
I.J. Information Technology and Computer Science, 2017, 11, 72-78

Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.11.08

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

Parallel Bat Algorithm Using MapReduce Model

Kapil Sharma
Department of Computer Engineering, Delhi Technological University, Delhi, India

E-mail: kapil@ieee.org

Sanchi Girotra
Department of Computer Engineering, Delhi Technological University, Delhi, India

E-mail: sanchi.girotra@gmail.com

Received: 04 June 2017; Accepted: 10 August 2017; Published: 08 November 2017

Abstract—Bat Algorithm is among the most popular

meta-heuristic algorithms for optimization. Traditional

bat algorithm work on sequential approach which is not

scalable for optimization problems involving large search

space, huge fitness computation and having large number

of dimensions E.g. stock market strategies therefore

parallelizing meta-heuristics to run on parallel machines

to reduce runtime is required. In this paper, we propose

two parallel variants of Bat Algorithm (BA) using

MapReduce parallel programming model proposed by

Google and have used these two variants for solving the

Software development effort optimization problem. The

experiment is conducted using Apache Hadoop

implementation of MapReduce on a cluster of 6 machines.

These variants can be used to solve various complex

optimization problems by simply adding more hardware

resources to the cluster and without changing the

proposed variant code.

Index Terms—Bat Algorithm, Big Data, COCOMO

Model, Distributed System, Hadoop MapReduce Model,

Parallel Algorithms.

I. INTRODUCTION

Over the last few years, Meta-heuristic (discover

solution by trial and error) approximation algorithms are

widely used to solve many continuous and combinatorial

optimization problems. And these algorithms often find

good solution with less computation effort than

exhaustive, iterative and simple heuristic methods. Some

of the meta-heuristic algorithms are virus optimization

algorithm (VOA), symbiotic organism search (SOS),

particle swam optimization (PSO), genetic algorithm

(GA), cuckoo search (CS) etc. These algorithms are

problem independent thus suits many optimization

problems. Bat Algorithm is one of the swarm intelligence

based nature inspired Meta - heuristic algorithm proposed

by X.-S. Yang [1] in 2010 and it is based on the

echolocation behavior of bats to detect its prey, avoid

obstacle and to find its dwell in caves. BA has been

successfully applied on many continuous optimization

problems of topology design [2], effort estimation [3],

economic dispatch [4], Medical Image Segmentation [15],

Training Feed forward Neural Networks in e-Learning

Context [14], Task Scheduling [16] etc. and it has shown

better convergence to optimal solution than other meta -

heuristic algorithms.

But BA takes reasonable amount of time to solve

problems involving large volume of data (big data),

involving huge fitness computation or having large

number of dimensions. One solution to handle this would

be to parallelize bat algorithm and scale it to large

number of processors. But after program successfully

parallelize, it must still needs to focus on communication

of best bat across all the processors this can be done

through shared memory which provides a global address

space which parallel tasks can access asynchronously but

it lacks locality of reference thus takes much time as

compare to message passing interface (MPI) which

provides an interface, protocol and semantic

specifications to pass messages between parallel

processes. These parallelized programs still need to

handle distribution of data and node failure explicitly. In

order to deal with these concerns, Google’s Dean and

Ghemawat [5] introduced an abstraction called

MapReduce that provides a parallel design pattern for

simplifying application development for distributed

environments i.e. allows expressing the simple

computation in that design model with hiding complex

details of parallelization i.e. fault-tolerance, data

distribution and load balancing in a library. These

abstractions are inspired by map and reduce primitives

present in Lisp and many other functional languages. This

paper makes the following research contributions:

1. It demonstrates the modification of bat algorithms

into the MapReduce Programming Model.

2. It proposes 2 variants of parallel bat algorithm.

3. It implements these variants on software effort

estimation problem and demonstrates its

scalability on different experimental set up.

From this proposed work, many complex optimization

problems based on BA can easily be scaled only by

increasing the no. of hardware resources.

The rest of the paper is organized as follows. Section II

presents the study of BA and MapReduce in literature. In

Section III, we revisit the Bat Algorithm. Section IV

 Parallel Bat Algorithm Using MapReduce Model 73

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

provides more detailed explanation of MapReduce Model.

In section V, we discuss how bat algorithm can be

parallelized using the MapReduce Model. Section VI

provides implementation details and we conclude with

results in section VII and VIII.

II. RELATED WORK

In 2004, Google’s Dean and Ghemawat [5] published a

white paper to parallelize large data on clusters by using

map reduce model. After that MapReduce became

widely-used parallel programming model and was

employed on various large processing applications like

Mining Interesting Infrequent Item sets from Very Large

Data [17] etc. Nowadays, heuristic algorithms have

started using Hadoop Map Reduce Model to scale data

intensive problems as McNabb, et al. [6] have

successfully parallelized Particle Swarm optimization

Algorithm PSO on a MapReduce framework and

evaluated it on RBF Network Training function and

sphere function then in 2014 Wang, et al. [2] proposed

MPSO (Map-PSO) and applied this on Performance-

based Reward Strategy in stock markets which took less

running time then sequential and MRPSO. Jin, et al. [7]

used MapReduce model to parallelize GA and proposed

MRPGA. Verma, et al. [13] presented parallel model of

GA for data-intensive computing and tested it on one max

problem. Keco and Subasi [14] proposed Model 2 and

compared it with model 1 for same one max problem

implementation. Then these models were used for various

problems like Job Shop Scheduling Problem [3],

automatic generation of JUnit Test Suites [12] etc. Lin, et

al. [8] scaled Modified Cuckoo Search using MapReduce

Architecture and evaluated it on Griewank function,

Rastrigrin function, Rosenbrock function and Sphere

function.

III. BAT ALGORITHM

BA is swarm intelligence based meta-heuristic

optimization algorithm proposed by X.-S. Yang [1] in

2010. BA finds the solution in the search space by

exploiting the echolocation behavior of bats in which

they locate their prey by emitting a short - loud sound

pulse and listen for the echo that bounces back from the

surrounding obstacle from which they see the time delay

from the emission of sound pulse to perception of the

echo and the time difference between their two ears and

also the loudness variations (signal intensity) of the

echo’s to get a view about surrounding and prey size.

In addition to this, BA uses a dynamic strategy for

exploration (global search) and exploitation (local search)

to improve the solution. Like the variations in pulse

emission rates r and loudness 𝐴0 controls exploration and

exploitation in BA.

In original bat algorithm, the bat behaviour of finding

the best location is captured to optimize the fitness

function of the problem to be solved. It consists of the

following steps:

Step 1: Initialization of Bat Population

Initially, N bats are randomly spread over the search

space as they have no idea where the prey is located thus

population is randomly generated for each dimension d

with default values for frequency, velocity, pulse

emission rate and loudness.

 mi max minn 0, ()1ij j j jx x rand x x  (1)

Where i = 1, 2 … N, j = 1, 2… d,
min jx and

max jx are lower

and upper boundaries for dimension j respectively.

Step 2: Update Process of Frequency, Velocity and

Solution

In the iterations of BA, each bat in the population emits

sound pulses of random frequency dispersed between

[𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] and this frequency controls the speed and

new position of bat using below equations:

min max min()if f f f    (2)

1 1(*)t t t

i i i iv v x x f    (3)

1t t t

i i ix x v  (4)

Where 𝛽 denotes a randomly generated number with in

the interval [0, 1] and 𝑥* is the current global best

solution which is located after comparing all the solutions.

Upper and lower bounds of frequency are chosen such

that it is comparable to the size of search space of that

variable.

Step 3: Local Search

Each bat performs Random walk in order to exploit a

position around the best solution.

t

new oldx x A  (5)

Here
oldx is selected best solution from current best

solutions, 𝜀 denotes a random number within the interval

[-1, 1], while
tA is the average loudness of all the bats at

that time step.

Step 4: Updating Loudness and Pulse Emission Rate

If new solution is improved than previous solution i.e.

as the bat approach their prey, loudness of emitted sound

pulse decreases and pulse emission rate increases so

loudness and pulse rate needs to be updated using below

equations:

1t t

i iA A  (6)

1 0 (1)t t

i ir r e    (7)

Where α and γ are constants. 0

ir & 0

iA consist of random

74 Parallel Bat Algorithm Using MapReduce Model

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

values and 0

ir [0, 1] and 0

iA [1, 2].

Step 5: Find the current best solution.

Find the current best bat by comparing last best fitness

value with improved bat fitness if its better then update

the best bat solution.

After all the iterations, the current best bat 𝑥* gets

improved and acts as the solution to the problem.

IV. MAPREDUCE MODEL

Map Reduce is programming model and an abstraction

proposed by Google - Dean and Ghemawat [5] for

processing large volumes of data in parallel. This Model

exploits parallelism by splitting the input data into blocks

which are processed by the map and reduce tasks in a

completely parallel manner. And it is applicable to those

parallel computing problems in which same operation is

applied on each data item and whose output is consumed

by other operations in groups.

MapReduce Programming Model takes the input in the

form of (key; value) pairs and operate on data in mainly

three stages:

1. Map Stage:

In the map stage, the user defined map () function takes

as input a single (key; value) pair and produces as output

any number of intermediate (key; value) pairs. It is

crucial that the map operation is stateless - that is, it

operates on one pair at a time. This allows for easy

parallelization as different inputs for the map can be

processed in different machines.

1 1 2 2: (,) (,)MAP K V LIST K V (8)

2. Shuffle Stage:

In shuffle phase, all of the map’s output (key; value)

pairs are sorted and all values associated with same key is

grouped together in a value lists which is then send to

reduce () function. This occurs automatically without any

programmer intervention.

3. Reduce Stage

In the reduce stage, each user defined reduce ()

function takes all of the values associated with a single

key k and outputs a multi set of (key; value) pairs with

the same key k. This highlights one of the sequential

aspects of MapReduce computation i.e. all of the maps

need to finish before the reduce stage can begin. And in

the reduce step, the parallelism is exploited by observing

that reducers operating on different keys can be executed

simultaneously.

2 2 2: (, ()) ()REDUCE K list V LIST V (9)

Apache Hadoop is an open source software framework

for distributed processing which has successfully

implemented Google’s MapReduce and file system in its

modules.

V. PARALLEL BAT ALGORITHM USING MAPREDUCE

MODEL

As have seen that in each iteration of original BA, all

bats find a new location either by flying randomly using

equation (5) or by adjusting their frequency and updating

their velocity, location using equation (2), (3), (4). Each

bat then evaluates the fitness of new solution and

accordingly move to new position if that’s better than the

current position.

In original BA, the steps that can be parallelized i.e.

can be executed independently are:

 Each bat updating its position.

 Iterations of generations can be executed in

parallel.

But iterations can’t be parallelized as population of bat

should improve from generation to generation and initial

iteration results should be utilized in the next iterations.

Based on above idea, to transform BA into map and

reduce primitives following points need to be defined:

 Determine the input to MapReduce Model.

 Determine the jobs of mapper and reducer tasks.

 Exchange information between parallel map tasks.

A. Input Representation

In Parallel BA, large initial random population of bats

is given as input to MapReduce framework which splits

them into chunks and distributes them across the map

tasks.Each bat in input population is represented by

key/value pairs:

K1: String representing individual bat

V1: fitness

Here the key consists of set of attributes representing

bat like position, frequency and velocity whereas value is

the fitness of that bat. For e.g. in our software effort

optimization problem (K1: V1) are:

Coefficient a; Coefficient b; Frequency; Velocity a;

Velocity b: Fitness

And gbest bat of initial population is also sent in the

following form:

Coefficient a; Coefficient b: Fitness

B. Mapper in Parallel Bat Algorithm

Job tracker initiates map tasks equal to the no. of

population split and assign map task to each of these

population splits. Then each mapper (map task) calls the

user defined map () function for each individual (bat:

fitness pair) in the population split.

In this paper, we present two variants of parallel bat

algorithm. Both variants have corresponding map ()

algorithms which encapsulates bat updating process. First

variant uses one map phase for one generation of bat

algorithm i.e. population is evolving generation by

generation while in second variant, one map phase for all

the generations is used i.e. each bat is evolving for N

 Parallel Bat Algorithm Using MapReduce Model 75

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

generations with in a map () function. That means in

variant 1, N Map cycle execute whereas in Variant 2 only

one map cycle will generate the optimum output.

As shown in Fig. 1 pseudo code of variant 1, map ()

function explores and exploits new solution for given bat

(input key) using 𝑥* representing mbest. And outputs

improved bat which is used as input in the next

generations (loop cycle). This map () function is called

for each bat in the population for N generations.

And as shown in pseudo code in Fig. 2, map () function

evolves the given bat for N generations using mbest

(mapper best) as x*. In this no intermediate data are

emitted by any Mapper and final evaluated gbest is

considered as the output of the job.

At the end of each map task these improved mbest are

written to the distributed file system which are then

evaluated at the end of map phase to calculate gbest.

Fig.1. Pseudo Code of Variant 1

Fig.2. Pseudo Code of Variant 2

C. Exchange of Information between Bats

In original bat algorithm, bats use the shared current

best 𝑥* in their position updating process but Parallel BA,

share generation best bat (gbest) across all the parallel map

tasks which is used to initialize mapper level best (mbest)

bat. This mbest bat is updated in map () if a better bat is

found in map task thus updated mbest is used for other bats

in the same population split.

In this research, we have explored 2 approaches to

generate gbest bat:

1. Map Reduce Bat Algorithm (MRBA)

In MRBA, both map and reduce tasks are used.

Improved bat as output of all the map tasks are combined

and sent to a single Reducer (using same key for all the

improved bats). Reduce task sorts all the improved bats

and output gbest bat which which is used for next

iterations as shown in Fig. 3.

Fig.3. Operation phases in MRBA

Fig.4. Operation phases in MBA

76 Parallel Bat Algorithm Using MapReduce Model

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

2. Map Bat Algorithm (MBA)

In MBA, only mapper is used and during the clean-up

of each map task this improved mbest bat is stored in

distributed file system. As there are zero reduce tasks so

no mapper output will be sorted/ shuffled thus is directly

sent for output. And after every iteration, gbest is evaluated

from these mapper level bats (mbest) as shown in Fig. 4.

Thus MBA find the gbest with less no. of comparison than

MRBA therefore in our proposed algorithm MBA is

preferred over MRBA.

VI. EXPERIMENTAL SETUP

This section discusses the problem statement on which

this proposed algorithm needs to be tested and the

environment being set up to emulate the Map Reduce

Model.

A. Implementation

These proposed variants are tested on optimization of

COCOMO II parameters (a, b) such that calculated

efforts approximate to actual efforts for NASA 63 project

Dataset.

Formally, this problem can be framed as finding

parameter 1 2{ , }X x x where, {0,5}ix  that minimizes

the following equation:

  2

1 2 3 151[()– /]
x

EM EM EMRE Actual M EMx KLOC Actual    

(10)

1

1 n

i ij

j

MMRE MRE
n 

  (11)

Here MMRE is Mean Magnitude of Relative Error

which is used as evaluation criteria for assessment of

optimized parameters. And since parameter x1 and x2 are

specific to project modes therefore we execute program

for each mode separately.

B. Environment

These variants are implemented on Apache Hadoop

(0.19) and ran on 6 node cluster in which one node act as

master and other acts as slaves. Each node had Intel 5

dual core, 4GB RAM and 250 GB hard disks. The nodes

are integrated with Hadoop Distributed File System

(HDFS) giving a potential single image storage space of 2

* 250/3 = 166 GB (since the replication factor of HDFS

is set to 3). And execution of no. of mappers and reducer

in parallel depends on hardware configuration.

VII. RESULTS

This section discuss results obtained using the

developed algorithm and in those experiments, we have

used population size of 2 lakhs (input size 13MB),

number of iterations as 5, number of nodes as 6 and block

size of 5MB.

 Scalability of MBA for effort estimation problem

with increasing the no. of Map Tasks (Mapper):

Fig. 5 compares the run time of MBA (Variant 1)

with different number of map task i.e. setting

different block size. On taking block size of 1 MB

i.e. 13 map tasks, execution time is 16.84 which

decreased with increase in block size due to less

no of task distribution among the nodes. But on

further decreasing the number of tasks (< no of

nodes), run time became almost constant due to

decrease in communication overhead.

Fig.5. Scalability of MBA for effort estimation problem with increasing

the number of mappers

 Comparison between MRBA and MBA: Fig. 6

compares the running time of Map Reduce Bat

Algorithm (MRBA) and Map Bat Algorithm

(MBA) for variant 1. And as shown, MBA takes

less time as compare to MRBA by saving time in

intermediate bat’s storage with no initialization of

Reducer tasks. And also MRBA requires whole

population (2 Lakh) sorting to get the gbest whereas

MBA reads at most 13 mbest from the HDFS to

find the gbest.

 Scalability of MBA for effort estimation problem

with increasing the number of nodes: Fig. 7

compares the run time of both MBA based

variants by increasing the number of nodes in the

cluster. Variant 2 took less time than Variant 1 due

to less no. of map cycles and no intermediate

generation data handling. And for variant 2, single

node cluster took less time than 3 node cluster as

there was no communication/task distribution

overhead but on further increasing the number of

nodes, the execution time reduced and became

almost constant.

 Performance tuning with increase in population

size: Fig. 8 compares the MMRE of embedded

projects for both variants by increasing the size of

population. As shown, MMRE reduces with

increase in population and became constant after

1500.

 Performance tuning with increase in number of

generations: In this experiment, we have taken

population size as 10,000 and block size of 5MB

and compared the MMRE of embedded projects

for both variants by increasing the number of

 Parallel Bat Algorithm Using MapReduce Model 77

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

iterations. As shown in Fig. 9, both variants give

better MMRE than COCOMO Model (0.3921) and

MMRE decreases with increase in generation due

to more refining of output.

Fig.6. Comparison between MRBA and MBA

Fig.7. Scalability of MBA for effort estimation problem with increasing

the number of nodes

Fig.8. Performance tuning with increase in population size

Fig.9. Performance tuning with increase in number of Generations

VIII. CONCLUSION AND FUTURE WORK

The proposed variants can easily parallelize BA which

than can be used to solve problems involving large search

space by simply adding more hardware resources to the

cluster and without changing the proposed variant code.

And according to experimental results variant 2 shows

better convergence than variant 1 and also take less time

for execution.

It has been seen that lots of communication, task start

up overhead is associated with Hadoop Map Reduce

Architecture thus is not suitable for problems involving

small search space, few dimension and less computation.

And map reduce is suitable for parallel computing

problem having huge data with having same processing

for each item.

Due to the update process in BA, Parallel BA Variants

can’t be used for given large dataset in order to find the

optimal result from them. So further study on BA

modification is required to find best results from given

dataset for e.g. getting best quotation from large dataset

of quotations.

In future work, both variants should be applied on

problems involving large search space, big computation,

and large no. of dimensions like in stock market

strategies. And these variants running time can also be

further improved by examining other features of

MapReduce architecture like partitioner, combiner,

shuffler etc. which may reduce the processing. We can

also compare these variants with existing MPI-based

implementation or the results can be compared with other

parallel meta-heuristic algorithms.

REFERENCES

[1] X.-S. Yang, "A New Metaheuristic Bat-Inspired

Algorithm," Studies in Computational Intelligence,

Springer Berlin, pp. 65-74, 2010.

[2] X. S. Yang, M. Karamanoglu, and S. Fong, "Bat

aglorithm for topology optimization in microelectronic

applications," presented at the IEEE International

Conference on Future Generation Communication

Technology (FGCT2012) London, 2012.

[3] N. Gupta and K. Sharma, "Optimizing intermediate

COCOMO model using BAT algorithm," presented at the

2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), New

Delhi, India 2015.

[4] Y. A. Gherbi, H. Bouzeboudja, and F. Lakdja, "A

Economic dispatch problem using bat algorithm,"

Leonardo Journal of Sciences, pp. 75–84, June 2014 2014.

[5] J. Dean and S. Ghemawat, "Mapreduce simplified data

processing on large clusters," Sixth Symposium on

Operating System Design and Implementation, vol. 51, pp.

107-113, 2004.

[6] A. W. McNabb, C. K. Monson, and K. D. Seppi, "Parallel

PSO Using MapReduce," presented at the IEEE Congress

on Evolutionary Computation, 2007. CEC 2007,

Singapore, 2007.

[7] C. Jin, C. Vecchiola, and R. Buyya, "MRPGA An

Extension of MapReduce for Parallelizing Genetic

Algorithms," presented at the IEEE Fourth International

Conference on eScience, 2008., Indianapolis, IN 2008.

78 Parallel Bat Algorithm Using MapReduce Model

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 72-78

[8] C.-Y. Lin, Y.-M. Pai, K.-H. Tsai, C. H.-P. Wen, and L.-C.

Wang, "Parallelizing Modified Cuckoo Search on

MapReduce Architecture," Journal of Electronic Science

and Technology, vol. 11, 2013.

[9] F. Wang, P. L. H. Yu, and D. W. Cheung, "Combining

Technical Trading Rules Using Parallel Particle Swarm

Optimization based on Hadoop," presented at the

International Joint Conference on Neural Networks

(IJCNN), Beijing, China, 2014.

[10] D.-W. Huang and J. Lin, "Scaling Populations of a

Genetic Algorithm for Job Shop Scheduling Problems

using MapReduce," presented at the 2010 IEEE Second

International Conference on Cloud Computing

Technology and Science (CloudCom), Indianapolis, IN,

2010.

[11] W. Zhao, H. Ma, and Q. He, "Parallel k-means clustering

based on mapreduce," vol. 5931, pp. 674-679, 2009.

[12] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, "A

Parallel Genetic Algorithm Based on Hadoop MapReduce

for the Automatic Generation of JUnit Test Suites "

presented at the 2012 IEEE Fifth International Conference

on Software Testing, Verification and Validation (ICST),

Montreal, QC, 2012.

[13] A. Verma, X. Llorà, D. E. Goldberg, and R. H. Campbell,

"Scaling Genetic Algorithms Using MapReduce,"

presented at the ISDA '09. Ninth International Conference

on Intelligent Systems Design and Applications, 2009,

Pisa 2009.

[14] D. Keco and A. Subasi, "Parallelization of genetic

algorithms using Hadoop Map/Reduce," SouthEast

Europe Journal of Soft Computing, vol. 1, 2012.

[15] Rabiu O. Isah, Aliyu D. Usman,A. M. S. Tekanyi,

"Medical Image Segmentation through Bat-Active

Contour Algorithm," I.J. Intelligent Systems and

Applications, pp. 30-36, 2017

[16] M.Jaeyalakshmi, Dr.P.Kumar, "Task Scheduling Using

Meta-Heuristic Optimization Techniques in Cloud

Environment," I.J. Intelligent Systems and Applications,

vol. 5, Nov 2016

[17] T Ramakrishnudu, R B V Subramanyam, "Mining

Interesting Infrequent Itemsets from Very Large Data

based on MapReduce Framework," I.J. Intelligent

Systems and Applications, 2015, 07,pp. 44-49

Authors’ Profiles

Dr. Kapil Sharma is Associate Professor

at the Department of Computer

Engineering, Delhi Technological

University (formerly Delhi College of

Engineering), Delhi, India. He has

completed Doctors Degree in Computer

Science and Engineering under the Faculty

of Engineering and Technology at the M. D. University, Rohtak

(Haryana), India. He has obtained his Bachelor of Engineering

and Master of Technology Degrees in Computer Science &

Engineering and Information Technology.

Sanchi Girotra is Senior Software

Engineer at Bureau Veritas, Noida, India.

She has completed her Master’s Degree

from Department of Computer

Engineering, Delhi Technological

University (formerly Delhi College of

Engineering), Delhi, India. She has

obtained her Bachelor of Engineering in Computer Science &

Engineering at M. D. University, Rohtak (Haryana), India.

How to cite this paper: Kapil Sharma, Sanchi Girotra, "Parallel

Bat Algorithm Using MapReduce Model", International Journal

of Information Technology and Computer Science(IJITCS),

Vol.9, No.11, pp.72-78, 2017. DOI: 10.5815/ijitcs.2017.11.08

