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Abstract—Bat Algorithm is among the most popular 

meta-heuristic algorithms for optimization. Traditional 

bat algorithm work on sequential approach which is not 

scalable for optimization problems involving large search 

space, huge fitness computation and having large number 

of dimensions E.g. stock market strategies therefore 

parallelizing meta-heuristics to run on parallel machines 

to reduce runtime is required. In this paper, we propose 

two parallel variants of Bat Algorithm (BA) using 

MapReduce parallel programming model proposed by 

Google and have used these two variants for solving the 

Software development effort optimization problem. The 

experiment is conducted using Apache Hadoop 

implementation of MapReduce on a cluster of 6 machines. 

These variants can be used to solve various complex 

optimization problems by simply adding more hardware 

resources to the cluster and without changing the 

proposed variant code. 

 

Index Terms—Bat Algorithm, Big Data, COCOMO 

Model, Distributed System, Hadoop MapReduce Model, 

Parallel Algorithms. 

 

I.  INTRODUCTION 

Over the last few years, Meta-heuristic (discover 

solution by trial and error) approximation algorithms are 

widely used to solve many continuous and combinatorial 

optimization problems. And these algorithms often find 

good solution with less computation effort than 

exhaustive, iterative and simple heuristic methods. Some 

of the meta-heuristic algorithms are virus optimization 

algorithm (VOA), symbiotic organism search (SOS), 

particle swam optimization (PSO), genetic algorithm 

(GA), cuckoo search (CS) etc. These algorithms are 

problem independent thus suits many optimization 

problems. Bat Algorithm is one of the swarm intelligence 

based nature inspired Meta - heuristic algorithm proposed 

by X.-S. Yang [1] in 2010 and it is based on the 

echolocation behavior of bats to detect its prey, avoid 

obstacle and to find its dwell in caves. BA has been 

successfully applied on many continuous optimization 

problems of topology design [2], effort estimation [3], 

economic dispatch [4], Medical Image Segmentation [15], 

Training Feed forward Neural Networks in e-Learning 

Context [14], Task Scheduling [16] etc. and it has shown 

better convergence to optimal solution than other meta - 

heuristic algorithms. 

But BA takes reasonable amount of time to solve 

problems involving large volume of data (big data), 

involving huge fitness computation or having large 

number of dimensions. One solution to handle this would 

be to parallelize bat algorithm and scale it to large 

number of processors. But after program successfully 

parallelize, it must still needs to focus on communication 

of best bat across all the processors this can be done 

through shared memory which provides a global address 

space which parallel tasks can access asynchronously but 

it lacks locality of reference thus takes much time as 

compare to message passing interface (MPI) which 

provides an interface, protocol and semantic 

specifications to pass messages between parallel 

processes. These parallelized programs still need to 

handle distribution of data and node failure explicitly. In 

order to deal with these concerns, Google’s Dean and 

Ghemawat [5] introduced an abstraction called 

MapReduce that provides a parallel design pattern for 

simplifying application development for distributed 

environments i.e. allows expressing the simple 

computation in that design model with hiding complex 

details of parallelization i.e. fault-tolerance, data 

distribution and load balancing in a library. These 

abstractions are inspired by map and reduce primitives 

present in Lisp and many other functional languages. This 

paper makes the following research contributions: 

 

1. It demonstrates the modification of bat algorithms 

into the MapReduce Programming Model. 

2. It proposes 2 variants of parallel bat algorithm. 

3. It implements these variants on software effort 

estimation problem and demonstrates its 

scalability on different experimental set up. 

 

From this proposed work, many complex optimization 

problems based on BA can easily be scaled only by 

increasing the no. of hardware resources. 

The rest of the paper is organized as follows. Section II 

presents the study of BA and MapReduce in literature. In 

Section III, we revisit the Bat Algorithm. Section IV 
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provides more detailed explanation of MapReduce Model. 

In section V, we discuss how bat algorithm can be 

parallelized using the MapReduce Model. Section VI 

provides implementation details and we conclude with 

results in section VII and VIII.  

 

II.  RELATED WORK 

In 2004, Google’s Dean and Ghemawat [5] published a 

white paper to parallelize large data on clusters by using 

map reduce model. After that MapReduce became 

widely-used parallel programming model and was 

employed on various large processing applications like 

Mining Interesting Infrequent Item sets from Very Large 

Data [17] etc. Nowadays, heuristic algorithms have 

started using Hadoop Map Reduce Model to scale data 

intensive problems as McNabb, et al. [6] have 

successfully parallelized Particle Swarm optimization 

Algorithm PSO on a MapReduce framework and 

evaluated it on RBF Network Training function and 

sphere function then in 2014 Wang, et al. [2] proposed 

MPSO (Map-PSO) and applied this on Performance-

based Reward Strategy in stock markets which took less 

running time then sequential and MRPSO. Jin, et al. [7] 

used MapReduce model to parallelize GA and proposed 

MRPGA. Verma, et al. [13] presented parallel model of 

GA for data-intensive computing and tested it on one max 

problem. Keco and Subasi [14] proposed Model 2 and 

compared it with model 1 for same one max problem 

implementation. Then these models were used for various 

problems like Job Shop Scheduling Problem [3], 

automatic generation of JUnit Test Suites [12] etc. Lin, et 

al. [8] scaled Modified Cuckoo Search using MapReduce 

Architecture and evaluated it on Griewank function,  

Rastrigrin function,  Rosenbrock function and Sphere 

function. 

 

III.  BAT ALGORITHM 

BA is swarm intelligence based meta-heuristic 

optimization algorithm proposed by X.-S. Yang [1] in 

2010. BA finds the solution in the search space by 

exploiting the echolocation behavior of bats in which 

they locate their prey by emitting a short - loud sound 

pulse and listen for the echo that bounces back from the 

surrounding obstacle from which they see the time delay 

from the emission of sound pulse to perception of the 

echo and the time difference between their two ears and 

also the loudness variations (signal intensity) of the 

echo’s to get a view about surrounding and prey size. 

In addition to this, BA uses a dynamic strategy for 

exploration (global search) and exploitation (local search) 

to improve the solution. Like the variations in pulse 

emission rates r and loudness 𝐴0 controls exploration and 

exploitation in BA. 

In original bat algorithm, the bat behaviour of finding 

the best location is captured to optimize the fitness 

function of the problem to be solved. It consists of the 

following steps: 

Step 1: Initialization of Bat Population 

Initially, N bats are randomly spread over the search 

space as they have no idea where the prey is located thus 

population is randomly generated for each dimension d 

with default values for frequency, velocity, pulse 

emission rate and loudness. 

 

 mi max minn  0,  ( )1ij j j jx x rand x x          (1) 

 

Where i = 1, 2 … N, j = 1, 2… d, 
min jx  and 

max jx are lower 

and upper boundaries for dimension j respectively. 

Step 2: Update Process of Frequency, Velocity and 

Solution 

In the iterations of BA, each bat in the population emits 

sound pulses of random frequency dispersed between 

[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] and this frequency controls the speed and 

new position of bat using below equations: 

 

min max min( )if f f f                           (2) 

 
1 1( *)t t t

i i i iv v x x f                             (3) 

 
1t t t

i i ix x v                                    (4) 

 

Where 𝛽 denotes a randomly generated number with in 

the interval [0, 1] and 𝑥* is the current global best 

solution which is located after comparing all the solutions. 

Upper and lower bounds of frequency are chosen such 

that it is comparable to the size of search space of that 

variable. 

Step 3: Local Search 

Each bat performs Random walk in order to exploit a 

position around the best solution. 

 
t

new oldx x A                                (5) 

 

Here
oldx  is selected best solution from current best 

solutions, 𝜀 denotes a random number within the interval 

[-1, 1], while 
tA  is the average loudness of all the bats at 

that time step. 

Step 4: Updating Loudness and Pulse Emission Rate 

If new solution is improved than previous solution i.e. 

as the bat approach their prey, loudness of emitted sound 

pulse decreases and pulse emission rate increases so 

loudness and pulse rate needs to be updated using below 

equations: 

 
1t t

i iA A                                 (6) 

 
1 0 (1 )t t

i ir r e                              (7) 

 

Where α and γ are constants. 0

ir  & 0

iA  consist of random 
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values and 0

ir [0, 1] and 0

iA [1, 2]. 

Step 5: Find the current best solution.  

Find the current best bat by comparing last best fitness 

value with improved bat fitness if its better then update 

the best bat solution. 

After all the iterations, the current best bat 𝑥* gets 

improved and acts as the solution to the problem. 

 

IV.  MAPREDUCE MODEL 

Map Reduce is programming model and an abstraction 

proposed by Google - Dean and Ghemawat [5] for 

processing large volumes of data in parallel. This Model 

exploits parallelism by splitting the input data into blocks 

which are processed by the map and reduce tasks in a 

completely parallel manner. And it is applicable to those 

parallel computing problems in which same operation is 

applied on each data item and whose output is consumed 

by other operations in groups. 

MapReduce Programming Model takes the input in the 

form of (key; value) pairs and operate on data in mainly 

three stages: 

1.  Map Stage: 

In the map stage, the user defined map () function takes 

as input a single (key; value) pair and produces as output 

any number of intermediate (key; value) pairs. It is 

crucial that the map operation is stateless - that is, it 

operates on one pair at a time. This allows for easy 

parallelization as different inputs for the map can be 

processed in different machines. 

 

1 1 2 2: ( , ) ( , )MAP K V LIST K V              (8) 

2.  Shuffle Stage: 

In shuffle phase, all of the map’s output (key; value) 

pairs are sorted and all values associated with same key is 

grouped together in a value lists which is then send to 

reduce () function. This occurs automatically without any 

programmer intervention. 

3.  Reduce Stage 

In the reduce stage, each user defined reduce () 

function takes all of the values associated with a single 

key k and outputs a multi set of (key; value) pairs with 

the same key k. This highlights one of the sequential 

aspects of MapReduce computation i.e. all of the maps 

need to finish before the reduce stage can begin. And in 

the reduce step, the parallelism is exploited by observing 

that reducers operating on different keys can be executed 

simultaneously. 

 

2 2 2: ( , ( )) ( )REDUCE K list V LIST V           (9) 

 

Apache Hadoop is an open source software framework 

for distributed processing which has successfully 

implemented Google’s MapReduce and file system in its 

modules. 

V.  PARALLEL BAT ALGORITHM USING MAPREDUCE 

MODEL 

As have seen that in each iteration of original BA, all 

bats find a new location either by flying randomly using 

equation (5) or by adjusting their frequency and updating 

their velocity, location using equation (2), (3), (4). Each 

bat then evaluates the fitness of new solution and 

accordingly move to new position if that’s better than the 

current position.  

In original BA, the steps that can be parallelized i.e. 

can be executed independently are: 

 

 Each bat updating its position.  

 Iterations of generations can be executed in 

parallel. 

 

But iterations can’t be parallelized as population of bat 

should improve from generation to generation and initial 

iteration results should be utilized in the next iterations.  

Based on above idea, to transform BA into map and 

reduce primitives following points need to be defined: 

 

 Determine the input to MapReduce Model. 

 Determine the jobs of mapper and reducer tasks. 

 Exchange information between parallel map tasks. 

A.  Input Representation 

In Parallel BA, large initial random population of bats 

is given as input to MapReduce framework which splits 

them into chunks and distributes them across the map 

tasks.Each bat in input population is represented by 

key/value pairs: 

 

K1: String representing individual bat 

V1: fitness 

 

Here the key consists of set of attributes representing 

bat like position, frequency and velocity whereas value is 

the fitness of that bat. For e.g. in our software effort 

optimization problem (K1: V1) are: 

Coefficient a; Coefficient b; Frequency; Velocity a; 

Velocity b: Fitness 

And gbest bat of initial population is also sent in the 

following form: 

Coefficient a; Coefficient b: Fitness 

B.  Mapper in Parallel Bat Algorithm 

Job tracker initiates map tasks equal to the no. of 

population split and assign map task to each of these 

population splits. Then each mapper (map task) calls the 

user defined map () function for each individual (bat: 

fitness pair) in the population split. 

In this paper, we present two variants of parallel bat 

algorithm. Both variants have corresponding map () 

algorithms which encapsulates bat updating process. First 

variant uses one map phase for one generation of bat 

algorithm i.e. population is evolving generation by 

generation while in second variant, one map phase for all 

the generations is used i.e. each bat is evolving for N 
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generations with in a map () function. That means in 

variant 1, N Map cycle execute whereas in Variant 2 only 

one map cycle will generate the optimum output. 

As shown in Fig. 1 pseudo code of variant 1, map () 

function explores and exploits new solution for given bat 

(input key) using 𝑥* representing mbest. And outputs 

improved bat which is used as input in the next 

generations (loop cycle). This map () function is called 

for each bat in the population for N generations. 

And as shown in pseudo code in Fig. 2, map () function 

evolves the given bat for N generations using mbest 

(mapper best) as x*. In this no intermediate data are 

emitted by any Mapper and final evaluated gbest is 

considered as the output of the job. 

At the end of each map task these improved mbest are 

written to the distributed file system which are then 

evaluated at the end of map phase to calculate gbest. 

 

 

Fig.1. Pseudo Code of Variant 1 

 

Fig.2. Pseudo Code of Variant 2 

C.  Exchange of Information between Bats 

In original bat algorithm, bats use the shared current 

best 𝑥* in their position updating process but Parallel BA, 

share generation best bat (gbest) across all the parallel map 

tasks which is used to initialize mapper level best (mbest) 

bat. This mbest bat is updated in map () if a better bat is 

found in map task thus updated mbest is used for other bats 

in the same population split. 

In this research, we have explored 2 approaches to 

generate gbest bat: 

1.  Map Reduce Bat Algorithm (MRBA) 

In MRBA, both map and reduce tasks are used. 

Improved bat as output of all the map tasks are combined 

and sent to a single Reducer (using same key for all the 

improved bats). Reduce task sorts all the improved bats 

and output gbest bat which which is used for next 

iterations as shown in Fig. 3.  

 

 
Fig.3. Operation phases in MRBA 

 
Fig.4. Operation phases in MBA
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2.  Map Bat Algorithm (MBA)  

In MBA, only mapper is used and during the clean-up 

of each map task this improved mbest bat is stored in 

distributed file system. As there are zero reduce tasks so 

no mapper output will be sorted/ shuffled thus is directly 

sent for output. And after every iteration, gbest is evaluated 

from these mapper level bats (mbest) as shown in Fig. 4. 

Thus MBA find the gbest with less no. of comparison than 

MRBA therefore in our proposed algorithm MBA is 

preferred over MRBA. 

 

VI.  EXPERIMENTAL SETUP 

This section discusses the problem statement on which 

this proposed algorithm needs to be tested and the 

environment being set up to emulate the Map Reduce 

Model. 

A.  Implementation 

These proposed variants are tested on optimization of 

COCOMO II parameters (a, b) such that calculated 

efforts approximate to actual efforts for NASA 63 project 

Dataset. 

Formally, this problem can be framed as finding 

parameter 1 2{ , }X x x  where, {0,5}ix   that minimizes 

the following equation: 

 

  2

1 2 3 151[ ( )–   /]
x

EM EM EMRE Actual M EMx KLOC Actual      

(10) 

1

1 n

i ij

j

MMRE MRE
n 

                        (11) 

 

Here MMRE is Mean Magnitude of Relative Error 

which is used as evaluation criteria for assessment of 

optimized parameters. And since parameter x1 and x2 are 

specific to project modes therefore we execute program 

for each mode separately. 

B.  Environment 

These variants are implemented on Apache Hadoop 

(0.19) and ran on 6 node cluster in which one node act as 

master and other acts as slaves. Each node had Intel 5 

dual core, 4GB RAM and 250 GB hard disks. The nodes 

are integrated with Hadoop Distributed File System 

(HDFS) giving a potential single image storage space of 2 

* 250/3 = 166 GB (since the replication factor of HDFS 

is set to 3). And execution of no. of mappers and reducer 

in parallel depends on hardware configuration. 

 

VII.  RESULTS  

This section discuss results obtained using the 

developed algorithm and in those experiments, we have 

used population size of 2 lakhs (input size 13MB), 

number of iterations as 5, number of nodes as 6 and block 

size of 5MB. 

 

 Scalability of MBA for effort estimation problem 

with increasing the no. of Map Tasks (Mapper): 

Fig. 5 compares the run time of MBA (Variant 1) 

with different number of map task i.e. setting 

different block size. On taking block size of 1 MB 

i.e. 13 map tasks, execution time is 16.84 which 

decreased with increase in block size due to less 

no of task distribution among the nodes. But on 

further decreasing the number of tasks (< no of 

nodes), run time became almost constant due to 

decrease in communication overhead. 

 

 

Fig.5. Scalability of MBA for effort estimation problem with increasing 

the number of mappers 

 Comparison between MRBA and MBA: Fig. 6 

compares the running time of Map Reduce Bat 

Algorithm (MRBA) and Map Bat Algorithm 

(MBA) for variant 1. And as shown, MBA takes 

less time as compare to MRBA by saving time in 

intermediate bat’s storage with no initialization of 

Reducer tasks. And also MRBA requires whole 

population (2 Lakh) sorting to get the gbest whereas 

MBA reads at most 13 mbest from the HDFS to 

find the gbest. 

 Scalability of MBA for effort estimation problem 

with increasing the number of nodes: Fig. 7 

compares the run time of both MBA based 

variants by increasing the number of nodes in the 

cluster. Variant 2 took less time than Variant 1 due 

to less no. of map cycles and no intermediate 

generation data handling. And for variant 2, single 

node cluster took less time than 3 node cluster as 

there was no communication/task distribution 

overhead but on further increasing the number of 

nodes, the execution time reduced and became 

almost constant. 

 Performance tuning with increase in population 

size: Fig. 8 compares the MMRE of embedded 

projects for both variants by increasing the size of 

population. As shown, MMRE reduces with 

increase in population and became constant after 

1500. 

 Performance tuning with increase in number of 

generations: In this experiment, we have taken 

population size as 10,000 and block size of 5MB 

and compared the MMRE of embedded projects 

for both variants by increasing the number of 
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iterations. As shown in Fig. 9, both variants give 

better MMRE than COCOMO Model (0.3921) and 

MMRE decreases with increase in generation due 

to more refining of output. 

 

 

Fig.6. Comparison between MRBA and MBA 

 

Fig.7. Scalability of MBA for effort estimation problem with increasing 

the number of nodes 

 

Fig.8. Performance tuning with increase in population size 

 

Fig.9. Performance tuning with increase in number of Generations 

 

VIII.  CONCLUSION AND FUTURE WORK 

The proposed variants can easily parallelize BA which 

than can be used to solve problems involving large search 

space by simply adding more hardware resources to the 

cluster and without changing the proposed variant code. 

And according to experimental results variant 2 shows 

better convergence than variant 1 and also take less time 

for execution. 

It has been seen that lots of communication, task start 

up overhead is associated with Hadoop Map Reduce 

Architecture thus is not suitable for problems involving 

small search space, few dimension and less computation. 

And map reduce is suitable for parallel computing 

problem having huge data with having same processing 

for each item. 

Due to the update process in BA, Parallel BA Variants 

can’t be used for given large dataset in order to find the 

optimal result from them. So further study on BA 

modification is required to find best results from given 

dataset for e.g. getting best quotation from large dataset 

of quotations.  

In future work, both variants should be applied on 

problems involving large search space, big computation, 

and large no. of dimensions like in stock market 

strategies. And these variants running time can also be 

further improved by examining other features of 

MapReduce architecture like partitioner, combiner, 

shuffler etc. which may reduce the processing. We can 

also compare these variants with existing MPI-based 

implementation or the results can be compared with other 

parallel meta-heuristic algorithms. 
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