
I.J. Information Technology and Computer Science, 2017, 1, 46-57

Published Online January 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.01.06

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

Analysis of Metric-Based Object-Oriented Code

Refactoring Opportunities Identification

Approaches

Bassey Isong, Nosipho Dladlu, Etim Duke
North-West University, Computer Science Department, Mafikeng, South Africa

E-mail: {bassey.isong, nosipho.dladlu, 25831127}@nwu.ac.za

Bassey Ele
University of Calabar, Computer Science Department, Calabar, Nigeria

E-mail: mydays2020@gmail.com

Abstract—Refactoring is used to improve deteriorated

software design, code and their maintainability. In object-

oriented (OO) code, before refactoring is performed, its

opportunities must be identified and several approaches

exist this regard. Among the approaches is the software

metric-based approach where quality software metrics are

used. Therefore, this paper provide analysis of existing

empirical studies that utilized software metrics to identify

refactoring opportunities in OO software systems. We

performed a comprehensive analysis on 16 studies to

identify the state-of-the-practice. The focal point was on

the workings, refactoring activ ities, the programming

language and the impact on software quality. The results

obtained shows approaches were not unique, each was

designed either for a single refactoring activ ity or couple

of them, move method and extract class dominated the

refactorings activities, and most approaches were fu lly

automated while few were semi-automated. Moreover,

OO metrics p layed acritical role in both opportunities

detection and factoring decisions. Based on the results, it

would be beneficial if generic refactoring approach is

developed that is capable of identifying needs for all

refactoring activities.

Index Terms—Object-oriented, Code, Metrics,

Maintenance, Refactoring, Identification.

I. INTRODUCTION

Software quality is a fundamental element in the

success or failure of any software organizat ion and is of

great concern in the software engineering (SE) field. W ith

the recent increase in the size and complexity of software

applications, assuring high quality in software products

has been more and more d ifficu lt and a timewasting task

[1][2]. Thus, to achieve high quality in software product,

cost-effective and proactive techniques are of g reat

importance. In the realm of object-oriented (OO)

software maintenance, an indicator of good quality design

is to adhere to low coupling and high cohesion in the

design [3]. The principle of low coupling and high

cohesion has been widely known and during software

development they constitutes a primary target by software

engineers. This is because, the realization of the their

reverse form in software products has been linked to

cases of costly rework, h igher fau lt rates, lower

developers’ productivity and increasing design efforts

[3][4]. Thus, to ensure that software systems remain

useful throughout its life time, changes are inevitable

[5][6]. Change is an inherent property of real-world

software which is realized through evolution,

maintenance and in conformance with the Lehman’s first

law of evolution [5][7], which advocate for continuous

software changes. The drivers of software changes are

faults fixing, adapt to new requirements or changed

environment, improve performance and so on [6].

However, due to continuous modification and

enhancement of the internal structure of the software

system, the code easily becomes extremely complex and

moves gradually away from its initial design [8]. In other

words, the software structural design deviates from its

init ial design or deterio rates in quality, thereby revealing

unanticipated values of cohesion and coupling. For

instance, software components like classes grow swiftly

as developers often time add new responsibilities to

existing ones instead of new classes. Consequently, as the

class responsibilities increases, so its complexity leading

to the deterioration of its quality [9][10]. Studies have

shown that some of the causes of design flaws in software

systems are due to the applicat ion of inappropriate design

solutions by developers leading to code not conforming

to OO programming rules and market pressure resulting

to strict deadline [11][12]. To this end, comprehending

and maintaining the software systems becomes a difficult,

if not impossible tasks. This constitute the reason why

software maintenance is considered to be the costliest

phases of software development since a considerable cost

of development is highly expended on maintenance [13].

To put such situations under control, a cost-effective

technique that lessen the complexity of the OO software

systems by improving its internal structure and lower

maintenance cost while preserving its quality is

indispensable. In SE, th is technique is knows as

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 47

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

refactoring [14]. Software refactoring is a cost-effective

technique to eliminate design problems often called “bad

smells” in code [14][15]. It is a maintenance process

where software systems are changed in a manner that

only its internal structure is improved while the external

behavior remains intact. In the perspective of OO

software source code, refactoring is geared towards

incrementally enhancing the internal complexity due to

continuous changes in order to expedite future

improvements [8][14][15].

Software refactoring has gained momentum today and

in particular, has become an integral part of ag ile

development process such as extreme programming (XP)

[16]. To perform refactoring in software code, the first

task is to pinpoint the refactoring candidates that manifest

in the form of bad smells before applying the appropriate

refactoring to remove them. Today, there exist several

approaches to identify refactoring opportunities in OO

software systems and the application of appropriate

refactorings have been proposed, developed and utilized

during software development [10][12][17][18][19][20].

However, these approaches are designed to identify

opportunity for a particular refactoring candidate or

couple of them which is ach ieved by either full

automation or semi automat ion. In addit ion, there are no

studies to the best of our knowledge which provides a

comprehensive analysis of these approaches in order to

give insights into their state-of-the-practice. Therefore, in

this paper, we present analysis of the existing refactorings

opportunities identification approaches in the context of

quality metrics. We specifically performed analysis on 16

existing empirical studies in the literature and in

particular, we aimed to answer the research questions:

How are the opportunities for refactorings identified in

OO source code? Of what important is software metrics

during refactorings opportunities identification? And do

traditional metrics played the same role as OO design

metrics in the identification of refactorings opportunities

in OO source code? Accordingly, the contributions of

this paper is to give an insight into software refactorings,

perform comprehensive analysis of the approaches to

determine their mode of operations, re factorings activities,

programming languages which are mostly refactored, and

the impact of software metrics on code quality. Moreover,

this paper provides a useful direction for future research.

The remain ing parts of the paper is organized as

follows: Section II is the related studies, III discusses

refactoring opportunities identification process, Section

IV is the analysis of the existing approaches , Section V is

the paper discussion and VI is the conclusions.

II. REALATED STUDIES

This section presents related works in software

refactoring in terms of refactoring process and research

activities.

A. Software Refactoring

It is widely recognized that every real-world software

system has to evolve during its lifetime in order to

continue to remain useful. However, during software

evolution or maintenance, as the software systems’

internal structure is subjected to continuous enhancement,

modification and adaptation, its code becomes complex

and consequently drift away from the orig inal design

[5][21]. Furthermore, poor design decisions due to strict

condition of deadline forces developers not to adhered to

the princip le of h igh cohesion and low coupling [11][12].

As a result, the software (packages, classes , methods or

field) in turn becomes more complex and deteriorates in

quality thereby making it difficult to understand and

maintain [9]. In part icular, th is constitutes the reason why

software maintenance is costly and several researches

have shown that about 90% of the total development cos t

is consumed by maintenance [19][22].

Table 1. Refactoring Activities

Refactoring
Activities

Description

Extract
Subclass

A subclass that has subset of features that are used
only in some instances in its superclass.

Move Method Moving a method to a class in which most of its

features are used by the method other than the class it
resides in.

Extract Class A new class being created from a large class that
performs more than one task.

Move Class Moving a class from package that is not suitable to a

more suitable one.
Extract Method Grouping code fragment to form a new more

cohesive method from long
methods

Pull Up

Methods

Pulling up methods with identical results on child

class to its parent class.
Extract Method Removing and redefining code fragment as a new

method from larger methods.

Form Template
Method

Removing duplication by merging and pulling up to
the superclass, similar steps of two methods in

subclasses that perform similar steps while leaving
their steps that are different in the subclasses.

Pull Up

Constructor

Subclass methods created in a superclass from

constructors in the subclasses that have similar or
identical bodies.

Parameterize
Method

A single method where a parameter is used for
different values contained in methods body.

Therefore, to minimize the high cost attributed to

maintenance, software refactoring has become the

mainstream approach. It has been introduce in the

perspective of OO programs to improve the complexit ies

in code design. Refactoring is defined by Fowler et al [14]

as “the process of changing OO software systems in a

manner that it does not alter the external code behavior

yet improves its internal structure”. The essence of

refactoring is to redistribute and rearrange OO software

structure while keeping its semantics intact. In other

words, refactoring is a technique that is effective in the

removal of design defects called bad smells emanating

from the v iolation of high cohesion and low coupling

principles in order to improve code comprehension and

maintainability [14][15]. A bad smell in source code is a

classical sign of poor quality and has to be removed.

There are several benefits that are linked to refactoring

such as test effort reduction, design simplification,

validation assistance, design change automation and new

designs investigation [23]. In addition, it can be applied

48 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

to other software artifacts other than source codes such as

requirements specification, documentation, design

documents, software architectures, test suites, etc. [8].

During software maintenance, to get rid of bad smells

in code, Fowler [14] has identified and offered the

explanation of 22 bad s mells in OO source code and 72

refactorings strategies to enhance source code design with

bad smells. Examples of code bad smells are duplicated

code, large class, long method, lazy class, feature envy,

long parameter list, shotgun surgery and so on [14]. The

different refactorings operations to remove the bad smells

are shown in Table 1. For more in formation on bad

smells and their respective refactorings, referred to [14].

B. Refactoring Process

In OO software system, the main goal of refactoring is

to reduce the internal structural complexity while

preserving its external behavior [14]. However,

performing refactoring is not a one-way process. The

process involves series of steps or activities aimed at

ensuring its appropriateness and software quality

preservation. Mens and Tourwe [8] provides six distinct

steps to be taken to perform refactoring. The steps are

shown in Fig. 1

Object-Oriented Source Code

Identify Code Segment that Requires
Ractoring

Determine Which Refactoring(s) to
Apply

Guarantee that the
 Refactoring(s) Preserve
OO Software Behaviour

Apply the
Appropriate

Refactoring(s)

Assess Impact of
Applied Refactoring on Quality

Characteristics/Process

Maintain Consistency
Between Refactored

OO Software and
other Related

Artifacts

End

Start

NO

YES

NO YES

Refactorings

Code Smells

Fig.1. Refactoring process steps

In Fig. 1, the refactoring process starts by taking as

input, the OO software system’s source code to identify

which segments of the code need to be refactored. This is

simply identify ing the bad smell in the code. It involve

deciding on the suitable abstraction level which the

refactoring should be applied as well as evaluating the

cost/benefits of each identified refactoring [8]. The

identification is fo llowed by determin ing which

appropriate refactorings are to be applied by examin ing

the code bad smells identified. Fowler et al [14] had

already offered solutions in which some are shown in

Table 1. With the decisions on the appropriate

refactorings to apply, next step is to assure that they

preserves the external behavior of the software. In this

case, for a g iven input value, the corresponding output

values should be the same before and after refactoring has

been conducted [8]. This step is very important as it

ensures that other software activit ies that rely on the

program are not invalidated. However, if it is found that

the software behavior is not preserved, the refactoring

process can be aborted or another appropriate refactorings

chosen. With the preservation of the program behavior,

the next step is the actual application o f the chosen

refactorings on the OO source code and is succeeded by

the assessment of its effect on quality characteristics or

the processes. To this end, quality characteristics such as

maintainability, comprehensiveness and complexity are

assessed. Others are the process characteristics such as

the efforts, costs, productivity and so on [8]. The

rationale is to ensure that the characteristics are improved

by the refactorings applied. Finally, software engineers

have to ensure that the refactored OO software is

consistent with other software artifacts.

C. Refactoring Research Activities

There are few studies that exist in the form of surveys

and literature reviews that have provided informat ion on

software refactoring with respect to the state-of-the-art

and practices. Thus, this section highlights some of the

research activities.

Mens and Tourwe [8] conducted a comprehensive

survey of software refactoring research. In this study,

they focused on the comparison and dis cussion of

existing refactoring activities with their supporting

techniques and formalisms, the different types of

software artifacts that can be refactored, important issues

on tool support as well as the effects refactoring has on

the software process. Moreover, the study discussed on

the steps to be taking to perform refactoring software

artifacts where refactoring opportunities identification is

one such steps. However, no single approach was

considered or analyzed. In another study by Zhang et al

[35], a systematic literature review was carried out. In

their study, about 39 p rimary published studies based on

code bad smells were considered. For each primary study,

Zhang et al [35], focused on different the code smells

under analysis, the underlying goals, methods applied in

exploring the code bad smells, and the supporting

indication that each was problematic during maintenance.

In another study, Wangberg [36] performed a literature

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 49

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

review where about 46 papers were examined in the

perspective of both bad smells and refactoring. The

different focal points of the paper were empirical, design,

contribution, summaries, and so on. In addition, the study

focused on several aspect of both design and non-OO

systems including detecting where refactoring is needed,

how it is performed and the analysis of their quality

impacts. In a similar studies, Misbhauddin and Alshayeb

[37] also performed a systematic literature review on

existing software refactoring research. The study only

focused on refactoring UML models and about 94

primary studies were considered. Their focus areas are

the UML models, the applicable formalisms, and the

software quality impact. In a study by Dallal [17], a

systematic literature review was performed on code-

based refactoring approaches involving about 47 primary

studies that have provided empirical evidences on OO

software refactoring identification opportunities. The

study focused a number of criteria ranging from

refactoring activities to the data set employed.

In the studies highlighted above [8][17][35][36][37],

the study in [8] on ly considered refactoring opportunities

identification as a step to perform refactoring in software

artifact, [35] only considered the identification of code

bad smells though related to refactoring opportunities

identification but different in the problem solved. The

study in [36] focused on refactoring opportunities

identification and others for non-OO systems but no

analysis and empirical evidences were provided for the

proposed refactoring opportunity identification approach.

Moreover, [37] focused on UML model refactoring

which involves only design while [17] approach focused

on refactoring opportunities identification of OO source

code and provided information on the refactoring

activities and the category of the different approaches.

However, what was lacking is an in-depth analysis of

each approach. Therefore in this paper, we extend the

work by [17] to provide analysis of the state-of-the-

practice of each approach under the quality metric-

oriented approach.

III. OBJECT -ORIENTED REFACTORING OPORTUNITIES

IDENTIFICATION

Till date, software refactoring has been seen as one of

the cutting-edge software development practice to

improve the internal structure of legacy software systems

[15]. Nevertheless, before refactoring can be carried out,

the refactoring candidates or the code segment where the

bad smell resides has to be identified in order to decide

on refactorings appropriateness . Identifying where

refactoring is required is a crucial step in the refactoring

process as shown in Fig. 1. However, it is not an easy

task deciding the appropriate refactorings to apply and

the point where to apply it in the code. This challenge

emanates from the fact that wrong decisions can be

destabilizing on the entire structure of the OO software

system [8][14]. Thus, to identify segment of the OO code

where bad smells threatens the quality, three processes

are of importance [24]. Th is is shown in Fig. 2. Moreover,

there are several approaches or techniques that have been

proposed and utilized in the identification of refactoring

opportunities [17][18][25]. These approaches are either

completely automated or semi-automated [12][17][18].

Nonetheless, the goals are centered on reducing the high

cost of maintenance due to increased complexity in order

to increase source code comprehensibility,

maintainability and extensibility [8][14]. Furthermore,

identifying the refactorings opportunities in OO code

manually has been deemed challenging, costly and

timewasting task [17][18]. The existing approaches can

be applied to OO code written in diverse languages and

are grouped into six categories such as quality metric-

oriented, precondition-oriented, cluster-oriented, graph-

oriented, code slicing-oriented and dynamic analysis -

oriented approaches [17]. Each is unique in its way of

operations, some are based on code’s structural

informat ion, semantic information while others are hybrid

in nature [10][12][17]. Thus, this paper provides analysis

of the state-of-the-practice on the quality metric-oriented

approach.

OO Code To Be Restructured
(Package, Class, Method and

Attribute)

The Restructuring Plan
(How To Restructure The OO Code)

Motivation For The Refactoring(s)
(Cost And Benefit Analysis)

OO Code To Be Restructured
(Package, Class, Method and Attribute)

The Restructuring Plan
(How To Restructure The OO Code)

Motivation For The Refactoring(s)
(Cost And Benefit Analysis)

Fig.2. Refactoring opportunity identification steps

IV. ANALYSIS OF METRIC-BASED OBJECT -ORIENTED

REFACTORING OPPORTUNITIES IDENTIFICATION

The identification of refactorings opportunities is an

active research area as reported in the systematic

literature review performed by Al Dallal [17] and several

work has been done. In this section, we performed

analysis on 16 relevant studies whose approaches have

been empirically evaluated. The analysis is performed by

answering the research questions stated in this paper.

A. RQ1: How are the Opportunities for Refactorings

Identified in OO Source Code?

Based on the 16 studies considered in this paper, the

approaches that utilized software metrics employed the

use of either structural, semantic or structural and

semantic information to identify the bad smells in OO

code in order to apply the appropriate refactorings to fix

them [10][12][18]. Each approach has its unique

operations in identify ing the opportunities for either a

single or mult iple refactorings. However, some of the

approaches shared identification techniques, though

designed for d ifferent refactorings operations. The

approaches that utilized code structural informat ion

employed prediction models whiles others only relied on

50 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

both structural and sematic in formation. We provide

analysis of each to exp lore their state-of-the-practice as

follows:

Structural Information-based Approach: In this

approach, three studies are known where two employed

predictive model: Al Dalal [18] and Kosker et al [26]

while the approach by Al Dallal and Briand [25] relied on

the code structural information using either OO metrics,

traditional metrics or hybrid of them to identify

opportunities for refactorings.

“Constructing models for predicting extrac t

subclass refactoring opportunities using object-

oriented quality metrics”: Al Dalal [18] built a model to

predict opportunities for refactorings using empirically

validated quality metrics and logistic regression (LR) as

statistical technique. The study first exp lored empirically,

the capabilit ies of some existing metrics: 25 size,

cohesion, and coupling to predict refactoring

opportunities individually in a g iven class using the

univariate LR. The refactoring activit ies being explored

was the extract subclass refactoring. Moreover, they

applied multivariate LR to select optimal subset of

metrics based on certain practical thresholds to construct

models that predict the classes in the system that actually

requires extract subclass refactoring or not. To this end,

the model that best classify the classes is recommended

and can be applied automatically to pred ict classes that

requires extract subclass refactoring operations alongside

suggestions for system improvement to developers during

maintenance task [18]. According to [17][18], the

automation was necessary to get rid of the inefficiency

posed by the manual process. In general, extract subclass

refactoring opportunity is identified by mutating source

code a class with inheritance relations. The recommended

predictive model was applied to 6 open source systems

written in Java and the results obtained showed an overall

improvement in the quality of classes, given the size,

cohesion and coupling.

“An expert system for determining candidate

software classes for refactoring”: Kosker et al [26]

proposed approach to predict refactorings opportunities

based on expert system. The study employed complexity

metrics of classes and Naive Bayes as prediction model

based on machine learn ing to identify three refactoring

operations such as extract superclass, extract interface

and push members down. The study proposed and

utilized complexity metrics to analyze complexity in OO

code. It then constructed a prediction model using

weighted Naive Bayes with InfoGain heuristic as the

learner [26]. Moreover, class informat ion were utilized

and the modelling of the problem was considered as two-

way classification problem with results that that suggest

if a class is to be refactored or note. Based on the

classifier results, classes that need refactoring can then be

figured out by the engineers to identify the appropriate

refactorings. The approach was empirical evaluated on a

local GSM Operator Company system called Trcll1

project implemented in Java to assess its performances.

The results obtained showed that the approach works

better and by predicting which classes requires

refactoring, effo rt to inspect code manually are reduced,

assist in identifying complex and difficult code segments

and as well, reduce the overall maintenance cost.

“A precise method-method interaction-based

cohesion metric for object-oriented classes”: Al Dallal

and Briand [25] also proposed a cohesion metric based on

pre-existing cohesion metrics of classes that relied mostly

on method-method interactions (MMI) metrics to identify

where refactorings are needed in code. The metric called

Low-level design Similarity-based Class Cohesion

(LSCC) [25], was used to quantify the degree of

communicat ion between methods in a class. It collects

common attributes that exis t between methods in a class

and used them to quantify the degree of similarity.

Moreover, a mathematical-based refactoring procedure

for LSCC metric was proposed alongside their objectives.

The refactoring activit ies detected by LSCC are the move

method and extract class refactoring. The metric was

validated both theoretical and empirically for the

identification of refactoring opportunities originating

from weakly cohesive classes. Theoretically, LSCC

metric was validated for compliance with essential

properties of the attribute it measured, while the empirical

validation was to test its statistical relationships with

external quality attributes [25]. By case study, [25]

carried out empirical evaluation on 4 Java software

systems, open source from d iverse domains alongside 11

MMI cohesion metrics. The goal was to explore the

association between LSCC, different cohesion metrics

and class’s faults. The results obtained indicates that

LSCC is a better measure to guide Software Engineers in

the refactoring of OO classes. In a nutshell, the indication

is that cohesion metrics such as LSCC can better exp lain

the quality of OO classes more precisely in terms of fault

proneness. However, the limitation is that, LSCC is not

able to differentiate class attributes and methods of

diverse access level modifiers.

Structural and Semantic Information-based Approach:

Approaches based on both structural and semantic

information are as follows:

“Automating extract class refactoring: an improved

method and its evaluation”: Bavota et al [10] approach

analyzes a class that need refactorings to detect groups of

methods which are considered strongly and closely

related for the creation of new class. The new class is

expected to have higher cohesion and small increase in

coupling value than the original class. For such class, the

approach automatically apply ext ract class refactoring to

fix the identified bad smell by suggesting appropriate

way to split the initial class, while also finding

appropriate classes number that can be created. To

identify where refactoring is needed, the technique

employed a two-steps clustering algorithm that depicts

graphical representation. It starts by parsing the class to

be refactored to construct a class method-by-method

matrix to identify pair of methods likely to be in same

class. Moreover, the informat ion obtained at that stage is

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 51

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

used to identify the chain of methods after removing

irrelevant structural or semantic associations between

them from the graph based on certain threshold. Lastly,

the identified chain are merged using a threshold called

minLength to identify extracted classes considered to be

trivial. To assess its performances, the approach was

empirically evaluated using 5 Java open source software

systems. In the first instance, it was artificially assessed

using 50 Masters Students to evaluate the impact of the

refactoring operations on OO software systems’ cohesion

and coupling. Secondly, 15 Masters Students refactored

11 classes that have been previously ext ract class

refactored by the real developers in d ifferent versions of

the systems. The results obtained showed the approach

strongly increases the cohesion and slightly increases the

coupling of the refactored class. Consequently, it can

assist software engineers to carry out extract class

refactoring efficiently.

“Using structural and semantic measures to

improve software modularization”: Bavota et al [19]

approach used structural and semantic measures to re-

modularize or split software package having low

cohesion into software packages that is considered

smaller and more cohesive. This approach shared the

same identificat ion technique with [10]. However, two

class-level coupling metrics were utilized to achieve

package re-modularizat ion. The metrics are In formation-

Flow-based Coupling (ICP) and the Conceptual Coupling

Between Classes (CCBC) to measure package cohesion

which captured the classes’ structural and semantic

relationships respectively. These metrics were used to

analyze the cohesion of software packages taking

dependences and classes’ responsibilit ies in the package

into consideration. The information elicited are

automatically use to define which classes should belong

in a package as well as recommends how to divide the

packages. Specifically, just like in [10], it takes a package

to be refactored and built a class-by-class matrix in order

to find class groups that are s trongly related to form a

package using certain threshold. In this case, if the

extracted chains is one, no suggestion is made, otherwise,

new packages are suggested having higher cohesion value

than the initial one. Finally, the minLength threshold is

used to identify triv ial chains , calculate the coupling

between the chains that are trivial and not as well as

merging. The approach was e mpirically evaluated by

conducting a case study using 5 open source Java systems

and 4 students’ software systems. The results indicated

improvement of package decomposition with minimal

increase in coupling as well as commendable re-

modularizations solutions .

“Improving software modularization via automated

analysis of latent topics and dependencies”: Bavota, et

al [12] approach is based on automation to enhance

software package modularization v ia move class

refactoring when taking the structure and the content of

packages into consideration. It operates by employing

source codes’ latent topics analysis as well as structural

dependences to suggest move class refactoring using

Relational Topic Models (RTM) [12]. The topics

removed from packages and classes identifies the

refactoring activit ies for classes to be moved to a more

suitable package alongside some justification fo r it. In

addition, a tool called R3 was developed that automated

the whole process. R3 modelled the analysis using

structural and semantic information which helps in

exploring the software package quality from both a

conceptual and structural perspective [12]. In R3,

semantic information are first ext racted from classes and

placed in a matrix called term-by-document utilized by

the RTM to obtain the semantic associations between

classes as well as expressing their topic distribution

model. Static analysis is then used to obtain class

dependencies and package composition using matrix

called structural coupling and package decomposition

respectively. The structural coupling matrix furn ished the

RTM with class dependencies information while the

package decomposition matrix is used to consider

developers’ design decisions to ensure fine-grained re-

modularization. With these original code design

informat ion, a suggestion for move class refactoring

operation can be issued by the RTM technique as long as

the quality of the original design is improved. To

facilitate decision, R3 offers an assessment and reasons

for the suggested refactorings in the form of a confidence

level and qualitative data. To assess the performances of

R3, two empirical studies were conducted on 9 software

systems. The results showed about 30% reduction in

coupling and more than 70% meaningful

recommendations.

“Identifying method friendships to re move the

feature envy bad s mell (NIER track)”: Oliveto et al [11]

approach is called the MethodBook, specifically design to

identify feature envy code smell and automatically

applies move method refactoring through RTM method

used in [12] to fix it. This approach employed the method

utilized in Facebook where users’ profiles are analyzed to

recommend new friends or groups . In the perspective of

OO software, MethodBook uses OO methods and classes

to recommend the movement of a particular method to a

class if the class host majority of friends of the method. It

operates by first identifying methods friendships and then

the envy class. MethodBook analyze the structural and

conceptual associations between methods and employed

RTM to determine g roups of methods with many shared

responsibilit ies that constitute friendship. The intuition is

that, methods that share several responsibilities should be

in the same class. Thus, if it found that friends of a

method, M that reside in a class Am belongs to another

class Bf, then M is more related to methods in Bf than Am

in terms of responsibilities sharing. In that case, feature

envy code smell is present and MethodBook fix this

defect automatically by recommending refactoring

operations of move method where M is relocated to Bf

where large number of its friends resides. To assess the

performance of MethodBook, Oliveto et al [11]

performed a preliminary empirical evaluation on software

system known as ArgoUML version 0.16, an open source.

The results obtained showed significant refactoring

solutions that assist software engineers avoid feature envy

52 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

code smell during development and maintenance.

“Methodbook: recommending move method

refactorings via relational topic models”: Bavota et al

[21] proposed a novel method to specifically detect bad

smell in code feature envy and automatically fix them

with move method refactoring. Their approach is also

called the Methodbook and is based on the approach of

R3 - RTM discussed in [11] and [12]. By employing

RTM, Methodbook can identify class having the highest

number of method friendships which is used to

recommend refactoring operations of move method. It

utilizes source codes’ conceptual and structural

informat ion to identify feature envy instances using the

associations between methods. With the Methodbook, the

informat ion collected from the code are placed in a term-

by-document matrix and utilized RTM to captured the

semantic relationships between methods and express a

topic distribution model among them. In addition, the

structural dependencies (interaction matrix and shared-

data matrix) and the initial design in formation (orig inal

design matrix) are derived using static analysis by the

Methodbook. These structural matrices and the

informat ion they hold (i.e. interaction among the methods

and the design decisions made by the developers) are

utilized by the RTM to recommend move method

refactoring. However, the suggestion is only accepted if

there is clear indicat ion of design quality improvement ,

otherwise it is not accepted. To assess the performances,

Methodbook was empirically evaluated in two case

studies using 6 software systems in the first study and on

80 developers in the second study. The goals were

assessing if design quality was improved by Methodbook

as well as their refactoring recommendations . The results

obtained showed precise and significant move method

refactoring recommendations by Methodbook.

“Playing with refactoring: identifying extract class

opportunities through game theory”: Bavota et al [20]

approach employs the theory of game to identify the need

for extract class refactoring in OO source code. It was

modeled as a non-cooperative game involving two

players, with each player having the duty of creating a

different class from the methods founds in the orig inal

class under refactoring. The assumption is that, the initial

class has to be decomposed into two or more classes with

each being more cohesive and less coupling than the

init ial class. Once the splitting is done, it is the software

engineers’ responsibility to analyze and ensure that

cohesion and coupling are satisfied, otherwise, the

approach is reapplied on the newly created classes. The

approach starts with playing with methods where each

player selects methods to extract, taking impacts on class

cohesion and coupling into account. It then ends with

payoff matrix computation using measures of Structural

Similarity between Methods (SSM), Call-based

Interaction between Methods (CIM) and Conceptual

Similarity between Methods (CSM) to capture the

structural and semantic of the classes. To assess the

performances, Bavota et al [20] empirically evaluated the

study using 2 Java software systems which is open source

and the results indicated the usefulness and benefits of

game theory.

“JDeodorant: identification and removal of feature

envy bad s mells”: Tsantalis and Chatzigeorgiou [27]

proposed an approach to identify opportunities for

refactorings using a tool called JDeodorant. The tool was

developed as eclipse plug-in designed to automatically

detect feature envy in Java software systems, rank and fix

them with move method refactoring. JDeodorant operates

by first analyzing the relationships between source codes

and modifies it based on the user’s operation to detect

bad smell known as feature envy bad smell. The code bad

smell is detected if the d istance of a method in a class

from other classes is less than the distance from its own

class. It then ranks the appropriate refactorings based on

its effects on the design and lastly, applies move method

refactoring as the appropriate refactoring. Moreover, to

apply move methods refactoring, it first defines important

set of preconditions that determine if the refactoring

solution can preserve the design and its behavior and

secondly, outlines an entity placement metric to assess a

possible refactoring recommendation quality. An

empirical studies was performed on two systems: Video

store and LAN-simulation. The results obtained shows

that, for the Video Store, JDeodorant was able to identify

six out of six cases of feature envy code smells while

seven out of eight of such cases were identified for LAN-

simulation system.

“Aries: refactoring support environment based on

code clone analysis”: Higo et al [28] approach was

designed to specifically detect the existence of code clone.

To detect clone in software system, Higo et al [28] used a

previous developed tool called CCFinder with processes

involving lexical analysis, transformation, match

detection and formatting. Moreover, to identify which

fragment in the code clone that needs to be refactor,

CCFinder searches for cohesive code fragment and

invoke a method called CCShaper to detect clone pairs,

provide syntax in formation and then extract code clone

structural blocks based on the clone pairs and structural

blocks informat ion of location. Using this informat ion, it

then suggests appropriate refactorings such as pull up

method or ext ract methods to get rid of the clone in the

code. The process was facilitated using three metrics

which are the Number of Referred Variables (NRV),

Number of Assigned Variab les (NAV) and the Dispersion

of Class Hierarchy (DCH) [28]. In addit ion, the study

developed a support tool in Java, called Arise. Arise has

the capability to automatically detect code clone,

characterize them using those metrics and finally suggest

which code clones to remove alongside how to remove

them. The usefulness of Aries was empirically evaluated

on a system called Ant 1.6.0 and the results shows it can

support software maintenance more effectively.

“A metric-based approach to identifying

refactoring opportunities for merging code clones in a

Java software system” : Higo et al [29] proposed another

technique to identify where refactoring is required in OO

code based on metrics set that recommend how to

refactor source code clones. It operates just the same way

as the one in [28] in the detection of clone codes.

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 53

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

However, a merging technique was introduce that runs

through detection, extraction and measurement phases.

The measurement phase utilizes the measures of DCH,

NRV and NAV of [28] to recommend appropriate

refactorings to apply. With the metrics, the approach can

identify needs for possible refactorings such as super

class, extract class, extract method, form template method,

pull up method, move method, pull up constructor and

parameterize Method. The code clones merging approach

was also implemented in Aries which offers metrics

which indicates certain refactoring operations but do not

suggest the refactoring operations. It was also empirically

evaluated using Ant 1.6.0 and the results obtained shows

the technique can efficiently merge code clone.

“A new design defects classification: marrying

detection and correction”: Mahouachi et al [13]

proposed a new approach to classify code defects using

possible corrections. Unlike other approaches where

defect detection and correction steps were addressed

separately, this approach introduce a new classification

rules that combines code defects identificat ion and

correction steps generated using genetic programming.

With the combination, each defect group has almost the

same refactoring operations that can be applied to fix it.

Mahouachi et al [13] claimed th is approach can be used

to identify all types of refactorings operations. The

approach inputs are set of code smells with the

appropriate refactorings to correct them and takes set of

quality metrics as well as a comprehensive list of

refactoring operations to produce output in the form of

rule set. The resulting rule is generated by combin ing

metrics, cut-off threshold and the appropriate refactorings

in a g iven rule expression. To create ru les, the threshold

value are assigned arbitrarily to each metric and

refactoring operation which are joined within logical

expressions with OR and AND. In this case, ru les set that

best identify defects set and the corresponding refactoring

operations stands the solution to the defect identification

and correction problem. Mahouachi et al [13] performed

an empirical studies on 6 open-source Java systems and

the results showed a high precision and recall correction

scores on the different systems used.

“Recommending move method refactorings using

dependency sets”: Sales et al [30] proposed approach

specifically detect the need for move method refactoring

operations using methods’ static dependencies set. The

suggestion to move a method is given by computing the

similarities between dependencies of source method and

target methods. That is, the approach operates by

identifying methods residing in an inappropriate classes

and then recommends their movements to more

appropriate classes. The approach utilizes methods’ static

dependencies set, MA in a class A, the source class and

MB in another class B, the target class by computing their

similarities. To this end, two similarity coefficients are

computed such as dependencies similarity between MA

and other methods in A as well as between MA and other

methods, MB in B. If the similarity between MA and MB is

more than MA and other methods in A, it thus indicate

that, MA has to be moved to class B. furthermore , the

study implemented a tool called JMove. To evaluate its

performances, an empirical studies was carried out using

Qualitas Corpus version [30]. The results achieved

showed high average precision and recall scores which

are comparatively better than results from JDeodorant in

terms of move method refactorings recommendations.

“Identifying Fragments to be extracted from long

methods”: Yang et al [31] approach was designed to

automatically detect the presences of long method bad

smells in a class and recommends ext ract method

refactoring operations to fix it. The study proposed a

prototype tool called AutoMeD to assist software

engineers to get rid of long methods during software

development and maintenance. The approach takes a

class as input then detects long methods in the class,

breaks the long methods into fragments according to their

structures, compose the fragments to form larger

compound fragments and gather variables from each

fragment, move variable declarat ions to ease coupling

among different fragments while preserving its behaviors.

In addition, it then calculate the value of coupling among

fragments and lastly, sort the fragments and suggest

candidate fragments for the refactoring operations. The

recommendation for extract method is highly based on

coupling and other informat ion of the fragments. To

assess if AutoMeD helps to reduce refactoring cost or

improve software quality, the study conducted an

empirical studies on an open source project known as

ThoutReader. The results obtained showed approximately

40% reduction in long methods refactoring cost.

“Predicting classes in need of refactoring: an

application of static metrics”: Zhao and Hayes [22]

proposed a novel approach to predict classes that requires

refactoring operations. The approach utilized complexity

and size metrics on the classes under consideration by

computing the weighted average metric values to rank the

classes. In this case, classes with high ranks are given a

high priority for refactoring without suggesting

appropriate refactoring operations. This however, poses a

limitat ion as the approach can’t differentiate between

different refactoring operations. The study implemented a

maintainability decision support tool with components

such as code repository analyzer (that parses OO code,

find out their structural features, and gather metrics),

maintainability prediction component, and refactoring

planning component and is written in both C and Java.

The study conducted an empirical studies to compare the

predictions made by the tool and that of Java

programmers. The results obtained showed that the

refactoring decision support tool can better help software

engineers that manual operations.

B. RQ2: Of What Importance is Software Metrics during

Refactorings Opportunities Identification?

The primary goal of SE is to develop high quality

software product. However, developing software products

having structural characteristics of h igh coupling and low

cohesion is an indication of poor quality [3]. This in turn,

signifies bad smells in code or design which has to be

removed.

54 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

Table 2. Refactoring Opportunities Identification Summary

Ref. Refactoring Activity PL
System

Type
Tool

Refactoring

Method

Empirical

Evaluation

[18] Extract Subclass Java OS - FA Yes

[25] Move Method, Extract Class Java OS - FA Yes

[10] Extract Class, Java OS - FA Yes

[19] Move Class Java OS,SP - FA Yes

[12] Move Class Java OS,SP,CP R3 FA Yes

[21] Move Method Java OS,SP,CP - FA Yes

[20] Extract Class Java OS - FA Yes

[27] Move Method Java AP JDeodorant FA Yes

[28] Extract Method, Pull Up Methods Java OS Arise FA Yes

[29]

Move Method, Extract Method, Form
Template Method, Pull Up
Constructor, Pull Up Method,
Parameterize Method, Extract Class,

Extract Superclass

Java OS Arise FA Yes

[13] Any RA Java OS - FA Yes

[11] Move Method Java OS - FA Yes

[30] Move Method Java OS JMove FA Yes

[31] Extract Method Java OS AutoMeD FA Yes

[22] Extract Class Java SP - SA Yes

[26]
Extract Superclass, Push Members
Down, Extract Interface

Java CP - SA Yes

*PL=programming language, *OS=open source, *SP=student project, *CP=commercial project, *FA=full automation, *SA=semi-automation

*Ref=reference.

However, in o rder detect the presence of these smells,

software metrics are vital. Software metrics offers the

tool to assess, monitor, control and take useful decisions

aimed at improving the quality of the software [32][34].

Existing software metrics are broadly classified into

traditional metrics and OO metrics [34]. In particu lar, OO

product metrics captures different structural features of

OO software systems such as class complexity, coupling

and cohesion [7][15]. Today, several OO metrics exist

and empirically validated in the assessment of OO design

and codes quality [32][33]. In the 16 studies analyzed in

this paper, we have seen the impact of software metrics in

the assessment and improvement of software quality.

They played a crit ical ro le as they offer developers the

opportunities to pinpoint problematic bad s mells in code

and decide on whether to apply refactorings or not. In

particular, software measures relied on in the refactoring

opportunities identification were mostly traditional

metrics such as complexity, size, etc. and the OO metrics

such as cohesion and coupling measures. In the

perspective of OO measures, cohesion refers the degree

of relatedness of members found in the class while

coupling is the degree of interdependencies of a class and

other classes [11][21][25]. These OO measures and size

such as software lines of code (SLOC) were mostly used

in the identification of bad s mells in code. They actually

measured the degree of difficulty faced by developers in

performing maintenance tasks on the system. Studies that

used these measures are

[11][12][18][19][21][25][27][28][31] and their

refactoring goal was to achieve h igh cohesion and low

coupling.

C. RQ3: Do Traditional Metrics Played Same Role as

OO Design Metrics in the Identification of Refactorings

Opportunities in OO Source Code?

In the 16 studies considered, we found that software

measures played a critical role in the identification of

opportunities for refactoring. Several studies employed

OO design measures, some tradit ional measure while

some employed a combination of both metrics. However,

in the improvement of OO software quality, OO metrics

are specifically used since the traditional metrics are

insufficient in capturing the structural attributes of OO

software [32][34]. Thus, in terms of the role played by

both, it is interesting to know that OO metrics played

more ro le than the traditional counterpart. Though both

metrics were crucial in the identification of refactoring

opportunities (bad smells) in source code, only OO

metrics assisted in the decision on which suitable

refactorings to apply. For instance, in all the studies that

utilized OO metrics or combination of OO and trad itional

metrics, the studies were ab le to identify where

refactoring is needed in code and automatically suggest

appropriate refactorings operations

[10][11][12][18][19][20][21][25][27][28][29]. However,

the studies that used only traditional measures such as

size and complexity metrics only identified such

opportunities without suggesting the appropriate

refactoring operations to apply [22][26]. In Zhao and

Hayes [22] and Kosker et al [26] approaches, once a class

is identified as a refactoring candidate, it is the

responsibility of the engineers to manually analyze the

source code in order to decide on which refactorings

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 55

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

operations to apply.

V. DISCUSSION

Refactoring is an indisputably a technique that is

employed to gradually improve the internal complexity of

OO software systems to prepare them for further

enhancements as the software aged. However, the process

is not an easy task as code bad smells must be detected

first, decide on appropriate refactorings to apply as well

as to check if quality is improved or not. To identify

segments in the source code that need refactorings,

several approaches has been proposed and developed. In

this study, we analyzed 16 studies that based their

approaches on quality metrics. The summary of the

analysis is shown in Table 2. In the studies considered for

analysis, we found out that most refactoring approaches

were designed to automatically identify refactoring

opportunities and recommends appropriate refactorings to

fix them, while few were based on semi-automation for

the identification without suggesting appropriate

refactorings [22][26]. In addit ion, some of the approaches

can only detect needs for a single refactoring or couple of

refactorings activities. (See Table 2). As shown in Table

2, move method was the highest refactoring operations’

need identified by the different approaches followed by

extract class, extract method and so on.

Furthermore, to detect where refactoring are required,

the approaches employed source code structural and

semantic informat ion by utilizing software metrics. Both

OO design metrics and tradit ional metrics were employed

by software engineers in the identification of refactoring

opportunities in all the studies considered. However, we

found that both metrics did not played the same role.

While both metrics helped in the identificat ion of

refactoring opportunities, only OO metrics actually aided

in the decision of which appropriate refactorings should

be applied. The goal of refactorings approaches where all

based on achieving high cohesion and low coupling as

well eliminating clone in code. In addit ion, a ll the studies

empirically evaluated their proposed method and some

went further to implement tools to assist software

engineers in terms of refactorings during software

maintenance. The results obtained from the evaluation

indicates the approach is more effective in the detection

of refactorings opportunities. Moreover, all the studies

assessed the performances of their approach using

software systems developed mostly in Java programming

language and dominated by open source software. No

other software systems developed in other programming

was used in the evaluation.

VI. CONCLUSIONS

In the light of h igh maintenance cost due to increased

software complexity and deteriorated quality, refactoring

offers an approach to improve the maintainability,

understandability, or other elements while keeping the

external code behavior of the software system intact.

However, the software system has to be analyzed to

identify needs for refactorings before it is applied.

Several approaches exist today in that capacity. Thus, this

paper has analyzed several studies , 16 in number on

refactorings opportunities identification. The summary of

the findings is shown in Table 2. In particular, the study

found that several approaches exist, though designed for

either a single or multiple refactorings operations. Move

method and extract class where the most refactorings

operations the approaches were designed to cater for.

Moreover, software metrics played a great role in bad

smells detections and refactoring decisions. The ultimate

goal of refactoring is geared towards achieving high

quality software system via high cohesion and low

coupling. In addit ion, the approaches have been

empirically evaluated and their performance appears

promising for software maintenance.

Based on the findings of this paper, the following

recommendations are important for further research:

a) In order to further establish confidences on the

performances of the refactorings opportunities

identification approaches, more empirical

evaluations should be carried out on applicat ions

developed on other OO programming languages,

other than Java and open source applications.

b) A generic refactoring tool should be developed

that is able to identify opportunities for all

refactorings operations. This is important because

the existing approaches only identify needs for one

or multiple but not all refactorings operations.

In general, due to the mode of operations involve in

identifying refactorings opportunities, we suggest that

developers during software development should

consistently evaluate the quality of their software using

appropriate software measures. This is important to

ensure that the software complexity is reduced which in

turn reduces the high cost of software maintenance.

REFERENCES

[1] Singh, Y. Kaur, A. and Malhotra, R. Empirical validation

of object-oriented metrics for predicting fault proneness

models. Software Quality Journal, vol.18 pp. 3–35, 2010

[2] Ruchika, Malhotra, Nakul Pritam and Yogesh Singh: On
the Applicability of Evolutionary Computation for

Software Defect Prediction. International Conference on

Advances in Computing, Communications and

Informatics (ICACCI, 2014). Pp. 2249 – 2257, 2014

[3] Marcus, A. Poshyvanyk, D., Ferenc, R. Using the
conceptual cohesion of classes for fault prediction in

object-oriented systems. TSE, 34(2):287–300, 2008.

[4] Liu Y, Poshyvanyk D., Ferenc R., Gyimóthy T.,

Chrisochoides N. Modelling class cohesion as mixtures of
latent topics. In: Proceedings of the 25th IEEE

international conference on software maintenance. IEEE

Press, Edmonton, pp 233–242, 2009

[5] Sommerville, I. Software Engineering. Nineth ed.,

Addison-Wesley, 2011.
[6] Bohner, S. A.: “Extending software change impact

analysis into COTS components” Proceedings of the 27th

Annual NASA Goddard Software Engineering Workshop,

56 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

Greenbelt, USA, pp.175 -182, 2000

[7] Lehman MM, Ramil JF. Rules and tools for software

evolution planning and management. Ann Softw Eng

11:15–44, 2001

[8] Mens T, Tourw é T. A survey of software refactoring.
IEEE Transaction on Software Engineering, 30(2): 126–

139, 2004.

[9] Olbrich S, Cruzes DS, Basili, V, Zazworka N. The

evolution and impact of code smells: a case study of two
open source systems. In: Proceedings of the 2009 3rd

international symposium on empirical software

engineering and measurement, ESEM ’09, pp 390–400,

2009.

[10] Bavota, G. De Lucia, A. Marcus, A. Oliveto, R.
Automating extract class refactoring: an improved method

and its evaluation, Empir. Softw. Eng. (2013) 1–48.

[11] R. Oliveto, R. Gethers, M., Bavota, G. Poshyvanyk, D. De

Lucia, A. Identifying method friendships to remove the

feature envy bad smell (NIER track), In: Proceedings of
the 33rd International Conference on Software

Engineering, 2011, pp. 820–823

[12] Bavota, G. Gethers, M. Oliveto, R. Poshyvanyk, D. De

Lucia, A. Improving software modularization via

automated analysis of latent topics and dependencies,
ACM Transact. Softw. Eng. Methodol. 23 (1) (2014).

[13] Mahouachi, R. Kessentini, M. Ghedira, K. A new design

defects classification: marrying detection and correction,

in: Proceedings of the 15th International Conference on
Fundamental Approaches to Software Engineering, 2012,

pp. 455–470

[14] Fowler, M. Refactoring: Improving the Design of Existing

Code. Addison-Wesley, Boston, MA, USA, 1999

[15] W. Pan, B. Li, Y. Ma, J. Liu, Y. Qin, Class structure
refactoring of object-oriented softwares using community

detection in dependency networks, Frontiers Comput. Sci.

China 3 (3)396–404, 2009.

[16] Alshayeb, M. Empirical investigation of refactoring

effect on software quality. Information and Software
Technology 51 (2009) 1319–1326

[17] Al Dallal, J. Identifying refactoring opportunities in

object-oriented code: A systematic literature review.

Information and Software Technology 58, 231–249, 2015
[18] Al Dallal, J. Constructing models for predicting extract

subclass refactoring opportunities using object-oriented

quality metrics, J. Inform. Softw. Technol. Arch. 54 (10)

pp.1125–1141, 2012.

[19] Bavota, G. De Lucia, A. Marcus, A. Oliveto, R. Using
structural and semantic measures to improve software

modularization, Empir. Softw. Eng. 18 (5) (2013) 901–

932.

[20] Bavota, G. Oliveto, R. De Lucia, A. Antoniol, G.

Gueheneuc, Y. Playing with refactoring: identifying
extract class opportunities through game theory, in: IEEE

International Conference on Software Maintenance

(ICSM), 2010, pp. 1–5.

[21] Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, A. De

Lucia, Methodbook: recommending move method
refactorings via relational topic models, IEEE Trans.

Software Eng. (2013)

[22] Zhao, L. Hayes, J. Predicting classes in need of

refactoring: an application of static metrics, in:
Proceedings of the 2nd International PROMISE

Workshop, Philadelphia, Pennsylvania USA, 2006

[23] Tokuda, L., Batory, D. Evolving object-oriented designs

with refactorings. Automated Software Engineer ing 8,

89–120, 2001.
[24] H. Liu, Q. Liu, Y. Liu, and Z. Wang. Identifying

renaming opportunities by expanding conducted rename

refactorings. IEEE Transactions on Software Engineering,

(99):1–1, 2015.

[25] Al Dallal, J., Briand, L.C. A Precise Method-Method

Interaction-Based Cohesion Metric for Object-Oriented
Classes, ACM Transact. Softw. Eng. Methodol. (TOSEM)

TOSEM 21 (2) (2012). Article No. 8.

[26] Kosker, Y. Turhan, B. Bener, A. An expert system for

determining candidate software classes for refactoring,
Expert Systems with Applications 36 (6) (2009) 10000–

10003

[27] Fokaefs, M. Tsantalis, N. Stroulia, E. Chatzigeorgiou, A.

JDeodorant: Identification and removal of Feature Envy

bad smells, in: Proceedings of IEEE International
Conference on Software Maintenance, 2007, pp. 467–468.

[28] Higo, Y. Kamiya, T. Kusumoto, S. Inoue, K. Aries:

Refactoring support environment based on code clone

analysis, in: Proceedings of the 8th IASTED International

Conference on Software Engineering and Applications,
Article No. 436–084, 2004, pp. 222–229.

[29] Higo, Y. Kusumoto, S. Inoue, K. A metric-based

approach to identifying refactoring opportunities for

merging code clones in a Java software system, J.

Software Maintenance Evolution.: Res. Practice 20 (6)
(2008) 435–461

[30] Sales, V. Terra, R. Miranda, L.F., Valente, M.T.

Recommending move method refactorings using

dependency sets, in: IEEE 20th Working Conference on
Reverse Engineering (WCRE), 2013, pp. 232–241.

[31] Yang, L. Liu, H. Niu, Z. Identifying Fragments to be

Extracted from Long Methods, in: Proceedings of the 16th

Asia-Pacific Software Engineering Conference, 2009, pp.

43–49.
[32] Chidamber, S.R., Kemerer, C.F.A metrics suite for object

oriented design. IEEETransactions on Software

Engineering 20, 476–493, 1994

[33] Isong, B.E. and Ekabua, O.O. “A Systematic Review of

the Empirical Validation of Object-oriented Metrics
towards Fault-proneness Prediction”. International Journal

of Software Engineering and Knowledge Engineering

(IJSEKE) WSPC. Vol. 23, No. 10. pp. 1513–1540, 2013.

[34] Fenton, N., Neil, M. Software metrics: successes, failures,
and new directions. Journal of Systems and Software vol.

47, pp. 149-157, 1999

[35] Zhang, M., Hall, T., Baddoo, N. Code Bad Smells: a

review of current knowledge, J. Software Maintenance

Evolut.: Res. Practice 23 (3) (2011) 179–202.
[36] Wangberg, R.D. A literature review on code smells and

refactoring, Master Thesis, Department of Informatics,

University of Oslo, 2010.

[37] Misbhauddin, M. Alshayeb, M. UML model refactoring: a

systematic literature review, Empir. Softw. Eng. (2013)
1–46.

Authors’ Profiles

Isong Bassey received B.Sc. degree in

Computer Science from the University of
Calabar, Nigeria in 2004 and M.Sc. degrees

in Computer Science and Software

Engineering from Blekinge Institute of

Technology, Sweden in 2008 and 2010
respectively. Moreover, he received a PhD

in Computer Science in the North-West University, Mafikeng

Campus, South Africa in 2014. Currently, he is a Lecturer in the

 Analysis of Metric-Based Object-Oriented Code Refactoring Opportunities Identification Approaches 57

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 1, 46-57

Department of Computer Sciences and a Faculty member of

FAST Mafikeng Campus, North-West University. He is also a

member of IEEE, IEEE Computer, Communication and

Education Societies. His research interests include Software

Engineering, Requirements Engineering, Software Maintenance,
Cybersecurity, Software-Defined Networks, Cloud and Mobile

Computing, ICT4D and Computer Science Education.

Nosipho Dladlu obtained her B.Sc. (Hons)

and M.Sc. degrees in Computer Science

from the North-West University, Mafikeng,

South Africa in 2011 and 2014 respectively.

Currently, she is a Lecturer in the
Department of Computer Sciences and a

Faculty member of FAST, North-West

University, Mafikeng Campus. Her research interests include:

Cloud Computing, Mobile Computing, Networks and HCI.

Bassey Ele (MCPN) obtained a Bachelor

of Science degree (B.Sc.) in Computer

Science from University of Calabar,

Nigeria in 2001. Moreover, he obtained
M.Sc. and Ph.D. in Computer Science from

Ebonyi State University, Nigeria in 2010

and 2015 respectively. He is currently a

Lecturer in the Department of Computer
Science, University of Calabar, Nigeria. Also, he is a member of

the Nigerian Computer Science (NCS) and Computer

Professional Registration Council of Nigeria (CPN). His

research interests include Expert Systems, Network Security

and Cybersecurity and Software Engineering.

Etim Duke obtained his B.Sc. degree in

Computer Science from the University of

Calabar, Nigeria in 1999 and M.Sc.
degree in Computer Science from the

North-West University, Mafikeng, South

Africa in 2016. He is currently a research

student in the Department of Computer
Science at the North-West University. His

research interests include: Software engineering, Cybersecurity,

Cloud Computing, and ICT4D.

How to cite this paper: Bassey Isong, Nosipho Dladlu, Etim

Duke, Bassey Ele,"Analysis of Metric-Based Object-Oriented

Code Refactoring Opportunities Identification Approaches",

International Journal of Information Technology and Computer
Science(IJITCS), Vol.9, No.1, pp.46-57, 2017. DOI:

10.5815/ijitcs.2017.01.06

