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Abstract—A mathematical model and a solving strategy 

for the Pickup and Delivery Problem with three-

dimensional loading constraints regarding a 

combinatorial configuration instead of a traditional 

approach that utilizes Boolean variables is proposed. A 

traditional one-to-one Pickup and Delivery Problem in a 

combination with a problem of packing transported items 

into vehicles by means of the proposed combinatorial 

generation algorithm is solved. 

 

Index Terms—Pickup and Delivery problem, vehicle 

routing, 3D loading constraints, combinatorial 

configuration, generation, packing of parallelepipeds. 

 

I.  INTRODUCTION 

A vehicle routing problem (VRP) plays an important 

role in the logistics management. A wide variety of the 

vehicle routing problems has been studied lately [1-3]. 

Different classes of the vehicle routing problem describe 

various practical situations, but they are mostly focused 

on a common problem – an efficient use of a set of 

vehicles that must serve customers‘ orders.  

In addition to routing vehicles, real-world 

transportation companies also require solving a problem 

of loading vehicles which means that it is not sufficient 

enough only to decide how to route vehicles, but also 

how to load cargos to them. Such an integrated problem 

was introduced in [4] for the first time and it was called 

as the ―capacitated vehicle routing problem‖ (CVRP) 

with three-dimensional (3D) loading constraints (3L-

CVRP). In 3L-CVRP, every customer requires 

transporting one or a few parallelepipeds (or boxes) 

where each one is represented by a 3D rectangular 

loading space and its weight (in contrast to the traditional 

CVRP, where an only weight is given). Surveys [5] and 

[6] show a recent state of the art for solving the integrated 

vehicle routing and loading problems. 

One of the most popular VRP models is the Pickup and 

Delivery Problem (PDP) [7-10], where every customer 

has to pick up some item/items at one location and to 

deliver it/them to another location. The Pickup and 

Delivery Problem arises naturally in several contexts such 

as urban courier services and door-to-door transportation 

systems [11]. 

The Pickup and Delivery Problem (PDP) is about 

routing a set of vehicles in order to serve a set of 

transportation requests between given origins (pickup 

points) and destinations (delivery points). Every route 

should start and finish at a pre-defined depot and satisfy 

pairing and precedence constraints: the origin (a pickup 

point) should precede the destination (a delivery point), 

and every pickup-delivery pair should be visited by the 

same vehicle [11]. There are a lot of additional 

constraints on PDP such as time windows [7, 12], time 

constraints related to vehicles availability [10], etc. 

A lot of heuristics and metaheuristics were used for 

solving PDP: the reactive tabu search [13], the tabu 

embedded simulated annealing [14], the squeaky wheel 

optimization [15], the grouping genetic algorithm [16], 

the construction heuristic [17], the hybrid algorithm (the 

simulated annealing and the large neighborhood search) 

[18], the adaptive large neighborhood search, the indirect 

local search with greedy decoding [19], and the guided 

ejection search [20] etc. 

In case of the vehicle routing problem, solving the 

Pickup and Delivery Problems in the real-world 

applications also demands taking the loading constraints 

into account. Articles which solve PDP consider such 

constraints as LIFO [21] or FIFO [22] buffers, or as the 

2D or 3D loading constraints [23-26]. 
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Despite a wide variety of articles dedicated to PDP, it 

is hard or impossible to regulate a balance between a 

solution time and a result‘s precision in most of the 

solution algorithms. An objective function and all 

limitations in PDP are usually described as inequalities 

with the help of Boolean variables. 

In this article, a mathematical model for the Pickup and 

Delivery Problem with the 3D loading constraints which 

utilizes combinatorial sets instead of commonly used 

Boolean variables is provided. The combinatorial 

generation algorithm for solving the described problem is 

also given. An advantage of the described algorithm is its 

ability to balance between the quality and the time of 

solution. The Given solution algorithm produces quite 

good results in a reasonable time. 

The paper is organized as follows. Section II describes 

a mathematical model. Section III gives basic details of 

the decision strategy. Section IV demonstrates the 

solution algorithm for a lower level. Section V gives 

explanations to computational experiments. Conclusions 

are given in Section VI.  

 

II.  THE MATHEMATICAL MODEL 

A.  The problem formulation 

We are considering the traditional Pickup and Delivery 

Problem (PDP) [27], one-to-one, a symmetric case, i.e. 

every arc ( , )i j  is equal to the arc ( , )j i  and can be 

replaced by one edge. The Pickup and Delivery Problem 

is modeled on a complete graph ( , )G V A  where V  is a 

set of all vertices, {0,1,...,2 1}V n  , where 0  and 

2 1n  denote a depot and A  is a set of all the arcs. 

There are v  identical vehicles available; each vehicle 

has a loading space in the form of a parallelepiped 

(defined by a width W , a height H  and a length L ) and 

a weight capacity Q . Every transportation request ni J , 

{1,2,..., }nJ n  requires the pickup or delivery of one 

three-dimensional item having a width iw , a height ih  

and a length il  with a total weight iq  ( iq  is positive for 

pickups and is negative for delivery points). We assume 

that all the items are rectangular boxes.  

There are some constraints on the loading items of a 

vehicle (the 3D constraints): 

 

1. Inside a vehicle, the items can only be placed 

orthogonally; however, they can be rotated by 90  

in the width–length plane.  

2. The stability constraint: every transported item 

should be placed on a vehicle‘s floor; it can be 

also placed on top of another item. In such case, 

the item should be completely supported by the 

one below, i.e. we do not allow any part of the 

item to be in limbo.  

3. The blocking constraint: we should ensure that 

items can be easily unloaded in their delivery point 

which means that when a delivery point is visited, 

two conditions should be satisfied: 

 

 an item to be unloaded should not be stacked 

beneath other items in the vehicle. An item A is 

beneath an item B if the interior of the projections 

of their bases to the vehicle‘s floor intersects, and 

the top of A is not higher than the bottom of B in a  

vertical direction; 

 the unloaded item should not also be blocked by 

other clients‘ items that will be visited later. The 

item is also blocked if it overlaps any item of a 

next client when it is moved along the L axis 

towards a rear door.  

 

The objective is to find a set of at most v  routes (one 

per a vehicle) such as:  

 

1. Every route begins at the depot and after all clients 

have been visited ends at the depot. 

2. Every client (i.e. a pair of pickup and delivery 

points) is served by the same vehicle. 

3. A total weight of transported items does not 

exceed a vehicle‘s capacity. 

4. Items are packed in a vehicle according to the 3D 

constraints.  

5. A total cost of all routes is minimized.  

 

B.  Designations 

P denotes a set of pickup vertexes, {1,2,..., }P n ; 

D signifies a set of delivery vertexes, 

{ 1, 2,...,2 }D n n n   ; 

iq  marks a vehicle‘s load at the vertex i ; iq  is 

positive at pickup nodes {1,2,..., }i n ; it is negative at 

delivery nodes { 1, 2,...,2 }i n n n   ; 

iw , ih , il  signify orthogonal dimensions (a width, a 

height and a length) of the item at the vertex i , 2ni J ; 

v  is a number of vehicles; 

Q determines a capacity of a single vehicle (all 

vehicles have the same capacity); 

, ,W H L are orthogonal dimensions (a width, a height 

and a length) of every loading space respectively,  

C stands for a set of the pickup-delivery pairs, 

{( , )}i iC p d , ip P , id D , i id p n  , ni J ; 

1 2, ,...,C C C  define a partition of C : 

1

j

j

C C




 , 

i jC C  , i J , j J ; each subset jC  

corresponds to a vehicle j  that serves this set of clients, 

j J , 

j jn Card C , j J , 

1
j

j

n n




 ; 

( , )c i j is a cost of a traversing edge ( , )i j ; 

1 2 2
{ , ,..., }

j

j j j
j n

V i i i  is a set of all pickup and delivery 
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points included into jC ; 

( )jP V  stands for a set of permutations of elements 

from jV  that describes all possible paths of the vehicle j; 

( )
j
k

Q i  denotes a current load of the vehicle j  at a 

moment of arrival to the vertex 2,
j

j
nk

i k J ; 

0 0 0 0( , , )
j j j j

u x y z   determines coordinates of a pole of 

the placement area in the vehicle j . 

C.  Decision variables of the problem 

1 2( , ,..., )U U U U , 1 2( , ,..., )
j

j j jj
n

U u u u  where 

( , , )
j j j j

i i i iu x y z  stands for coordinates of the pole of 

the item i  in the vehicle j ; 

( )j
jP V   is a route of the vehicle j; 

( , ), {( , ),( , )}
j

i i i i i i ii lw h lw l w w l    marks orientation 

of the item i  in the vehicle j , ji V , j J .  

For n transported items  

 
3

1 2 3 1{ : ( , , ) |0 ,i ix R x x x x x l       

2 30 ,0 }i ix w x h    , ni J , 

 

we have v  identical placement areas jD , j J : 

 
3

1 2 3 1{ : ( , , ) |0 ,jD x R x x x x x L      

2 30 ,0 }x W x H    . 

 

D.  Φ-functions 

 -functions [28] make it possible to describe formally 

conditions of the mutual non-intersection for two 

parallelepipeds and the condition for correct placement of 

parallelepipeds in a placement area [29]. 

To describe the 3D constraints, we use two  -

functions: 

( , , , )
j j jj j

m mi iil
u u v v  is used for checking that the item i 

(which is determined by coordinates of a pole 
j

iu  and an 

orientation 
j

iv ) does not intersect with an item m (which 

is determined by coordinates of a pole j
mu  and an 

orientation j
mv );  

0 0( , , )
j j j j

m mm u u v  is used for checking that the item m 

can be correctly placed into the placement area jD  

(which is determined by W (a width), H (a height) and L 

(a length) of the vehicle‘s loading space).  

 

( , , , )
j j jj j

m mi iil
u u v v  1max{ ,

jj
m iix x    

1 2 2, , ,
j j jj j j

m m m i m mi i ix x y y y y           

3 3, }
j jj j

m i m mi iz z z z      ; 

 

0 0( , , )
j j j j

m mm u u v  10 0min{ , ,
j jj j

m m mx x x x L       

20 0 0, , ,
j j jj j j

m m m my y y y W z z       

30 }
jj

m mz z H     . 

 

If ( , , , ) 0
j j jj j

m mim i iu u v v   for all , ,ni m J i m  , 

then there‘s no intersecting pair of items in a vehicle. 

If 0 0( , , ) 0
j j j j

m mm u u v   for all nm J , then each item 

is placed correctly inside the vehicle‘s loading area. 

Thus, items‘ placement in vehicles should be 

performed in such a way that the described Φ-functions 

are positive. 

E.  An objective function and constraints 

 
2 1

1 1 2
1 1

[ (0, ) ( , ) ( ,2 1)] min
j

j

n
j j j j

k k n
j k

c i c i i c i n
 


 

     ;    (1) 

 

1

( ) ( )
s

j j
k k

k

Q i f i Q



  ,  2 jns J  , j J ;      (2) 

 

, ( );
( )

, ( );

i

i

q if i n a vertex is a pickup
f i

q if i n a vertex is a delivery


 

 
 

 

0 0

( , , , ) 0, , , ,

( , , ) 0, ,

j j jj j
m m nim i i

j j j j
m m nm

u u v v i m J i m

u u v m J

   

  

, .j J   (3) 

 

Here 1(0, )
j

c i  is a distance between the depot (a fictive 

vertex 0) and the first vertex visited by the vehicle j; 

2
( ,2 1)

j

j
n

c i n   is a distance between the last visited vertex 

and the depot (a fictive vertex 2n+1). It should be noted 

that the fictive vertexes 0 and 2n+1 designate the same 

depot. 

 

III.  THE DECISION STRATEGY 

We propose a two-level strategy for solving the 

problem. 

A.  An upper level - partitioning 

In the upper level, we are splitying a set C  into 

subsets (clusters) 1 2, ,..., vC C C . Each cluster jC  contains 

pickup-delivery pairs ( , )i ip d  which are served by the 

vehicle j.  

For solving the clustering [30] problem, we chose the 

simplest k-means algorithm [31-33]. The traditional k-

means algorithm deals with single points, but we want to 

make clusters of pairs ( , )i ip d . We are substituting the 
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pair ( , )i ip d  with a single point ik , which is a middle 

point between ip  and id : 

 

. . . .
. , .

2 2

i i i i
i i

p x d x p y d y
k x k y

 
   

 

where . ,.x y  are coordinates of the points. 

B.  A lower level – path constructing 

In the lower level, we are constructing a route for the 

vehicle j for a single cluster jC .  

As mentioned above, a permutation j ( )jP V  

describes a path of the vehicle j. The vehicle‘s route 

defines an order of items‘ loading and unloading to/from 

the vehicle j .  

Every path j  should meet all the constraints 

described in Section 2. To describe items‘ rotations in the 

width-length plane, we substitute each element of j  

(which is either a pickup point or a delivery one) by a 

vector {( , ),( , )}i i i i ilw l w w l , ji V . This combinatorial 

permutation is called ―a composition of permutations‖ 

[34]. 

So, to construct a route for the vehicle j, we should 

choose a permutation j ( )jP V  so that it minimizes 

the objective function (1). The algorithm‘s solution for 

this problem is described in the next section. 

 

IV.  SOLVING THE ALGORITHM FOR THE LOWER LEVEL 

A.  The exact solution 

To generate permutations j , we use the GenBase 

algorithm [35]. It is universal and can be used for 

generating a wide variety of different combinatorial sets. 

Let us denote a path of the vehicle j as jt  ; let‘s 

also call first i vertexes of a path t as a partial path 

1 2( , ,..., )i
it t t t . 

The GenBase algorithm is recursive: at every level 
0 0
2 1 2 1, {0,1...2 1}n ni J J n    , it adds a successive 

vertex 1it   to the end of the current partial path 

1 2( , ,..., )i
it t t t and obtains a new partial path 

1
1 2 1( , ,..., )i

it t t t
  at the next level. At the level i=2n, 

the algorithm produces a full path 2nt t .  

Elements 1it   should meet the constraints specific to a 

particular combinatorial set. At every level 0
2 1ni J  , let 

us denote a tuple of all those elements as 

1 2( , ,..., )i
kF f f f . So, for each , {1,2... },k kj J J k   

the GenBase algorithm adds a new element  1i jt f   to 

the current partial path  1 2( , ,..., )i
it t t t  and recursively 

calls itself with the new partial path 1
1 2( , ,..., )i

jt t t f  .  

To generate all the paths, the GenBase algorithm is 

called with an empty path 0 ( )t  . 

 

function GenBase( it ) { 

if 2i n  then { ioutput output t  ; exit;} 

determine iF ; 

for 1,2,...,| |ij F  do 

      GenBase( 1
1 2( , ,..., , )i

i jt t t t f  );  

} 

 

For PDP paths, we have following constraints for a 

tuple iF : 

 

1) vertexes in it  aren‘t  duplicated 

 

1 , 1...i zt t z i   ; 

 

2) for every pickup-delivery pair, a vehicle should visit 

a pickup point before a corresponding delivery point: 

 

1 1: ( )i i zt n z t n t     . 

 

For example, when n=4 (i.e. there are four pickup-

delivery pairs), the delivery point 5 can be added to the 

path only if the corresponding pickup point 1 has already 

been added to the path; 

 

3) the restriction (2) that limits the maximum vehicle‘s 

load should be satisfied; 

4) if 1it   is a pickup, it means that a new item will be 

loaded into a vehicle, and we should check the 3D-

constraints. For this reason, the algorithm [29] should be 

used. 

 

It should be noted that the algorithm [29] has an ability 

to rotate every item in the width-length plane for the 

optimal packing. Thus, vectors ,i jlw i V , are 

determined. 

The GenBase algorithm produces a recursive tree, 

where every node at intermediate levels i < 2n-1 is a 

partial path and nodes at the last level i = 2n-1 are full 

paths. At levels i < 2n-1, a tree node is expanded by 

adding a new node from iF  to a partial path. 

Example 1. Let‘s demonstrate how GenBase works 

while generating paths for n=2 (the vertexes 1 and 2 are 

pickups, and the vertexes 3 and 4 are deliveries).  

At first, at the level i=0, 0F  consists only of pickup 

vertexes 0 (1,2)F  . Each pickup is added to the end of a 

current empty path 0 ( )t   making a new path ( 1 (1)t   

in the first case and 1 (2)t   in the second one). After that, 

GenBase is called recursively for each vertex t1.  
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At the next level i=1, for the path 1 (1)t  , it is possible 

to add either a pickup vertex 2 or a delivery vertex 3 

corresponding to the pickup vertex 1. A vertex 4 can‘t be 

added because there is no corresponding pickup vertex 2 

in the current path 1 (1)t  .  

 

 

Fig.1. A recursive tree generated by the algorithm 

When all full paths have been generated by the 

algorithm (so we have the complete tree), a resulting path 

will be a path that owns the best value of the objective 

function (1). 

B.  An heuristic solution 

A powerful beam search heuristic [36] can be applied 

to algorithms that produce recursion tree. The beam 

search heuristic is an adaptation of the branch and bound 

method where only some nodes are evaluated in the 

search tree [37]. At any level, promising nodes are only 

kept for further branching, and the rest of nodes are being 

pruned off permanently [37]. 

In terms of our problem, the beam search heuristic acts 

at the step of expanding tree nodes (i.e. extending partial 

paths with points from the set iF ). In an original version, 

it takes some predefined amount of ―best‖ points from 
iF  (a beam width) for further expanding and pruning off 

others. We slightly modified heuristic and made the beam 

width a relative value – some percent of tree nodes. We 

will call it a relative beam width (RBW).  

So, for our problem, the beam search heuristic can be 

applied as follows: 

H1. The algorithm sorts new points from iF  by 

ascending a distance: 

 

 from the depot, if i=0 (so, the first point in a route 

should be as close to the depot as possible); 

 a last node in the current path for all other cases. 

 

H2. The GenBase algorithm calls itself recursively 

only for the first RBW% of points from iF  (RBW is a 

predefined parameter). Other nodes are pruned off. 

H3. Since checking the 3D constraints is the NP-

complexity task [29], they are checked not when a vehicle 

arrives to a pickup point, but time-by-time, with a 

probability check_prob  [0;1]. An only exception is the 

last level i=2n-1, where we always check the 3D 

constraints because it is necessary for the final path to 

meet them. 

The power of the described algorithm and the heuristic 

is that one can regulate a balance between a solution‘s 

quality and the algorithm‘s operating time by changing 

the RBW value. 

Example 2. Let us demonstrate how the heuristic works 

for n=4 (points 1-4 are pickups and points 5-8 are 

deliveries). Let‘s set RBW=50% which means that we 

will expand each tree node with a half of points in iF  at 

all steps i<2n-1. 

At the beginning, at the level i=0, 0F  consists of all 

pickup vertexes 0 (1,2,3,4)F  . We are sorting them by 

distances to the depot. Let‘s assume that we obtain  

(2,4,3,1), and we take first two points (2 and 4) for further 

expanding. Points 1 and 3 are excluded from further 

consideration. 

The same idea works for the next levels as well. Let‘s 

see what‘s happening at the level 1 for a partial path 
1 (2)t  . There‘re four candidates: three other pickups 

(1,3 and 4) and a delivery point 6 corresponding to a 

pickup point 2 (6=2+n, n=4), so 1 (1,3,4,6)F  . Let‘s 

suppose that the points 1 and 6 are the closest ones to the 

point 2, so we will expand them by skipping the points 3 

and 4. So, here 2 (21)t   and 2 (26)t  . 

In Fig.2, one can see a fragment of the tree for n=4, 

where nodes that were present in iF  but later excluded 

are marked with dots. 

 

 

Fig.2. A fragment of the tree for n=4 

Issue 1. An attentive reader might observe that  due to 

H3 at a penultimate level i = 2n-2, the heuristic can 

theoretically produce a path it that doesn‘t meet the 3D-

constraints (because H3 allows skipping a check of the 

3D constraints). At the last level, we always check the 3D 

constraints (to prevent an output of an invalid path), it can 

be a situation when all paths or partial ones 2 2nt   will be 

invalid (in terms of the 3D constraints) and only a final 

check at the last level i = 2n-1 will let us know that all 

the current partial paths are invalid.  

So, H3 can lead to a situation when the heuristic is not 

able to give a solution.  

An example of this situation is: we have such a small 

RBW value that only one tree node is expanded at each 

level (i.e., RBW=1%) and we also have a small 

check_prob value, so the 3D constraints are rarely 

checked. So, the algorithm can produce a partial path 

which doesn‘t satisfy the 3D constraints and recognize it 



6 An Heuristic Approach to Solving the one-to-one Pickup and Delivery Problem with   

Three-dimensional Loading Constraints 

Copyright © 2017 MECS                                            I.J. Information Technology and Computer Science, 2017, 10, 1-12 

only when it performs a mandatory check of the 3D 

constraints on the full path. At that point, it can only be 

seen that the generated path was incorrect. 

The described situation can be avoided by increasing 

values of check_prob and RBW. In practice, it is usually 

enough to set a value of check_prob = 0.2 to avoid the 

described situation. 

 

V.  COMPUTATIONAL EXPERIMENTS 

A.  A program description 

We developed the program that solves the described 

problem and has a user-friendly interface.  

It is available online at http://pdp-

litvinenkoapps.rhcloud.com/html/.  

Its demo can be found at 

https://youtu.be/0vHwssWEUqw. 

Input parameters are: 

 

 The vehicle‘s parameters: 

 

o a vehicle‘s count (a number of clusters); 

o a load area and a weight capacity for every 

vehicle. 

 

 Parameters of a point: 

 

o coordinates of the depot; 

o a number of the pickup-delivery pairs; 

o coordinates of each point, a box weight and a 

size (for pickup points). 

 

 The solution‘s parameters: 

 

o RBW,%; 

o trans_prob is an indicator that is intended to 

check the 3D loading constraints for full paths 

(if unchecked, and trans_prob is 0, the 3D 

constraints will not be checked, and the solution 

will be obtained quickly). 

 

The program can: 

 

1) distribute all PDP pairs between vehicles (and form 

clusters); 

2) obtain the heuristic solution described in Section 5.2 

for each vehicle (cluster).  

B.  Comparing the proposed algorithm with well-known 

ones 

The table below demonstrates results of computational 

experiments: we obtained a lot of generated paths and a 

cost of the best path through varying n and RBW 

(coordinates of the vertexes are generated randomly 

within the range 0…500). A load capacity, a width, a 

height and a length of the vehicle were set to huge values 

(so, the 3D constraints were always satisfied). 

The results are presented in a format like ―a total count 

of generated paths‖/ ‖a length of the best route‖. For 

example, the program generated 298 routes and a cost of 

the best path was 1869 for 2n=12 and RBW=20%. 

We compared the results with the well-known two-

phase heuristic by Renauld [38] with parameters R=5 and 

various values of α: α=0.5; 1; 1.5 (Tables 1 and 2). We 

programmed the Renauld‘s algorithm ourselves. 

It is worth mentioning that the Renauld‘s approach 

does not take into account any loading limits. That is why 

we mitigated all the loading limits (we assigned large 

values to W, H, L and Q) while comparing our results 

with the Renauld‘s ones. 

As one can see, while our approach is more complex 

and takes into account the vehicle‘s loading, the results 

obtained aren‘t much worth than the ones obtained by 

means of a two-phase heuristic. However, a serious 

disadvantage of our algorithm is its working time: while 

the Renauld‘s algorithm is processing data only for a few 

milliseconds, our program can be processing data for a 

rather long period (up to 60 seconds for 25 PDP pairs). 

 

 

Fig.3. A screenshot with all input parameters and PDP points
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Fig.4. A screenshot of clustering 20 pickup-delivery pairs (squares are pickups and circles are deliveries; the big rounded red square is a depot) 

 

Fig.5. A screenshot of a generated path for each cluster from the example above 

Unfortunately, we could not find any articles (except 

[38]) with publicly accessible test instances that are 

devoted to the PDP problem with constraints similar to 

the ones we have considered. That is why we were 

comparing our results with the Ropke‘s ones [39], which 

are shared at http://www.diku.dk/~sropke/. 

The Ropke‘s work is devoted to the multi-vehicle PDP 

problem with time windows. A formulation of the 

Ropke‘s problem also takes into account a capacity Q of 

every vehicle. While comparing results, we used the same 

Q value as in the Ropke‘s samples.  

However, our results cannot be clearly matched to the 

Ropke‘s ones, since we do not consider time windows 

Despite that, we can check that our results are of the 

same scale compared to the existing ones. In [39], Ropke 

considers four types of instances (A, B, C, and D) 

depending on different vehicles‘ capacities and time 

windows. We chose C and D groups, where time 

windows are longer: a time window is 120 while a 

planning horizon is 600 for all vehicles. 

In Table 3, one can see the Ropke‘s results and our 

results compared to test instances from [39]. We chose 

RBW values that allowed to get good results in a short 

time period (less than 25 seconds). We can definitely get 

a faster or better solution by choosing another v value for 

every instance. 

As we can expect, our total cost is always better than 

the Ropke‘s one, because we do not take time windows 

into account. 

Besides [39], the article [25] also solves the PDP 

problem with the 3D loading constraints, but their 

problem description and their solution algorithm have too 

many additional constraints and features we do not have. 

For example, the article [25]: 

 

 considers reloading of a box so that it can be 

unloaded and loaded again to another place; our 

solution algorithm does not have this feature; 

 allows multiple boxes to be loaded from a pickup 

point while we allow only one box in that case; 

 considers fragility of a box, so fragile boxes 

should not be placed under non-fragile ones; we 

do not have this constraint etc. 

 

That is why we do not see any sense to compare our 

results with the ones in [25] because our problems and 

solution algorithms are too different although being 

similar at the first glance. 
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Table 1. Comparison of the Renauld‘s results and the results obtained by the proposed algorithm (part 1) 

2n RBW=1% RBW=5% RBW=10% RBW=20% 20%<RBW<50% 
Best 

obtained 

Average 

time 

Two-phase heuristic 

Alpha=0.5 Alpha=1 Alpha=1.5 

8 1/2044 1/2044 1/2044 10/1621 180/1531 1531 <16ms 1656 1531 1531 

10 1/1985 1/1985 1/1985 44/1869 1972/1664 1664 <500ms 1830 1750 1664 

12 1/2090 1/2090 213/1869 298/1869 2125/1869 1869 <500ms 1946 1796 2099 

14 1/2198 1/2198 1/2198 14/2148 2666/2148 2148 <1s 2125 2124 2267 

16 1/2520 1/2520 130/2285 4474/2285 – 2285 <2s 2323 2228 2662 

Table 2. Comparison of the Renauld‘s results and the results obtained by the proposed algorithm (part 2) 

2n v=1% v=5% v=10% v=11% Best obtained 
Average 

time 

Two-phase heuristic 

Alpha=0.5 Alpha=1 Alpha=1.5 

20 1/2404 1/2404 3155/2097 8921/2097 2097 <10s 2019 2019 2035 

 v=1% v=3,7% v=4% v=4,2%      

30 1/3517 41/2800 545/2650 3102/2624 2624 <20s 2588 2804 3295 

 v=1% v=2,7% v=3% v=3,25%      

40 1/3458 170/3402 3014/3402 9778/3222 3222 <40s 3526 3166 3129 

 v=1% v=2% v=2,1% v=2,25%      

50 1/3553 1/3553 586/3178 6429/3151 3151 <60s 3036 3398 3180 

Table 3. Comparison of the Ropke‘s results and the results obtained by the proposed algorithm 

Ropke‘s instance 
Ropke's results Our results 

total cost solution time, s total cost solution time, s Routes generated RBW, % 

DD30 1133 49 955 0.315 16 1 

DD35 1210 99 1137 1.107 34 2 

DD40 1352 136 1198 4.253 91 2 

DD45 1483 132 1322 20.8 348 2 

DD50 1600 105 1425 7.833 1165 1.7 

DD55 1743 124 1518 21.684 189 1.5 

DD60 1869 247 1716 5.144 32 1.2 

DD65 2125 209 1939 4.837 23 1.1 

DD70 2220 175 2184 1.786 7 1 

DD75 2396 201 2291 2.232 7 1 

CC30 1087 76 1035 5.058 297 3 

CC35 1230 97 1172 12.823 468 2.5 

CC40 1358 132 1205 8.22 191 2 

CC45 1509 82 1404 2.065 34 1.7 

CC50 1689 168 1613 2.669 35 1.8 

CC55 1816 196 1730 12.134 108 1.3 

CC60 2015 127 1823 12.111 86 1.3 

CC65 2172 145 2024 14.776 80 1.1 

CC70 2201 288 2159 11.675 49 1 

CC75 2375 325 2327 16.105 54 0.8 

 

C.  Comparing the exact and heuristic solutions: main 

results 

We described the algorithm to get the exact and 

heuristic solutions for a lot of instances. Every instance is 

a combination of the following input parameters: 

 

 4 problem sizes: n=3,4,5 and 6; 

 6 sets of the loading constraints: the load area is a 

cube with sides=50;70;90;110;130;150 and 

Q=100;200;300;400;500;600 respectively; 

 5 sets of points‘ coordinates, box sizes and weights. 

The points‘ coordinates were randomly chosen 

from a range [1; 500000], the box size was a cube 

with a side selected from a range [1;50] and the 

weight was selected from a range [1;100]. 

 

For each sample out of 4x6x5=120 instances, we tried 

to obtain an exact solution (i.e. a solution for 

RBW=100%.) and 3 heuristic solutions for 

RBW=10;30;50%. check_prob was 0.2 for all instances. 

We were able to get the exact solutions for n=6 only 

for the small 3D constraints (for Q < 90). For Q >= 90, 

the exact solution takes at least 3 hours and more than a 
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week in most cases. So, we excluded instances with n=6 

and Q >= 90 from further consideration. 

After obtaining the heuristic solutions, we compared 

the resulting cost (1) with a cost of the optimal path 

obtained by the exact solution. We calculated only a 

relative cost increase (because the cost of the heuristic 

solution cost is always bigger or equal to the cost of exact 

solution): 

 

cost_increase
heu ex

ex


  

 

where heu denotes the cost (1) of the heuristic solution; 

ex determines the cost (1) of the exact solution. 

We have put to analysis the following issues: 

 

1) how cost_increase depends on n and RBW < 100 % 

(Fig.6); 

2) how the heuristic solution time (in seconds) depends 

on n and RBW (Fig.7); 

3) a relative frequency of the issue 1 occurring for 

various n, RBW and the loading area cube sizes (Tables 4-

7); 

4) a relative frequency of the ‗jack pot‘ when the 

heuristic produces the optimal solution (the same as the 

exact one) for various n and RBW (Fig.8) 

 

 

Fig.6. Dependency of cost_increase (y - axis) on n (n=3,4,5,6) and  

RBW (x - axis) 

 

Fig.7. Dependency between n, RBW (x - axis) and the heuristic solution 

time (y - axis) 

Table 4. A relative frequency of the issue 1 occurring for various RBW 

and the loading area cube sizes (n = 3) 

 
Load area cube side 

RBW, % 50 70 >70 

10 0,12 0 0 

30 0,12 0 0 

50 0 0 0 

Table 5. A relative frequency of the issue 1 occurring for various RBW 

and the loading area cube sizes (n = 4) 

 
Load area cube side 

RBW, % 50 70 >70 

10 0,76 0,2 0 

30 0,7 0,2 0 

50 0,23 0 0 

Table 6. A relative frequency of the issue 1 occurring for various RBW 

and the loading area cube sizes (n = 5) 

 
Load area cube side 

RBW, % 50 70 >70 

10 0,58 0,2 0 

30 0,29 0,2 0 

50 0 0 0 

Table 7. A relative frequency of the issue 1 occurring for various RBW 

and the loading area cube sizes (n = 6) 

 
Load area cube side 

RBW, % 50 70 >70 

10 0,47 0,4 0 

30 0,11 0 0 

50 0 0 0 

 

 

Fig.8. A relative frequency (y - axis) of the ‗jack pot‘ for various RBW 

(x - axis) and n  

D.  Comparing the exact and heuristic solutions: 

peripheral results 

We also generated another set of instances to analyze 

how the average heuristic solution time depends on 

check_prob. Similarly to the previous section, each 

instance is a combination of some input parameters. 

These parameters are: 

 

 4 problem sizes: n=3,4,5,6; 

 3 sets of the loading constraints: the load area is a 

cube with sides=50;75;150 and Q=100;300;600 

respectively; 

 

3 sets of points‘ coordinates, box sizes and weights. 

The points‘ coordinates were obtained the same way 

described in the previous section. 

For each sample out of 4x3x3=36 instances, we 

obtained the heuristic solutions for various combinations 

of RBW=10;30;50% and check_prob=0.1; 0.2; 0.3; 0.4. 

So, we‘ve got 3x4=12 heuristic solutions for each 

instance. 

Then we analyzed how the heuristic solution time 
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depends on check_prob for various n and RBW. Tables 

below contain the average heuristic solution time (in 

seconds) for 9 experiments (3 sets of the loading 

constraints x 3 sets of the points‘ coordinates and box 

parameters) for the same values of n and RBW. 

Table 8. check_prob for various n and RBW (n = 3) 

n=3 check_prob 

RBW 10 20 30 40 

10 0.04 0.08 0.06 0.08 

30 0.05 0.05 0.07 0.09 

50 0.09 0.12 0.16 0.22 

Table 9. check_prob for various n and RBW (n = 4) 

n=4 check_prob 

RBW 10 20 30 40 

10 0.05 0.08 0.14 0.12 

30 0.05 0.08 0.11 0.14 

50 0.24 0.38 0.52 0.67 

Table 10. check_prob for various n and RBW (n = 5) 

n=5 check_prob 

RBW 10 20 30 40 

10 0.09 0.13 0.20 0.23 

30 0.31 0.56 0.77 0.93 

50 3.84 6.46 9.61 12.52 

Table 11. check_prob for various n and RBW (n = 6) 

n=6 check_prob 

RBW 10 20 30 40 

10 0.13 0.20 0.27 0.34 

30 1.51 2.74 3.69 4.94 

50 42.74 75.96 105.79 135.25 

E.  Experiments based on large samples 

We launched the heuristic solution on large instances 

(n is up to 50) with different RBW values. To speed up 

the calculation time, we set the 3D constraints to be 

always met (Q=10000 and the load area is a cube with a 

side of 5000). Each instance had: 

 

 one of 9 problem sizes: n= 

10;15;20;25;30;35;40;45;50;  

 5 sets of the points‘ coordinates. 

 

For each sample out of 9x5=45 instances, we obtained 

20 heuristic solutions for RBW=0.25;0.5; …. 5%. 

We set the solution time limit to 1000 seconds. Fig.9 

shows the maximum RBW for where the solution time 

was less than our time limit. These results can be 

understood as the maximum precision we can obtain in a 

short time interval for each n.  

For the solutions that satisfied the time limit, we 

analyze how the heuristic solution time (in seconds) 

depends on n and RBW (Fig.10). Let‘s notice that we use 

a logarithmic y-axis in Fig.10 because the solution time 

varies significantly. 

 

Fig.9. The maximum precision for the solution (RBW, y-axis) we can 

obtain in a short time period for each n (x-axis) 

 

Fig.10. Dependency between n (see legend), RBW (x - axis) and the 

heuristic solution time (y - axis) 

 

VI.  CONCLUSION 

In this article, the mathematical model for the one-to-

one Pickup and Delivery Problem with the 3D loading 

constraints applying the combinatorial configuration 

concepts instead of Boolean variables was built.  

The universal GenBase algorithm was applied to 

generating PDP paths that satisfy the 3D constraints (to 

be checked by the algorithm [29We also described how to 

get the exact solution; at the same time, we described 

making use of a slightly modified version of the beam 

search heuristic to obtain the high-quality solution for a 

feasible time. 

Advantages of the proposed algorithm are its ability of 

balancing between time measurements, a quality of the 

solution and its flexibility: changing a way of forming the 

set iF  and a way of expanding the solution for tree 

nodes can help adapt easily the algorithm for being 

applied to different combinatorial optimization problems. 

For example, the GenBase algorithm was used for 

generation of a large number of combinatorial sets [35] as 

well as for optimization of a linear function in a set of 

cyclic permutations [40]. 
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