
I.J. Information Technology and Computer Science, 2017, 5, 15-22
Published Online May 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.05.03

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

A Frequency Based Approach to Multi-Class

Text Classification

Anurag Sarkar
Northeastern University, Boston, United States

E-mail: sarkar.an@husky.neu.edu

Debabrata Datta
St. Xavier‟s College (Autonomous), Kolkata, India

E-mail: debabrata.datta@sxccal.edu

Abstract—Text classification is a method which involves

managing and processing important information that can

be categorized into predefined classes within a collection

of text data. This method plays a vital role in the field of

information processing and information retrieval.

Different approaches to text classification specifically

based on machine learning algorithms have been

discussed and proposed in various research works. This

paper discusses a classification approach based on the

frequencies of some important text parameters and

classifies a given text accordingly into one among

multiple categories. Using a newly defined parameter

called wf-icf, classification accuracy obtained in a

previous work was significantly improved upon.

Index Terms—Supervised learning, Multi-class

classification, Text classification, Text mining, Text

categorization, tf-idf.

I. INTRODUCTION

Text classification, also referred to as text

categorization, may be defined as the process of

classifying textual information by means of its content.

Due to the ubiquity of textual information, text

classification finds application in a diverse array of

domains such as text summarization, information

extraction, information retrieval, question answering and

sentiment analysis, to name a few.

Text classification is a form of text mining, which is a

more general term used to denote any process that

involves deriving information from textual data by

analyzing patterns within it and is in turn a subset of the

larger domain of data mining. Since in text classification,

a labeled dataset is used to train the classifier, it is said

that text classification is a supervised learning technique

and differs from unsupervised learning techniques such as

clustering where the training is performed using

unlabeled data instances.

In this research paper, we have expanded on the work

that was done in [1]. In [1], a binary text classifier had

been proposed and implemented. It made use of an

incremental approach to text mining wherein the newly

classified data instances and their predicted labels were

added to the existing training data set so that this

enhanced data set could be used to train the classifier for

predicting the labels of future unclassified data instances.

This allowed for more thorough classifier training and

increased classification accuracy each time the classifier

was used for the same problem.

The motivation behind improving upon the previous

work in [1] has been two-fold. First, the primary

limitation of the previous classifier was that it could only

perform binary classification. The classifier needed to be

more dynamic and applicable in a wide variety of training

sets. Additionally, a classifier shouldn‟t constrain the data

set to consist of a specific number of classes and should

not inconvenience the users by having them supply the

number of classes present in the training data since the

users themselves may not be aware of this information.

Second, it seemed that higher classification accuracy

could be achieved by making certain optimizations to the

existing algorithm and implementing the tf-idf (term

frequency-inverse document frequency) statistic [2][18]

in place of simple word frequency as was done in the

binary classifier. In the following sections, it will be

illustrated that both of the above-mentioned goals have

been successfully achieved and a classifier has been

developed accordingly. The new classifier is now capable

of automatically inferring the number of classes in the

training data while achieving higher classification

accuracy.

The rest of the paper is structured as follows. Section 2

contains a short overview of related research work in the

field of text classification and states a few examples of

text classifiers implemented using different known

techniques. Section 3 provides a detailed description of

the theoretical principles and concepts behind the

proposed text classifier. Section 4 offers a working

description of the proposed classifier, stepping through

the pseudocode and algorithms behind its implementation.

Section 5 is a discussion of the time complexity of the

classifier and contains an analysis of the results obtained

using the classifier. Section 6 concludes the paper with a

summary of the work and its future scope.

16 A Frequency Based Approach to Multi-Class Text Classification

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

II. RELATED WORK

As mentioned in the previous section, the work in this

paper is an extension of our previous work in [1] where a

simple binary text classifier had been implemented. That

classifier made use of incremental mining and word

frequency for classifying new instances. Various other

methods of text classification and categorization exist and

have been implemented using a variety of different

techniques in various other research works.

The paper in [3] defines text categorization as “the task

of automatically sorting a set of documents into

categories (or classes, or topics) from a predefined set”

and states that it falls under the domain of both machine

learning and information retrieval. Thus, techniques

derived from both of these domains find application in

implementing text classifiers. Joachims [4] proposed the

use of Support Vector Machines (SVMs) for text

classification and demonstrated that SVMs could be more

optimal than other machine learning methods such as k-

NN classifiers and Naïve-Bayes classifiers. In [5],

Cristianini discussed in great length the working

principles and applications of SVMs in text classification.

Another popular variant of text classifiers is one based

on Bayes‟ theorem and referred to as the Naïve Bayes

classifier. In [6], Leung defined Bayesian classifiers as

statistical classifiers that are capable of predicting the

probability of a specific test instance belonging to a

specific class. Frank and Bouckaert [7] demonstrated the

use of a variant of the Naïve Bayes classifier called the

Multinomial Naïve Bayes (MNB) in solving problems of

text classification pertaining to unbalanced datasets.

Another variant of the Naïve Bayes text classifier is

offered by Dai, Xue, Yang and Yu [8] in which they

solved the problem of categorizing documents across

varied distributions.

The k-Nearest Neighbors (k-NN) technique, as stated

above, has also been used in the field of text classification.

The k-NN algorithm finds the k nearest neighbors of the

data instance that needs to be classified in order to form

its neighborhood. Then, a voting mechanism is used

within the neighborhood to determine the class of the

instance. Guo et al. [9] developed a new method for text

classification which combined the advantages of the k-

NN algorithm with another type of classifier known as

the Rocchio classifier and obtained performance levels in

the range of that offered by SVM-based text classifiers.

In [10], Toker and Kirmemis made use of the k-NN

classifier to develop an application for organizing

documents. Additionally, Li, Yu and Lu [11] developed a

modified k-NN based method that utilized a suitable

number of nearest neighbors in order to predict classes

based on the distribution of a particular class in the test

documents.

III. THEORY BEHIND THE PROPOSED WORK

The property that has been incorporated into the

present research work to help boost its accuracy is the

inverse class frequency. This is based on the tf-idf (term

frequency-inverse document frequency) statistic that is

widely used in information retrieval. The tf-idf method

helps in determining the importance of a particular term

with respect to a specific document within a collection of

documents and finds use as a weighting factor [2][18]. It

is directly proportional to the term frequency which is the

number of times the term appears in the document while

being inversely proportional to the document frequency

which is the number of different documents within the

collection in which the term appears. Thus, tf-idf

essentially combines two weighting factors based on the

following two principles:

1. The weight of a term within a document is

proportional to the term frequency [16]

2. The specificity of a term is inversely proportional

to the number of different documents in which the

term occurs [17]

To suit the purpose of our present research work, a

similar property has been defined in this paper for each

test instance and has been termed as the word frequency–

inverse class frequency or wf-icf. As the name suggests,

wf-icf is directly proportional to the word frequency

which is the number of times a particular word in an

instance appears in all the instances belonging to a

particular class and is inversely proportional to the class

frequency which is the number of different classes in

whose instances the words making up the current instance

appears.

The word frequency „wf‟ is computed during the

training phase by simply counting the number of

occurrences of each word separately for each class. The

„icf‟ of each word „w‟ in the instance is then computed

during the classification phase using the following

formula:

ICF (w) = log10 (N/M),

where N is the total number of classes in the dataset and

M is the number of classes which contains a specific

word „w‟ i.e. the number of classes for which wf(w) > 0.

This formula has been taken from the formula used in the

calculation of the tf-idf statistic.

In order to classify the test instance, the product of the

word frequency of each word in each class and the

inverse class frequency of each word making up that

instance has been computed and then the products for

each class have been summed up. This product is the wf-

icf as defined above. After this, the instance is classified

into the class which has the maximum value of this

product sum.

To illustrate the above method, the task of classifying

book titles into different subjects has been considered.

Suppose we have five different subjects - Biology,

Chemistry, Computer Science, Mathematics and Physics.

After stop word removal and lower case conversion, let

the test instance be „introduction java programming‟.

Table 1 shows the frequency counts for each word with

 A Frequency Based Approach to Multi-Class Text Classification 17

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

respect to each class. From the table, the ICF would be as

follows using the previously mentioned formula:

ICF (introduction) = 0.0969

ICF (java) = 0.6989

ICF (programming) = 0.221

Table 1. Word Frequencies

 Biology Chemistry
Computer

Science
Maths Physics

Introduction 8 3 1 2 0

Java 1 0 2 0 0

Programming 0 0 4 2 1

Table 2. WF-ICF Values

 Biology Chemistry
Computer

Science
Maths Physics

Introduction 0.78 0.29 0.1 0.19 0

Java 0.70 0 1.4 0 0

Programming 0 0 0.88 0.44 0.2

Each frequency count as shown in Table 1 is then

multiplied with the ICF for the corresponding word to

obtain the WF-ICF values as shown in Table 2.

The values in each column from Table 2 are then

summed up. So each summation value shows the result

corresponding to a particular class. With this, the

following values are obtained:

Biology = 1.48

Chemistry = 0.29

Computer Science = 2.38

Math = 0.63

Physics = 0.2

Since Computer Science has the highest wf-icf value,

the instance „introduction java programming‟ will be

classified as a Computer Science textbook which is of

course the correct class. This result has been a major

improvement on the previous classifier proposed in [1],

where only the word frequency had been used to classify

the instances. For example, since the previous classifier

only used word frequency and did not incorporate the ICF

property, it would have classified the above instance as a

Biology textbook since the training dataset in the above

example contains a larger number of Biology textbooks

with the word „introduction‟ in it. Being able to correctly

classify such instances is what helped to boost the present

classification accuracy while enhancing the classifier to

be able to classify between any numbers of classes.

To develop a mathematical formulation for the present

classifier, let the number of data classes in the training

data be N, numbered from 0 to N-1. Let the current test

data instance to be classified consist of W words,

numbered from 0 to W – 1. Also, let the frequency count

of each word in the training instances of a particular class

be represented by WF(X,Y) where X is the word number

and Y is the corresponding class number and the

previously defined inverse class frequency of each word

X be given by ICF(X). Thus,

X = {0, 1, 2… W-1} and Y = {0, 1, 2 … N-1}

The next step is to find a relation that specifies the

conditions for a test data instance to be correctly

classified. For this, let C be the class number of the

current test data instance‟s actual class label. Thus, the

classifier will be correct if it predicts that the class label

of the current test instance is class number C.

Based on the previously defined notation, for word

number I of the current test data instance, the frequency

of occurrence of that word in training instances belonging

to class C in the training data set is given by WF(I,C).

Additionally, the corresponding inverse class frequency is

ICF(I). Thus, the wf-icf property is given by WF-ICF(I,C)

where

WF-ICF(I,C) = WF(I,C) * ICF(I)

Thus, a test instance will be correctly classified if the

summation of WF-ICF(I,C), for all words I of the test

instance, is greater than the summation of WF-ICF(I,Y)

for all the other N-1 classes, where Y is a class number

ranging from 0 to N-1 but not equal to C. Thus, this can

be mathematically represented as:

In the above expression, C is the class number of the

actual class the test instance should be classified into, W

is the number of words in the current test instance, Y is

the class number of all classes except class number C,

WF is the frequency count as defined previously and ICF

is the inverse class frequency as defined previously.

IV. WORK DESCRIPTION

In this section, an overview of the algorithms used to

implement the initialization, training and testing phases

of the multi-class incremental text classifier is presented.

A brief description of each phase is given followed by the

steps involved in implementing the phase.

18 A Frequency Based Approach to Multi-Class Text Classification

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

In the initialization phase, the algorithm reads in the

training data instances along with their corresponding

class labels. It then counts the number of different classes

contained in the training data set and also constructs the

hash table which will store the mapping between the

different words contained in the training data to the

corresponding word frequencies. This mapping is

performed in the training phase. The final step in the

initialization phase involves pre-processing the training

data for the training phase. The steps are outlined below.

A. Initialization Phase

 Read in training data and store in an array called

„trainData‟, with each element containing a

training instance

 Read in corresponding class labels and store in an

array called „labels‟

 Loop through „labels‟ to determine the number of

different labels (i.e. classes) and store it in a

variable called „N‟

 Create a hash table called „wordList‟ whose keys

will be the words in the training data and the

values will be the word counts

 Create a string array called „categories‟ that stores

the different class labels

 Convert each instance in „trainData‟ to lower case

The training phase involves populating the hash table

created in the initialization phase with the words

contained in the training data and their corresponding

frequencies. Thus, in this phase, the algorithm iterates

through the training data instances, scans each word

contained in these instances and updates the frequency

counts stored in the hash table accordingly, depending on

the class label of the data instance which the word is

contained in. The steps for this phase are given below.

The frequency of each word is stored as an array of N

elements where N is the number of class labels contained

in the training data set. The ith element of this array

stores the number of times the corresponding word

appears in training instances belonging to the ith class.

B. Training Phase

 Iterate through each member of „trainData‟

 Store the corresponding label in a string called

„trainLabel‟

 Remove punctuation and the stop words for each

instance

 Convert the resulting string of words into a string

array

 Check if it is in „wordlist‟ for each word in the

array

a) If not, add it as a key in „wordList‟ and set the

value of that key to a list of „N‟ elements of 0

but the ith element set to 1 where the ith class

label is „trainLabel‟

b) Otherwise, retrieve the list stored in the value

field of the corresponding word and increment

the ith element by 1 where the ith class label is

„trainLabel‟

The final phase is the testing phase in which the

accuracy of the classifier is determined. In this phase, the

algorithm reads in the test data instances and

corresponding class labels and pre-processes them in a

manner similar to what was done in the training phase.

Then it predicts the class label of each test instance. In

order to do so, for each test instance, the algorithm

iterates through each of its constituent words, computes

the wf-icf values for the word and each class label as

defined in the previous section. It then sums the wf-icf

values for each class label and selects the class label that

maximizes this sum as the predicted class label. If this

predicted label is the same as the actual class label, then

the count of correct predictions is incremented. The

process is continued for all test instances and the

prediction accuracy of the classifier is determined using

the final count of correct predictions.

C. Testing Phase

 Read in test data and store in an array called

„testData‟, similar to how the training data was

stored

 Read in corresponding class labels and store in an

array called „testLabels‟

 Initialize a variable called „correct‟ to 0 - this will

store the total number of correct predictions

 Iterate through each member of „testData‟

 Store corresponding label in a string called

„testLabel‟

 Convert to lower case, remove punctuations and

stop words and convert to array for each instance

 Create an integer array called „sums‟ consisting of

N elements

 The ith element of „sums‟ will store the sum of the

number of times the words in the current test

instance appear in a training instance with the ith

class label

 Initialize a variable called „userCat‟ to 0 – this will

store the predicted label

 For each word in the array, check if the word is in

the „wordList‟ hash table which was constructed

during the training phase

a) If not, nothing is to be done

b) Otherwise, retrieve the array stored in the

corresponding value field and calculate the

inverse class frequency using the formula

defined in the previous section

c) Update „sums‟ accordingly, i.e. calculate the

product of the number in the ith element of the

value array and the inverse class frequency and

add the product to the ith element of „sums‟. This

product is the „wf-icf‟ value that has been

defined previously.

 Set the variable „userCat‟ to the index in „sums‟

that corresponds to the maximum value

 Increment „correct‟ if the label corresponding to

 A Frequency Based Approach to Multi-Class Text Classification 19

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

„userCat‟ is the same as the corresponding label in

„testLabels‟

 Add the words of the current test instance along

with the predicted label to „wordList‟. This step

implements incremental classification.

 Repeat the process for all remaining test instances

 Calculate the classifier accuracy using the

„correct‟ variable which stores the number of

correct predictions.

 Finally, output the total number of test data

instances, the number of correct predictions and

the resulting prediction accuracy of the classifier.

V. RESULT AND ANALYSIS

In order to test the classifier, k-fold cross validation

has been performed with k = 6 using a dataset consisting

of a total of 300 book titles spanning 5 different subjects,

viz., Biology, Chemistry, Computer Science,

Mathematics and Physics with 60 titles of each of the

subjects. In each step of cross validation, a hash table has

been constructed thus giving a total of 6 hash tables. The

order of the subjects used in constructing these tables is

as given above. So, Biology comes first, followed by

Chemistry, Computer Science and Mathematics in that

order and finally, the last entry corresponds to Physics.

Table 3. The first five entries of the first hash table

Word Subject-wise Count

inorganic [0, 2, 0, 0, 0]

programmer [0, 0, 1, 0, 0]

unity [1, 0, 0, 0, 0]

repair [1, 0, 0, 0, 0]

evolutionary [1, 0, 0, 0, 0]

Table 4. The first five entries of the second hash table

Word Subject-wise Count

inorganic [0, 2, 0, 0, 0]

programmer [0, 0, 2, 0, 0]

unity [1, 0, 0, 0, 0]

repair [1, 0, 0, 0, 0]

evolutionary [2, 0, 0, 0, 0]

Table 5. The first five entries of the third hash table

Word Subject-wise Count

inorganic [0, 1, 0, 0, 0]

programmer [0, 0, 2, 0, 0]

unity [1, 0, 0, 0, 0]

evolutionary [0, 0, 0, 1, 0]

multipliers [0, 0, 0, 1, 0]

Table 6. The first five entries of the fourth hash table

Word Subject-wise Count

inorganic [0, 2, 0, 0, 0]

programmer [0, 0, 2, 0, 0]

unity [1, 0, 0, 0, 0]

repair [1, 0, 0, 0, 0]

evolutionary [2, 0, 0, 0, 0]

Table 7. The first five entries of the fifth hash table

Word Subject-wise Count

inorganic [0, 2, 0, 0, 0]

programmer [0, 0, 2, 0, 0]

unity [1, 0, 0, 0, 0]

repair [1, 0, 0, 0, 0]

evolutionary [2, 0, 0, 0, 0]

Table 8. The first five entries of the sixth hash table

Word Subject-wise Count

inorganic [0, 2, 0, 0, 0]

programmer [0, 0, 2, 0, 0]

unity [1, 0, 0, 0, 0]

repair [1, 0, 0, 0, 0]

evolutionary [2, 0, 0, 0, 0]

The titles in each subject are numbered from 1 to 60.

For each test, 10 titles from each subject have been used

as the testing set and the remaining 50 titles from each set

have been used as the training set. Thus, each test

involved a training set of 250 book titles and a testing set

of 50 book titles.

Table 9. Test Results using Word Frequency

Test Case Training Set Testing Set Accuracy

1 Nos. 11-60 Nos. 1-10 78%

2 Nos. 1-10, 21-60 Nos. 11-20 86%

3 Nos. 1-20, 31-60 Nos. 21-30 82%

4 Nos. 1-30, 41-60 Nos. 31-40 80%

5 Nos. 1-40, 51-60 Nos. 41-50 76%

6 Nos. 1-50 Nos. 51-60 90%

The results of the initial testing using only the word

frequency methodology, used in the previous work in [1],

are shown in Table 9. It is clear from Table 9 that less

than satisfactory results were obtained with average

prediction accuracy of 82% (246 correct class predictions

out of 300 total test instances). This was below the 83.6%

accuracy as was obtained using the same methodology

for the binary classifier in the previous work [1]. A slight

dip in accuracy is explainable because of the smaller

training dataset (300 instances instead of the 500 that

were used in [1]) and the increased number of classes (5

instead of 2) but nevertheless, a higher level of accuracy

was desired.

20 A Frequency Based Approach to Multi-Class Text Classification

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

Thus, the inverse class frequency property was

incorporated into the classifier, as has been explained in

previous sections. This helped to rectify many incorrect

predictions that previously happened because of generic

words like „introduction‟, „techniques‟, „methods‟, etc.

which had a high frequency of occurrence but weren‟t

intrinsic to any specific subject. Using the wf-icf property,

the classifier has been re-tested using the same dataset

and the results obtained have been shown in Table 10

below.

Table 10. Test Results using WF-ICF

Test Case Training Set Testing Set Accuracy

1 Nos. 11-60 Nos. 1-10 82%

2 Nos. 1-10, 21-60 Nos. 11-20 92%

3 Nos. 1-20, 31-60 Nos. 21-30 82%

4 Nos. 1-30, 41-60 Nos. 31-40 84%

5 Nos. 1-40, 51-60 Nos. 41-50 88%

6 Nos. 1-50 Nos. 51-60 94%

As is evident, a much higher level of accuracy has been

obtained, with an average accuracy of 87% (261 correct

predictions out of 300 total data instances). Though

accuracy below 90% does not seem exceptionally high,

the training dataset only contains 300 instances which is

quite small for training a text classifier. It can be expected

that using a larger training dataset would allow the

classifier to achieve an accuracy of above 90% since

more is the number of training instances, higher is the

level of accuracy achieved by the classifier.

Table 11 lists all 39 incorrect predictions made by the

classifier along with their actual class and the class

predicted by the classifier. An important fact revealed by

this table is nearly half (17 out of 39) of the incorrect

predictions mistakenly identified Biology as the correct

class. Most of these are cases in which none of the words

in the test instance could be found in the training set (or

more specifically, in the hash table constructed from the

training set) and thus the classifier did not know how to

deal with these words, leading to the instance getting a

wf-icf score of 0 for all classes. In the cases when the wf-

icf scores of two or more classes are the same, the

predicted class will be the one which appears first in the

order (Biology, Chemistry, Computer Science,

Mathematics, Physics). Thus here, when the wf-icf score

is 0 for all classes, the predicted class label would be

Biology. Clearly, this issue can be resolved by using a

larger number of training instances so that more concepts

related to the different classes can be captured in the

dataset used to train the classifier.

This table also reveals that incorporating word

stemming would be very useful in improving accuracy as

presently the classifier treats words like „Math‟,

„Mathematics‟, „Mathematician‟, „Mathematical‟ etc. as

completely different from each other and so a book title

such as „Mathematical Intro to Logic‟ cannot be

identified by the classifier as a mathematics book even

though it knows that a title with the word „mathematics‟

is a mathematics book. Plural and singular forms of the

same word also contribute to reducing classifier accuracy

for the same reason.

Table 11. Incorrect Predictions

No. Book Title Actual Predicted

1 Biological Signal Analysis Biology Maths

2 Biophysical Techniques Biology Chemistry

3
Elements: A Visual

Exploration
Chemistry Biology

4 Alchemy of Air Chemistry Biology

5 Uranium Chemistry Biology

6 AI: A Modern Approach CS Biology

7 Book of Proof Maths Chemistry

8 Character of Physical Law Physics Chemistry

9 Physicist‟s World Physics Chemistry

10 Skeptical Chemist Chemistry Biology

11
Learn You a Haskell for Great

Good
CS Biology

12
Electromagnetism, Principles,

Applications
Physics Maths

13 Static & Dynamic Electricity Physics Biology

14 Physical Methods for Chemists Chemistry Physics

15 Applied Cryptography CS Maths

16 Database System Concepts CS Biology

17
Compilers: Principles,

Techniques, Tools
CS Chemistry

18 Hacker‟s Delight CS Biology

19
Introduction to Database

Systems
CS Biology

20
Introduction to Statistical

Thought
Maths Physics

21
Strange Theory of Light &

Matter
Physics Chemistry

22
Theory of Universal Wave

Function
Physics CS

23 Molecular Driving Forces Chemistry Biology

24 Computational Complexity CS Maths

25 Debugging CS Biology

26 Communication Networks CS Biology

27 Introductory Statistics Maths Chemistry

28 Lectures on Statistics Maths Physics

29 Math in Society Maths Chemistry

30 Math, Numerics, Programming Maths CS

31 Immune System Biology CS

32 Pro Git CS Biology

33
Method of Lagrange

Multipliers
Maths Biology

34 Mathematicians Maths Chemistry

35 Gravitation Physics Biology

36
First Course in General

Relativity
Physics Chemistry

37 Linux Command Line CS Biology

38
Universal History of

Computing
CS Chemistry

39 Mathematical Intro to Logic Maths Physics

Regardless of all these issues, a considerably

satisfactory level of prediction accuracy has been

obtained with the proposed classifier. One disadvantage

 A Frequency Based Approach to Multi-Class Text Classification 21

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

of incremental classification is that if an instance is

incorrectly classified, the classifier‟s accuracy is lesser

for future classifications. This problem is reduced as

larger datasets are used in the training phase.

To determine the runtime complexity of the training

and classification processes, let the number of training

instances be N (i.e. the size of the dataset used to train the

classifier has N instances). Additionally, let the number

of words in the largest training instance be M and let the

number of different classes (i.e. the number of unique

class labels) contained in the training dataset be C.

The initialization phase simply involves looping

through the training dataset in order to load the instances

into the program along with their corresponding class

labels and then running another loop through the labels to

determine the number of unique classes. Thus, this phase

is bounded by O(N).

In order to train the classifier, the algorithm loops

through each of the N training instances and for each

such instance, it must loop through each of its constituent

words. For each of these words, the index of the

corresponding class label of the current training instance

is determined and the related word count array is updated

accordingly.

Thus the time complexity of the training phase is

bounded by O(N×M) since the largest training instance

consists of M words. Each such instance must be pre-

processed before being used to train the classifier by

converting to lower case and then removing stop words

and punctuation. To do this pre-processing, the algorithm

must loop through each instance and compare each word

in the instance with the stop words. Let the number of

stop words that the classifier can detect be s. Then, the

stop word removal process has complexity O(s×M).

However, s is a constant as the number of stop words is

fixed for the classifier. Thus, this complexity may be

rewritten as s×O(M) which reduces to O(M). Similarly,

punctuation removal and lower case conversion require

only a loop through each word in each instance, and thus

for each individual instance, the pre-processing time

complexity is O(M) and hence the overall complexity of

the training phase for each instance is bounded by O(M).

The classification phase works similar to the training

phase but has an additional level of complexity for each

instance. It requires iterating through each word in the

instance to be classified and for each word, iterating

through the different classes in order to determine the wf-

icf values for each class. Thus, the complexity of

classifying each instance is O(M×C). Hence, the

classifier has a quadratic runtime complexity for the

overall training process as well as for classification

process for a single instance.

VI. CONCLUSION AND FUTURE SCOPE

In this paper, the proposed work has successfully

improved upon the work that as was done in [1] by

converting the incremental binary text classifier into an

incremental N-class text classifier. Further, the

classifier‟s prediction accuracy was improved upon by

incorporating the wf-icf property (based upon the well

known tf-idf property of information retrieval).

As discussed in the previous section, an important and

useful extension that can be made to the classifier in the

future is incorporating word stemming into the training

and classification processes. This would allow the

classifier to treat different forms of the same word as the

same concept and thereby improve the classification

accuracy. Several of the incorrect predictions in Table 5

were caused due to the lack of this feature.

REFERENCES

[1] A. Sarkar, S. Chatterjee, W. Das, D. Datta, “Text

Classification using Support Vector Machine”,

International Journal of Engineering Science Invention,

Vol. 4 Issue 11, November 2015, pp. 33 – 37.

[2] M. Ikonomakis, S. Kotsiantis, V. Tampakas, “Text

Classification Using Machine Learning Techniques”,

WSEAS Transactions on Computers, Vol. 4 Issue 8,

August 2005, pp. 966 – 974.

[3] F. Sebastiani, “Text Categorization”, The Encyclopedia of

Database Technologies and Applications, 2005, pp. 683 –

687.

[4] T. Joachims, “Text Categorization with Support Vector

Machines: Learning with Many Relevant Features”,

Technical Report 23, Universitat Dortmund, LS VIII,

1997.

[5] N. Cristianini, “Support Vector and Kernel Machines”,

Tutorial at the 18th International Conference on Machine

Learning, June 28, 2001.

[6] K. Ming Leung, “Naive Bayesian Classifier”, Polytechnic

University Department of Computer Science/Finance and

Risk Engineering, 2007.

[7] E. Frank, and R. R. Bouckaert, “Naive Bayes for Text

Classification with Unbalanced Classes”, Knowledge

Discovery in Databases: PKDD 2006, pp 503 – 510.

[8] W. Dai, G. Xue, Q. Yang and Y. Yu, “Transferring Naive

Bayes Classifiers for Text Classification”, Proceedings of

the 22nd National Conference on Artificial Intelligence,

Vol. 1, 2007, pp. 540 – 545.

[9] G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, “Using

kNN Model for Automatic Text Categorization”, Soft

Computing, Vol. 10, Issue 5, 2006, pp. 423 – 430.

[10] G. Toker and O. Kirmemis, “Text Categorization using k

Nearest Neighbor Classification”, Survey Paper, Middle

East Technical University.

[11] Baoli Li, Shiwen Yu, and Qin Lu., “An Improved k-

nearest Neighbor Algorithm for Text Categorization”,

arXiv preprint cs/0306099, 2003.

[12] D. D. Lewis, and W. A. Gale, “A Sequential Algorithm

for Training Text Classifiers”, Proceedings of the 17th

annual international ACM SIGIR conference on Research

and development in information retrieval, (Springer-

Verlag New York, Inc., 1994).

[13] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell,

“Learning to Classify Text from Labeled and Unlabeled

Documents”, AAAI/IAAI792, 1998.

[14] P. Soucy and G. Mineau, “Feature Selection Strategies for

Text Categorization”, AI 2003, LNAI 2671, 2003, pp. 505

– 509.

[15] A. Kehagias, V. Petridis, V. Kaburlasos and P. Fragkou,

“A Comparison of Word- and Sense-Based Text

Categorization Using Several Classification Algorithms”,

JIIS, Volume 21, Issue 3, 2003, pp. 227 – 247.

[16] H. P. Luhn, “A Statistical Approach to Mechanized

22 A Frequency Based Approach to Multi-Class Text Classification

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 5, 15-22

Encoding and Searching of Literary Information”, IBM

Journal of Research and Development, October 1957.

[17] K. S. Jones, “A Statistical Interpretation of Term

Specificity and its Application in Retrieval”, Journal of

Documentation, Vol. 28 Issue 1, pp. 11 – 21.

[18] S. Robertson, "Understanding Inverse Document

Frequency: On theoretical arguments for IDF", Journal of

Documentation 60 no. 5, pp. 503 – 520.

Authors’ Profiles

Anurag Sarkar received an M.Sc. in

Computer Science from St. Xavier‟s

College (Autonomous), Kolkata in June

2016. He is currently pursuing a PhD from

Northeastern University in Boston, MA,

USA. His research interests include game

science, artificial intelligence and machine

learning.

Debabrata Datta is presently an Assistant

Professor in the Department of Computer

Science, St. Xavier's College (Autonomous),

Kolkata. He has teaching experience of

more than 10 years at both the

undergraduate level as well as the

postgraduate level of Computer Science

and Applications. His research interests

include data warehousing and data mining. He has published

more than fifteen research papers in different international peer-

reviewed journals as well as conferences.

How to cite this paper: Anurag Sarkar, Debabrata Datta,"A

Frequency Based Approach to Multi-Class Text Classification",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.9, No.5, pp.15-22, 2017. DOI:

10.5815/ijitcs.2017.05.03

