
I.J. Information Technology and Computer Science, 2017, 10, 1-12
Published Online October 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.10.01

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

An Heuristic Approach to Solving the one-to-one

Pickup and Delivery Problem with Three-

dimensional Loading Constraints

Rémy Dupas
Univ. Bordeaux, CNRS, IMS, UMR 5218, 33405 Talence, France

E-mail: remy.dupas@gmail.com

Igor Grebennik
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

E-mail: igorgrebennik@gmail.com

Oleksandr Lytvynenko and Oleksij Baranov
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

E-mail: litvinenko1706@gmail.com, aleksey.baranov@gmail.com

Received: 17 May 2017; Accepted: 01 July 2017; Published: 08 October 2017

Abstract—A mathematical model and a solving strategy

for the Pickup and Delivery Problem with three-

dimensional loading constraints regarding a

combinatorial configuration instead of a traditional

approach that utilizes Boolean variables is proposed. A

traditional one-to-one Pickup and Delivery Problem in a

combination with a problem of packing transported items

into vehicles by means of the proposed combinatorial

generation algorithm is solved.

Index Terms—Pickup and Delivery problem, vehicle

routing, 3D loading constraints, combinatorial

configuration, generation, packing of parallelepipeds.

I. INTRODUCTION

A vehicle routing problem (VRP) plays an important

role in the logistics management. A wide variety of the

vehicle routing problems has been studied lately [1-3].

Different classes of the vehicle routing problem describe

various practical situations, but they are mostly focused

on a common problem – an efficient use of a set of

vehicles that must serve customers‘ orders.

In addition to routing vehicles, real-world

transportation companies also require solving a problem

of loading vehicles which means that it is not sufficient

enough only to decide how to route vehicles, but also

how to load cargos to them. Such an integrated problem

was introduced in [4] for the first time and it was called

as the ―capacitated vehicle routing problem‖ (CVRP)

with three-dimensional (3D) loading constraints (3L-

CVRP). In 3L-CVRP, every customer requires

transporting one or a few parallelepipeds (or boxes)

where each one is represented by a 3D rectangular

loading space and its weight (in contrast to the traditional

CVRP, where an only weight is given). Surveys [5] and

[6] show a recent state of the art for solving the integrated

vehicle routing and loading problems.

One of the most popular VRP models is the Pickup and

Delivery Problem (PDP) [7-10], where every customer

has to pick up some item/items at one location and to

deliver it/them to another location. The Pickup and

Delivery Problem arises naturally in several contexts such

as urban courier services and door-to-door transportation

systems [11].

The Pickup and Delivery Problem (PDP) is about

routing a set of vehicles in order to serve a set of

transportation requests between given origins (pickup

points) and destinations (delivery points). Every route

should start and finish at a pre-defined depot and satisfy

pairing and precedence constraints: the origin (a pickup

point) should precede the destination (a delivery point),

and every pickup-delivery pair should be visited by the

same vehicle [11]. There are a lot of additional

constraints on PDP such as time windows [7, 12], time

constraints related to vehicles availability [10], etc.

A lot of heuristics and metaheuristics were used for

solving PDP: the reactive tabu search [13], the tabu

embedded simulated annealing [14], the squeaky wheel

optimization [15], the grouping genetic algorithm [16],

the construction heuristic [17], the hybrid algorithm (the

simulated annealing and the large neighborhood search)

[18], the adaptive large neighborhood search, the indirect

local search with greedy decoding [19], and the guided

ejection search [20] etc.

In case of the vehicle routing problem, solving the

Pickup and Delivery Problems in the real-world

applications also demands taking the loading constraints

into account. Articles which solve PDP consider such

constraints as LIFO [21] or FIFO [22] buffers, or as the

2D or 3D loading constraints [23-26].

2 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

Despite a wide variety of articles dedicated to PDP, it

is hard or impossible to regulate a balance between a

solution time and a result‘s precision in most of the

solution algorithms. An objective function and all

limitations in PDP are usually described as inequalities

with the help of Boolean variables.

In this article, a mathematical model for the Pickup and

Delivery Problem with the 3D loading constraints which

utilizes combinatorial sets instead of commonly used

Boolean variables is provided. The combinatorial

generation algorithm for solving the described problem is

also given. An advantage of the described algorithm is its

ability to balance between the quality and the time of

solution. The Given solution algorithm produces quite

good results in a reasonable time.

The paper is organized as follows. Section II describes

a mathematical model. Section III gives basic details of

the decision strategy. Section IV demonstrates the

solution algorithm for a lower level. Section V gives

explanations to computational experiments. Conclusions

are given in Section VI.

II. THE MATHEMATICAL MODEL

A. The problem formulation

We are considering the traditional Pickup and Delivery

Problem (PDP) [27], one-to-one, a symmetric case, i.e.

every arc (,)i j is equal to the arc (,)j i and can be

replaced by one edge. The Pickup and Delivery Problem

is modeled on a complete graph (,)G V A where V is a

set of all vertices, {0,1,...,2 1}V n  , where 0 and

2 1n denote a depot and A is a set of all the arcs.

There are v identical vehicles available; each vehicle

has a loading space in the form of a parallelepiped

(defined by a width W , a height H and a length L) and

a weight capacity Q . Every transportation request ni J ,

{1,2,..., }nJ n requires the pickup or delivery of one

three-dimensional item having a width iw , a height ih

and a length il with a total weight iq (iq is positive for

pickups and is negative for delivery points). We assume

that all the items are rectangular boxes.

There are some constraints on the loading items of a

vehicle (the 3D constraints):

1. Inside a vehicle, the items can only be placed

orthogonally; however, they can be rotated by 90

in the width–length plane.

2. The stability constraint: every transported item

should be placed on a vehicle‘s floor; it can be

also placed on top of another item. In such case,

the item should be completely supported by the

one below, i.e. we do not allow any part of the

item to be in limbo.

3. The blocking constraint: we should ensure that

items can be easily unloaded in their delivery point

which means that when a delivery point is visited,

two conditions should be satisfied:

 an item to be unloaded should not be stacked

beneath other items in the vehicle. An item A is

beneath an item B if the interior of the projections

of their bases to the vehicle‘s floor intersects, and

the top of A is not higher than the bottom of B in a

vertical direction;

 the unloaded item should not also be blocked by

other clients‘ items that will be visited later. The

item is also blocked if it overlaps any item of a

next client when it is moved along the L axis

towards a rear door.

The objective is to find a set of at most v routes (one

per a vehicle) such as:

1. Every route begins at the depot and after all clients

have been visited ends at the depot.

2. Every client (i.e. a pair of pickup and delivery

points) is served by the same vehicle.

3. A total weight of transported items does not

exceed a vehicle‘s capacity.

4. Items are packed in a vehicle according to the 3D

constraints.

5. A total cost of all routes is minimized.

B. Designations

P denotes a set of pickup vertexes, {1,2,..., }P n ;

D signifies a set of delivery vertexes,

{ 1, 2,...,2 }D n n n   ;

iq marks a vehicle‘s load at the vertex i ; iq is

positive at pickup nodes {1,2,..., }i n ; it is negative at

delivery nodes { 1, 2,...,2 }i n n n   ;

iw , ih , il signify orthogonal dimensions (a width, a

height and a length) of the item at the vertex i , 2ni J ;

v is a number of vehicles;

Q determines a capacity of a single vehicle (all

vehicles have the same capacity);

, ,W H L are orthogonal dimensions (a width, a height

and a length) of every loading space respectively,

C stands for a set of the pickup-delivery pairs,

{(,)}i iC p d , ip P , id D , i id p n  , ni J ;

1 2, ,...,C C C define a partition of C :

1

j

j

C C




 ,

i jC C  , i J , j J ; each subset jC

corresponds to a vehicle j that serves this set of clients,

j J ,

j jn Card C , j J ,

1
j

j

n n




 ;

(,)c i j is a cost of a traversing edge (,)i j ;

1 2 2
{ , ,..., }

j

j j j
j n

V i i i is a set of all pickup and delivery

 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with 3

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

points included into jC ;

()jP V stands for a set of permutations of elements

from jV that describes all possible paths of the vehicle j;

()
j
k

Q i denotes a current load of the vehicle j at a

moment of arrival to the vertex 2,
j

j
nk

i k J ;

0 0 0 0(, ,)
j j j j

u x y z determines coordinates of a pole of

the placement area in the vehicle j .

C. Decision variables of the problem

1 2(, ,...,)U U U U , 1 2(, ,...,)
j

j j jj
n

U u u u where

(, ,)
j j j j

i i i iu x y z stands for coordinates of the pole of

the item i in the vehicle j ;

()j
jP V  is a route of the vehicle j;

(,), {(,),(,)}
j

i i i i i i ii lw h lw l w w l   marks orientation

of the item i in the vehicle j , ji V , j J .

For n transported items

3

1 2 3 1{ : (, ,) |0 ,i ix R x x x x x l     

2 30 ,0 }i ix w x h    , ni J ,

we have v identical placement areas jD , j J :

3

1 2 3 1{ : (, ,) |0 ,jD x R x x x x x L    

2 30 ,0 }x W x H    .

D. Φ-functions

 -functions [28] make it possible to describe formally

conditions of the mutual non-intersection for two

parallelepipeds and the condition for correct placement of

parallelepipeds in a placement area [29].

To describe the 3D constraints, we use two  -

functions:

(, , ,)
j j jj j

m mi iil
u u v v is used for checking that the item i

(which is determined by coordinates of a pole
j

iu and an

orientation
j

iv) does not intersect with an item m (which

is determined by coordinates of a pole j
mu and an

orientation j
mv);

0 0(, ,)
j j j j

m mm u u v is used for checking that the item m

can be correctly placed into the placement area jD

(which is determined by W (a width), H (a height) and L

(a length) of the vehicle‘s loading space).

(, , ,)
j j jj j

m mi iil
u u v v  1max{ ,

jj
m iix x  

1 2 2, , ,
j j jj j j

m m m i m mi i ix x y y y y         

3 3, }
j jj j

m i m mi iz z z z      ;

0 0(, ,)
j j j j

m mm u u v  10 0min{ , ,
j jj j

m m mx x x x L     

20 0 0, , ,
j j jj j j

m m m my y y y W z z     

30 }
jj

m mz z H     .

If (, , ,) 0
j j jj j

m mim i iu u v v  for all , ,ni m J i m  ,

then there‘s no intersecting pair of items in a vehicle.

If 0 0(, ,) 0
j j j j

m mm u u v  for all nm J , then each item

is placed correctly inside the vehicle‘s loading area.

Thus, items‘ placement in vehicles should be

performed in such a way that the described Φ-functions

are positive.

E. An objective function and constraints

2 1

1 1 2
1 1

[(0,) (,) (,2 1)] min
j

j

n
j j j j

k k n
j k

c i c i i c i n
 


 

     ; (1)

1

() ()
s

j j
k k

k

Q i f i Q



  , 2 jns J  , j J ; (2)

, ();
()

, ();

i

i

q if i n a vertex is a pickup
f i

q if i n a vertex is a delivery


 

 

0 0

(, , ,) 0, , , ,

(, ,) 0, ,

j j jj j
m m nim i i

j j j j
m m nm

u u v v i m J i m

u u v m J

   

  

, .j J (3)

Here 1(0,)
j

c i is a distance between the depot (a fictive

vertex 0) and the first vertex visited by the vehicle j;

2
(,2 1)

j

j
n

c i n  is a distance between the last visited vertex

and the depot (a fictive vertex 2n+1). It should be noted

that the fictive vertexes 0 and 2n+1 designate the same

depot.

III. THE DECISION STRATEGY

We propose a two-level strategy for solving the

problem.

A. An upper level - partitioning

In the upper level, we are splitying a set C into

subsets (clusters) 1 2, ,..., vC C C . Each cluster jC contains

pickup-delivery pairs (,)i ip d which are served by the

vehicle j.

For solving the clustering [30] problem, we chose the

simplest k-means algorithm [31-33]. The traditional k-

means algorithm deals with single points, but we want to

make clusters of pairs (,)i ip d . We are substituting the

4 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

pair (,)i ip d with a single point ik , which is a middle

point between ip and id :

. . . .
. , .

2 2

i i i i
i i

p x d x p y d y
k x k y

 
 

where . ,.x y are coordinates of the points.

B. A lower level – path constructing

In the lower level, we are constructing a route for the

vehicle j for a single cluster jC .

As mentioned above, a permutation j ()jP V

describes a path of the vehicle j. The vehicle‘s route

defines an order of items‘ loading and unloading to/from

the vehicle j .

Every path j should meet all the constraints

described in Section 2. To describe items‘ rotations in the

width-length plane, we substitute each element of j

(which is either a pickup point or a delivery one) by a

vector {(,),(,)}i i i i ilw l w w l , ji V . This combinatorial

permutation is called ―a composition of permutations‖

[34].

So, to construct a route for the vehicle j, we should

choose a permutation j ()jP V so that it minimizes

the objective function (1). The algorithm‘s solution for

this problem is described in the next section.

IV. SOLVING THE ALGORITHM FOR THE LOWER LEVEL

A. The exact solution

To generate permutations j , we use the GenBase

algorithm [35]. It is universal and can be used for

generating a wide variety of different combinatorial sets.

Let us denote a path of the vehicle j as jt  ; let‘s

also call first i vertexes of a path t as a partial path

1 2(, ,...,)i
it t t t .

The GenBase algorithm is recursive: at every level
0 0
2 1 2 1, {0,1...2 1}n ni J J n    , it adds a successive

vertex 1it  to the end of the current partial path

1 2(, ,...,)i
it t t t and obtains a new partial path

1
1 2 1(, ,...,)i

it t t t
 at the next level. At the level i=2n,

the algorithm produces a full path 2nt t .

Elements 1it  should meet the constraints specific to a

particular combinatorial set. At every level 0
2 1ni J  , let

us denote a tuple of all those elements as

1 2(, ,...,)i
kF f f f . So, for each , {1,2... },k kj J J k 

the GenBase algorithm adds a new element 1i jt f  to

the current partial path 1 2(, ,...,)i
it t t t and recursively

calls itself with the new partial path 1
1 2(, ,...,)i

jt t t f  .

To generate all the paths, the GenBase algorithm is

called with an empty path 0 ()t  .

function GenBase(it) {

if 2i n then { ioutput output t  ; exit;}

determine iF ;

for 1,2,...,| |ij F do

 GenBase(1
1 2(, ,..., ,)i

i jt t t t f );

}

For PDP paths, we have following constraints for a

tuple iF :

1) vertexes in it aren‘t duplicated

1 , 1...i zt t z i   ;

2) for every pickup-delivery pair, a vehicle should visit

a pickup point before a corresponding delivery point:

1 1: ()i i zt n z t n t     .

For example, when n=4 (i.e. there are four pickup-

delivery pairs), the delivery point 5 can be added to the

path only if the corresponding pickup point 1 has already

been added to the path;

3) the restriction (2) that limits the maximum vehicle‘s

load should be satisfied;

4) if 1it  is a pickup, it means that a new item will be

loaded into a vehicle, and we should check the 3D-

constraints. For this reason, the algorithm [29] should be

used.

It should be noted that the algorithm [29] has an ability

to rotate every item in the width-length plane for the

optimal packing. Thus, vectors ,i jlw i V , are

determined.

The GenBase algorithm produces a recursive tree,

where every node at intermediate levels i < 2n-1 is a

partial path and nodes at the last level i = 2n-1 are full

paths. At levels i < 2n-1, a tree node is expanded by

adding a new node from iF to a partial path.

Example 1. Let‘s demonstrate how GenBase works

while generating paths for n=2 (the vertexes 1 and 2 are

pickups, and the vertexes 3 and 4 are deliveries).

At first, at the level i=0, 0F consists only of pickup

vertexes 0 (1,2)F  . Each pickup is added to the end of a

current empty path 0 ()t  making a new path (1 (1)t 

in the first case and 1 (2)t  in the second one). After that,

GenBase is called recursively for each vertex t1.

 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with 5

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

At the next level i=1, for the path 1 (1)t  , it is possible

to add either a pickup vertex 2 or a delivery vertex 3

corresponding to the pickup vertex 1. A vertex 4 can‘t be

added because there is no corresponding pickup vertex 2

in the current path 1 (1)t  .

Fig.1. A recursive tree generated by the algorithm

When all full paths have been generated by the

algorithm (so we have the complete tree), a resulting path

will be a path that owns the best value of the objective

function (1).

B. An heuristic solution

A powerful beam search heuristic [36] can be applied

to algorithms that produce recursion tree. The beam

search heuristic is an adaptation of the branch and bound

method where only some nodes are evaluated in the

search tree [37]. At any level, promising nodes are only

kept for further branching, and the rest of nodes are being

pruned off permanently [37].

In terms of our problem, the beam search heuristic acts

at the step of expanding tree nodes (i.e. extending partial

paths with points from the set iF). In an original version,

it takes some predefined amount of ―best‖ points from
iF (a beam width) for further expanding and pruning off

others. We slightly modified heuristic and made the beam

width a relative value – some percent of tree nodes. We

will call it a relative beam width (RBW).

So, for our problem, the beam search heuristic can be

applied as follows:

H1. The algorithm sorts new points from iF by

ascending a distance:

 from the depot, if i=0 (so, the first point in a route

should be as close to the depot as possible);

 a last node in the current path for all other cases.

H2. The GenBase algorithm calls itself recursively

only for the first RBW% of points from iF (RBW is a

predefined parameter). Other nodes are pruned off.

H3. Since checking the 3D constraints is the NP-

complexity task [29], they are checked not when a vehicle

arrives to a pickup point, but time-by-time, with a

probability check_prob  [0;1]. An only exception is the

last level i=2n-1, where we always check the 3D

constraints because it is necessary for the final path to

meet them.

The power of the described algorithm and the heuristic

is that one can regulate a balance between a solution‘s

quality and the algorithm‘s operating time by changing

the RBW value.

Example 2. Let us demonstrate how the heuristic works

for n=4 (points 1-4 are pickups and points 5-8 are

deliveries). Let‘s set RBW=50% which means that we

will expand each tree node with a half of points in iF at

all steps i<2n-1.

At the beginning, at the level i=0, 0F consists of all

pickup vertexes 0 (1,2,3,4)F  . We are sorting them by

distances to the depot. Let‘s assume that we obtain

(2,4,3,1), and we take first two points (2 and 4) for further

expanding. Points 1 and 3 are excluded from further

consideration.

The same idea works for the next levels as well. Let‘s

see what‘s happening at the level 1 for a partial path
1 (2)t  . There‘re four candidates: three other pickups

(1,3 and 4) and a delivery point 6 corresponding to a

pickup point 2 (6=2+n, n=4), so 1 (1,3,4,6)F  . Let‘s

suppose that the points 1 and 6 are the closest ones to the

point 2, so we will expand them by skipping the points 3

and 4. So, here 2 (21)t  and 2 (26)t  .

In Fig.2, one can see a fragment of the tree for n=4,

where nodes that were present in iF but later excluded

are marked with dots.

Fig.2. A fragment of the tree for n=4

Issue 1. An attentive reader might observe that due to

H3 at a penultimate level i = 2n-2, the heuristic can

theoretically produce a path it that doesn‘t meet the 3D-

constraints (because H3 allows skipping a check of the

3D constraints). At the last level, we always check the 3D

constraints (to prevent an output of an invalid path), it can

be a situation when all paths or partial ones 2 2nt  will be

invalid (in terms of the 3D constraints) and only a final

check at the last level i = 2n-1 will let us know that all

the current partial paths are invalid.

So, H3 can lead to a situation when the heuristic is not

able to give a solution.

An example of this situation is: we have such a small

RBW value that only one tree node is expanded at each

level (i.e., RBW=1%) and we also have a small

check_prob value, so the 3D constraints are rarely

checked. So, the algorithm can produce a partial path

which doesn‘t satisfy the 3D constraints and recognize it

6 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

only when it performs a mandatory check of the 3D

constraints on the full path. At that point, it can only be

seen that the generated path was incorrect.

The described situation can be avoided by increasing

values of check_prob and RBW. In practice, it is usually

enough to set a value of check_prob = 0.2 to avoid the

described situation.

V. COMPUTATIONAL EXPERIMENTS

A. A program description

We developed the program that solves the described

problem and has a user-friendly interface.

It is available online at http://pdp-

litvinenkoapps.rhcloud.com/html/.

Its demo can be found at

https://youtu.be/0vHwssWEUqw.

Input parameters are:

 The vehicle‘s parameters:

o a vehicle‘s count (a number of clusters);

o a load area and a weight capacity for every

vehicle.

 Parameters of a point:

o coordinates of the depot;

o a number of the pickup-delivery pairs;

o coordinates of each point, a box weight and a

size (for pickup points).

 The solution‘s parameters:

o RBW,%;

o trans_prob is an indicator that is intended to

check the 3D loading constraints for full paths

(if unchecked, and trans_prob is 0, the 3D

constraints will not be checked, and the solution

will be obtained quickly).

The program can:

1) distribute all PDP pairs between vehicles (and form

clusters);

2) obtain the heuristic solution described in Section 5.2

for each vehicle (cluster).

B. Comparing the proposed algorithm with well-known

ones

The table below demonstrates results of computational

experiments: we obtained a lot of generated paths and a

cost of the best path through varying n and RBW

(coordinates of the vertexes are generated randomly

within the range 0…500). A load capacity, a width, a

height and a length of the vehicle were set to huge values

(so, the 3D constraints were always satisfied).

The results are presented in a format like ―a total count

of generated paths‖/ ‖a length of the best route‖. For

example, the program generated 298 routes and a cost of

the best path was 1869 for 2n=12 and RBW=20%.

We compared the results with the well-known two-

phase heuristic by Renauld [38] with parameters R=5 and

various values of α: α=0.5; 1; 1.5 (Tables 1 and 2). We

programmed the Renauld‘s algorithm ourselves.

It is worth mentioning that the Renauld‘s approach

does not take into account any loading limits. That is why

we mitigated all the loading limits (we assigned large

values to W, H, L and Q) while comparing our results

with the Renauld‘s ones.

As one can see, while our approach is more complex

and takes into account the vehicle‘s loading, the results

obtained aren‘t much worth than the ones obtained by

means of a two-phase heuristic. However, a serious

disadvantage of our algorithm is its working time: while

the Renauld‘s algorithm is processing data only for a few

milliseconds, our program can be processing data for a

rather long period (up to 60 seconds for 25 PDP pairs).

Fig.3. A screenshot with all input parameters and PDP points

 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with 7

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

Fig.4. A screenshot of clustering 20 pickup-delivery pairs (squares are pickups and circles are deliveries; the big rounded red square is a depot)

Fig.5. A screenshot of a generated path for each cluster from the example above

Unfortunately, we could not find any articles (except

[38]) with publicly accessible test instances that are

devoted to the PDP problem with constraints similar to

the ones we have considered. That is why we were

comparing our results with the Ropke‘s ones [39], which

are shared at http://www.diku.dk/~sropke/.

The Ropke‘s work is devoted to the multi-vehicle PDP

problem with time windows. A formulation of the

Ropke‘s problem also takes into account a capacity Q of

every vehicle. While comparing results, we used the same

Q value as in the Ropke‘s samples.

However, our results cannot be clearly matched to the

Ropke‘s ones, since we do not consider time windows

Despite that, we can check that our results are of the

same scale compared to the existing ones. In [39], Ropke

considers four types of instances (A, B, C, and D)

depending on different vehicles‘ capacities and time

windows. We chose C and D groups, where time

windows are longer: a time window is 120 while a

planning horizon is 600 for all vehicles.

In Table 3, one can see the Ropke‘s results and our

results compared to test instances from [39]. We chose

RBW values that allowed to get good results in a short

time period (less than 25 seconds). We can definitely get

a faster or better solution by choosing another v value for

every instance.

As we can expect, our total cost is always better than

the Ropke‘s one, because we do not take time windows

into account.

Besides [39], the article [25] also solves the PDP

problem with the 3D loading constraints, but their

problem description and their solution algorithm have too

many additional constraints and features we do not have.

For example, the article [25]:

 considers reloading of a box so that it can be

unloaded and loaded again to another place; our

solution algorithm does not have this feature;

 allows multiple boxes to be loaded from a pickup

point while we allow only one box in that case;

 considers fragility of a box, so fragile boxes

should not be placed under non-fragile ones; we

do not have this constraint etc.

That is why we do not see any sense to compare our

results with the ones in [25] because our problems and

solution algorithms are too different although being

similar at the first glance.

8 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

Table 1. Comparison of the Renauld‘s results and the results obtained by the proposed algorithm (part 1)

2n RBW=1% RBW=5% RBW=10% RBW=20% 20%<RBW<50%
Best

obtained

Average

time

Two-phase heuristic

Alpha=0.5 Alpha=1 Alpha=1.5

8 1/2044 1/2044 1/2044 10/1621 180/1531 1531 <16ms 1656 1531 1531

10 1/1985 1/1985 1/1985 44/1869 1972/1664 1664 <500ms 1830 1750 1664

12 1/2090 1/2090 213/1869 298/1869 2125/1869 1869 <500ms 1946 1796 2099

14 1/2198 1/2198 1/2198 14/2148 2666/2148 2148 <1s 2125 2124 2267

16 1/2520 1/2520 130/2285 4474/2285 – 2285 <2s 2323 2228 2662

Table 2. Comparison of the Renauld‘s results and the results obtained by the proposed algorithm (part 2)

2n v=1% v=5% v=10% v=11% Best obtained
Average

time

Two-phase heuristic

Alpha=0.5 Alpha=1 Alpha=1.5

20 1/2404 1/2404 3155/2097 8921/2097 2097 <10s 2019 2019 2035

 v=1% v=3,7% v=4% v=4,2%

30 1/3517 41/2800 545/2650 3102/2624 2624 <20s 2588 2804 3295

 v=1% v=2,7% v=3% v=3,25%

40 1/3458 170/3402 3014/3402 9778/3222 3222 <40s 3526 3166 3129

 v=1% v=2% v=2,1% v=2,25%

50 1/3553 1/3553 586/3178 6429/3151 3151 <60s 3036 3398 3180

Table 3. Comparison of the Ropke‘s results and the results obtained by the proposed algorithm

Ropke‘s instance
Ropke's results Our results

total cost solution time, s total cost solution time, s Routes generated RBW, %

DD30 1133 49 955 0.315 16 1

DD35 1210 99 1137 1.107 34 2

DD40 1352 136 1198 4.253 91 2

DD45 1483 132 1322 20.8 348 2

DD50 1600 105 1425 7.833 1165 1.7

DD55 1743 124 1518 21.684 189 1.5

DD60 1869 247 1716 5.144 32 1.2

DD65 2125 209 1939 4.837 23 1.1

DD70 2220 175 2184 1.786 7 1

DD75 2396 201 2291 2.232 7 1

CC30 1087 76 1035 5.058 297 3

CC35 1230 97 1172 12.823 468 2.5

CC40 1358 132 1205 8.22 191 2

CC45 1509 82 1404 2.065 34 1.7

CC50 1689 168 1613 2.669 35 1.8

CC55 1816 196 1730 12.134 108 1.3

CC60 2015 127 1823 12.111 86 1.3

CC65 2172 145 2024 14.776 80 1.1

CC70 2201 288 2159 11.675 49 1

CC75 2375 325 2327 16.105 54 0.8

C. Comparing the exact and heuristic solutions: main

results

We described the algorithm to get the exact and

heuristic solutions for a lot of instances. Every instance is

a combination of the following input parameters:

 4 problem sizes: n=3,4,5 and 6;

 6 sets of the loading constraints: the load area is a

cube with sides=50;70;90;110;130;150 and

Q=100;200;300;400;500;600 respectively;

 5 sets of points‘ coordinates, box sizes and weights.

The points‘ coordinates were randomly chosen

from a range [1; 500000], the box size was a cube

with a side selected from a range [1;50] and the

weight was selected from a range [1;100].

For each sample out of 4x6x5=120 instances, we tried

to obtain an exact solution (i.e. a solution for

RBW=100%.) and 3 heuristic solutions for

RBW=10;30;50%. check_prob was 0.2 for all instances.

We were able to get the exact solutions for n=6 only

for the small 3D constraints (for Q < 90). For Q >= 90,

the exact solution takes at least 3 hours and more than a

 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with 9

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

week in most cases. So, we excluded instances with n=6

and Q >= 90 from further consideration.

After obtaining the heuristic solutions, we compared

the resulting cost (1) with a cost of the optimal path

obtained by the exact solution. We calculated only a

relative cost increase (because the cost of the heuristic

solution cost is always bigger or equal to the cost of exact

solution):

cost_increase
heu ex

ex




where heu denotes the cost (1) of the heuristic solution;

ex determines the cost (1) of the exact solution.

We have put to analysis the following issues:

1) how cost_increase depends on n and RBW < 100 %

(Fig.6);

2) how the heuristic solution time (in seconds) depends

on n and RBW (Fig.7);

3) a relative frequency of the issue 1 occurring for

various n, RBW and the loading area cube sizes (Tables 4-

7);

4) a relative frequency of the ‗jack pot‘ when the

heuristic produces the optimal solution (the same as the

exact one) for various n and RBW (Fig.8)

Fig.6. Dependency of cost_increase (y - axis) on n (n=3,4,5,6) and

RBW (x - axis)

Fig.7. Dependency between n, RBW (x - axis) and the heuristic solution

time (y - axis)

Table 4. A relative frequency of the issue 1 occurring for various RBW

and the loading area cube sizes (n = 3)

Load area cube side

RBW, % 50 70 >70

10 0,12 0 0

30 0,12 0 0

50 0 0 0

Table 5. A relative frequency of the issue 1 occurring for various RBW

and the loading area cube sizes (n = 4)

Load area cube side

RBW, % 50 70 >70

10 0,76 0,2 0

30 0,7 0,2 0

50 0,23 0 0

Table 6. A relative frequency of the issue 1 occurring for various RBW

and the loading area cube sizes (n = 5)

Load area cube side

RBW, % 50 70 >70

10 0,58 0,2 0

30 0,29 0,2 0

50 0 0 0

Table 7. A relative frequency of the issue 1 occurring for various RBW

and the loading area cube sizes (n = 6)

Load area cube side

RBW, % 50 70 >70

10 0,47 0,4 0

30 0,11 0 0

50 0 0 0

Fig.8. A relative frequency (y - axis) of the ‗jack pot‘ for various RBW

(x - axis) and n

D. Comparing the exact and heuristic solutions:

peripheral results

We also generated another set of instances to analyze

how the average heuristic solution time depends on

check_prob. Similarly to the previous section, each

instance is a combination of some input parameters.

These parameters are:

 4 problem sizes: n=3,4,5,6;

 3 sets of the loading constraints: the load area is a

cube with sides=50;75;150 and Q=100;300;600

respectively;

3 sets of points‘ coordinates, box sizes and weights.

The points‘ coordinates were obtained the same way

described in the previous section.

For each sample out of 4x3x3=36 instances, we

obtained the heuristic solutions for various combinations

of RBW=10;30;50% and check_prob=0.1; 0.2; 0.3; 0.4.

So, we‘ve got 3x4=12 heuristic solutions for each

instance.

Then we analyzed how the heuristic solution time

10 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

depends on check_prob for various n and RBW. Tables

below contain the average heuristic solution time (in

seconds) for 9 experiments (3 sets of the loading

constraints x 3 sets of the points‘ coordinates and box

parameters) for the same values of n and RBW.

Table 8. check_prob for various n and RBW (n = 3)

n=3 check_prob

RBW 10 20 30 40

10 0.04 0.08 0.06 0.08

30 0.05 0.05 0.07 0.09

50 0.09 0.12 0.16 0.22

Table 9. check_prob for various n and RBW (n = 4)

n=4 check_prob

RBW 10 20 30 40

10 0.05 0.08 0.14 0.12

30 0.05 0.08 0.11 0.14

50 0.24 0.38 0.52 0.67

Table 10. check_prob for various n and RBW (n = 5)

n=5 check_prob

RBW 10 20 30 40

10 0.09 0.13 0.20 0.23

30 0.31 0.56 0.77 0.93

50 3.84 6.46 9.61 12.52

Table 11. check_prob for various n and RBW (n = 6)

n=6 check_prob

RBW 10 20 30 40

10 0.13 0.20 0.27 0.34

30 1.51 2.74 3.69 4.94

50 42.74 75.96 105.79 135.25

E. Experiments based on large samples

We launched the heuristic solution on large instances

(n is up to 50) with different RBW values. To speed up

the calculation time, we set the 3D constraints to be

always met (Q=10000 and the load area is a cube with a

side of 5000). Each instance had:

 one of 9 problem sizes: n=

10;15;20;25;30;35;40;45;50;

 5 sets of the points‘ coordinates.

For each sample out of 9x5=45 instances, we obtained

20 heuristic solutions for RBW=0.25;0.5; …. 5%.

We set the solution time limit to 1000 seconds. Fig.9

shows the maximum RBW for where the solution time

was less than our time limit. These results can be

understood as the maximum precision we can obtain in a

short time interval for each n.

For the solutions that satisfied the time limit, we

analyze how the heuristic solution time (in seconds)

depends on n and RBW (Fig.10). Let‘s notice that we use

a logarithmic y-axis in Fig.10 because the solution time

varies significantly.

Fig.9. The maximum precision for the solution (RBW, y-axis) we can

obtain in a short time period for each n (x-axis)

Fig.10. Dependency between n (see legend), RBW (x - axis) and the

heuristic solution time (y - axis)

VI. CONCLUSION

In this article, the mathematical model for the one-to-

one Pickup and Delivery Problem with the 3D loading

constraints applying the combinatorial configuration

concepts instead of Boolean variables was built.

The universal GenBase algorithm was applied to

generating PDP paths that satisfy the 3D constraints (to

be checked by the algorithm [29We also described how to

get the exact solution; at the same time, we described

making use of a slightly modified version of the beam

search heuristic to obtain the high-quality solution for a

feasible time.

Advantages of the proposed algorithm are its ability of

balancing between time measurements, a quality of the

solution and its flexibility: changing a way of forming the

set iF and a way of expanding the solution for tree

nodes can help adapt easily the algorithm for being

applied to different combinatorial optimization problems.

For example, the GenBase algorithm was used for

generation of a large number of combinatorial sets [35] as

well as for optimization of a linear function in a set of

cyclic permutations [40].

REFERENCES

[1] B. Golden, S. Raghavan, and E. Wasil, The vehicle

routing problem: latest advances and new challenges.

Springer Science & Business Media, 2008.

[2] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia,

―A review of dynamic vehicle routing problems,‖

European Journal of Operational Research, vol. 225, no.

1, pp. 1–11, Feb. 2013.

[3] S. Kumar and R. Panneerselvam, ―A survey on the vehicle

routing problem and its variants,‖ Intelligent Information

Management, vol. 4, no. 3, p. 66, 2012.

[4] M. Gendreau, M. Iori, G. Laporte, and S. Martello, ―A

 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with 11

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

Tabu Search Algorithm for a Routing and Container

Loading Problem,‖ Transportation Science, vol. 40, no. 3,

pp. 342–350, Aug. 2006.

[5] M. Iori and S. Martello, ―Routing problems with loading

constraints,‖ TOP, vol. 18, no. 1, pp. 4–27, Jul. 2010.

[6] H. Pollaris, K. Braekers, A. Caris, G. K. Janssens, and S.

Limbourg, ―Vehicle routing problems with loading

constraints: state-of-the-art and future directions,‖ OR

Spectrum, vol. 37, no. 2, pp. 297–330, Mar. 2015.

[7] S. N. Parragh, K. F. Doerner, and R. F. Hartl, ―A survey

on pickup and delivery problems,‖ Journal für

Betriebswirtschaft, vol. 58, no. 1, pp. 21–51, Apr. 2008.

[8] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G.

Laporte, ―Static pickup and delivery problems:

a classification scheme and survey,‖ TOP, vol. 15, no. 1,

pp. 1–31, May 2007.

[9] J. Cordeau, G. Laporte, and S. Ropke, ―Recent models

and algorithms for one-to-one pickup and delivery

problems,‖ in The vehicle routing problem: latest

advances and new challenges, vol. 43, 2008, pp. 327–357.

[10] M. W. P. Savelsbergh and M. Sol, ―The General Pickup

and Delivery Problem,‖ Transportation Science, vol. 29,

no. 1, pp. 17–29, Feb. 1995.

[11] S. Ropke, J.-F. Cordeau, and G. Laporte, ―Models and

branch-and-cut algorithms for pickup and delivery

problems with time windows,‖ Networks, vol. 49, no. 4,

pp. 258–272, 2007.

[12] P. Toth and D. Vigo, Vehicle routing: problems, methods,

and applications. Society for Industrial and Applied

Mathematics, 2014.

[13] W. P. Nanry and J. Wesley Barnes, ―Solving the pickup

and delivery problem with time windows using reactive

tabu search,‖ Transportation Research Part B:

Methodological, vol. 34, no. 2, pp. 107–121, Feb. 2000.

[14] H. Li and A. Lim, ―A Metaheuristic for the Pickup and

Delivery Problem with Time Windows,‖ International

Journal on Artificial Intelligence Tools, vol. 12, no. 2, pp.

173–186, Jun. 2003.

[15] H. Lim, A. Lim, and B. Rodrigues, ―Solving the pickup

and delivery problem with time windows using issqueaky

wheelli optimization with local search,‖ AMCIS 2002

Proceedings, p. 317, 2002.

[16] G. Pankratz, ―A Grouping Genetic Algorithm for the

Pickup and Delivery Problem with Time Windows,‖ OR

Spectrum, vol. 27, no. 1, pp. 21–41, Jan. 2005.

[17] Q. Lu and M. M. Dessouky, ―A new insertion-based

construction heuristic for solving the pickup and delivery

problem with time windows,‖ European Journal of

Operational Research, vol. 175, no. 2, pp. 672–687, Dec.

2006.

[18] R. Bent and P. Van Hentenryck, ―A two-stage hybrid

algorithm for pickup and delivery vehicle routing

problems with time windows,‖ Computers & Operations

Research, vol. 33, no. 4, pp. 875–893, Apr. 2006.

[19] S. Ropke and D. Pisinger, ―An Adaptive Large

Neighborhood Search Heuristic for the Pickup and

Delivery Problem with Time Windows,‖ Transportation

Science, vol. 40, no. 4, pp. 455–472, Nov. 2006.

[20] Y. Nagata and S. Kobayashi, ―A Memetic Algorithm for

the Pickup and Delivery Problem with Time Windows

Using Selective Route Exchange Crossover,‖ in Parallel

Problem Solving from Nature, PPSN XI, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 536–

545.

[21] J.-F. Côté, M. Gendreau, and J.-Y. Potvin, ―Large

neighborhood search for the pickup and delivery traveling

salesman problem with multiple stacks,‖ Networks, vol.

60, no. 1, pp. 19–30, Aug. 2012.

[22] G. Erdoğan, J.-F. Cordeau, and G. Laporte, ―The pickup

and delivery traveling salesman problem with first-in-

first-out loading,‖ Computers & Operations Research, vol.

36, no. 6, pp. 1800–1808, Jun. 2009.

[23] A. Malapert, C. Guéret, and N. Jussien, ―Two-

dimensional pickup and delivery routing problem with

loading constraints,‖ in First CPAIOR Workshop on Bin

Packing and Placement Constraints (BPPC’08), 2008.

[24] E. E. Zachariadis, C. D. Tarantilis, and C. T. Kiranoudis,

―The Pallet-Packing Vehicle Routing Problem,‖

Transportation Science, vol. 46, no. 3, pp. 341–358, Aug.

2012.

[25] D. Männel and A. Bortfeldt, ―A hybrid algorithm for the

vehicle routing problem with pickup and delivery and

three-dimensional loading constraints,‖ European Journal

of Operational Research, vol. 254, no. 3, pp. 840–858,

Nov. 2016.

[26] T. Bartók and C. Imreh, ―Pickup and Delivery Vehicle

Routing with Multidimensional Loading Constraints,‖

Acta Cybernetica, vol. 20, no. 1, pp. 17–33, 2011.

[27] D. Pisinger and S. Ropke, ―A general heuristic for vehicle

routing problems,‖ Computers & Operations Research,

vol. 34, no. 8, pp. 2403–2435, Aug. 2007.

[28] G. Scheithauer, Y. G. Stoyan, and T. Y. Romanova,

―Mathematical Modeling of Interactions of Primary

Geometric 3D Objects,‖ Cybernetics and Systems

Analysis, vol. 41, no. 3, pp. 332–342, May 2005.

[29] I. V. Grebennik, A. V. Pankratov, A. M. Chugay, and A.

V. Baranov, ―Packing n-dimensional parallelepipeds with

the feasibility of changing their orthogonal orientation in

an n-dimensional parallelepiped,‖ Cybernetics and

Systems Analysis, vol. 46, no. 5, pp. 793–802, Sep. 2010.

[30] S. K. Ali, Z. Naser Azeez, and A. Abdul-Hussein Ouda,

―A New Clustering Algorithm for Face Classification,‖

International Journal of Information Technology and

Computer Science (IJITCS), vol. 8, no. 6, pp. 1–8, 2016.

[31] J. A. Hartigan and M. A. Wong, ―Algorithm AS 136: A

K-Means Clustering Algorithm,‖ Applied Statistics, vol.

28, no. 1, p. 100, 1979.

[32] A. C. Fabregas, B. D. Gerardo, and B. T. Tanguilig III,

―Enhanced Initial Centroids for K-means Algorithm,‖

International Journal of Information Technology and

Computer Science (IJITCS), vol. 9, no. 1, pp. 26–33, 2017.

[33] A. Chadha and S. Kumar, ―Extension of K-Modes

Algorithm for Generating Clusters Automatically,‖

International Journal of Information Technology and

Computer Science (IJITCS), vol. 8, no. 3, pp. 51–57, 2016.

[34] Y. Stoyan and I. Grebennik, ―Description and Generation

of Combinatorial Sets Having Special

Characteristics(Bilevel Programming, Optimization

Methods, and Applications to Economics),‖ Biomedical

fuzzy and human sciences : the official journal of the

Biomedical Fuzzy Systems Association, vol. 18, no. 1, pp.

83–88, 2013.

[35] I. V. Grebennik and O. S. Lytvynenko, ―Generating

combinatorial sets with given properties,‖ Cybernetics

and Systems Analysis, vol. 48, no. 6, 2012.

[36] B. T. Lowerre, ―The HARPY Speech Recognition

System.‖ Carnegie Mellon University, 1976.

[37] I. Sabuncuoglu and M. Bayiz, ―Job shop scheduling with

beam search,‖ European Journal of Operational Research,

vol. 118, no. 2, pp. 390–412, Oct. 1999.

[38] J. Renaud, F. F. Boctor, and J. Ouenniche, ―A heuristic for

the pickup and delivery traveling salesman problem,‖

Computers & Operations Research, vol. 27, no. 9, pp.

905–916, Aug. 2000.

12 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with

Three-dimensional Loading Constraints

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 1-12

[39] S. Ropke and J.-F. Cordeau, ―Branch and Cut and Price

for the Pickup and Delivery Problem with Time

Windows,‖ Transportation Science, vol. 43, no. 3, pp.

267–286, Aug. 2009.

[40] I. Grebennik, O. Lytvynenko, and O. Titova,

―Optimization of linear function on a set of cyclic

permutations,‖ Bionics of intellect, vol. 2, no. 67, 2012.

Authors’ Profiles

Rémy Dupas was born in 1961. He is a

professor at University of Bordeaux.

Scientific interests: operational research,

combinatorial optimization, industrial

engineering, production and transportation

problems (scheduling, supply chain planning

and vehicle routing).

Igor Grebennik was born in 1966. He is

D.Sc., professor, Chair of Systems

Engineering Department at Kharkiv National

University of Radio Electronics.

I.Grebennik is an author of more than 180

publications and eight books.

Scientific interests: Combinatorics,

Combinatorial Generation, Combinatorial Optimization,

Combinatorial Optimization Problems of Placement of Objects,

Mathematical Modeling, Vehicle routing problems.

Oleksandr Lytvynenko was born in 1992.

He graduated from Kharkiv National

University of Radioelectronics (the Faculty

of Automatics and Computer Technologies,

specialization System Engineering) in 2013.

He is currently a Ph.D. student and a web

developer.

Oleksij Baranov was born in 1984. He

graduated from Kharkiv National University

of Radioelectronics in 2007. He has got a

Ph.D. degree in 2010. Scientific interests:

Applied and Computational Mathematics,

Simulation and Modelling, Combinatorial

Optimization.

How to cite this paper: Rémy Dupas, Igor Grebennik,

Oleksandr Lytvynenko, Oleksij Baranov, " An Heuristic

Approach to Solving the one-to-one Pickup and Delivery

Problem with Three-dimensional Loading Constraints",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.9, No.10, pp.1-12, 2017. DOI:

10.5815/ijitcs.2017.10.01

