Monitoring and Fast Switching
in SDN", IJITCS, vol.7, no.11, pp.34-42, 2015. DOI:

10.5815/ijitcs.2

[25] Qu, Y. R., & Prasanna, V. K. (2016). High-Performance

and Dynamically Updatable Packet Classification Engine

on FPGA. Parallel and Distributed Systems, IEEE
Transactions on, 27(1), 197-209.

Authors’ Profiles

Ms. Anju Bhandari is pursuing doctoral

program (PhD) at Computer Science and
Engineering Department of Thapar

University, Patiala, India. Her qualifications

include B.Tech (CSE), M.Tech(CSE). She is

member of ISTE. She has 9 years of teaching

and research experience in softcomputing and
computer networks.

Dr. V. P. Singh is PhD and ME in Computer

Science from Thapar University, Patiala,

India. He is presently serving as assistant

professor in the Computer Science and

Engineering Department of Thapar University ,
India. His research interests include soft

computing, Computer networks, Computer

forensics and Cyber Law. He has many research publications in

reputed Journals and Conferences.

How to cite this paper: Anju Bhandari, V.P. Singh, "Design of

Fuzzy-Based Traffic Provisioning in Software Defined

Network", International Journal of Information Technology and
Computer Science (IJITCS), Vol.8, No.9, pp.49-61, 2016. DOI:

10.5815/ijitcs.2016.09.07

