
I.J. Information Technology and Computer Science, 2017, 6, 59-66
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.06.08

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

Optimization of System’s Performance with

Kernel Tracing by Cohort Intelligence

Aniket B. Tate
Dept. of Computer Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India

E-mail: t.aniket.t@gmail.com

Laxmi A. Bewoor
Dept. of Computer Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India

E-mail: laxmiabewoor@gmail.com

Abstract—Linux tracing tools are used to record the

events running in the background on the system. But

these tools lack to analyze the log data. In the field of

Artificial Intelligence Cohort Intelligence (CI) is recently

proposed technique, which works on the principle of self-

learning within a cohort. This paper presents an approach

to optimize the performance of the system by tracing the

system, then extract the information from trace data and

pass it to cohort intelligence algorithm. The output of

cohort intelligence algorithm shows, how the load of the

system should be balanced to optimize the performance.

Index Terms—Kernel Trace, Linux Tracing Tool Next

Generation (LTTng), Metaheuristics, Cohort Intelligence.

I. INTRODUCTION

Kernel is the black box of the operating system which

handles the system resources like Memory, Input Output,

CPU time etc. Observing system and understanding what

is happening inside the operating system is the important

aspect to optimize the system performance. Kernel

tracing facilitates to demonstrate various activities

running inside the Operating System. Kernel tracing is

the activity of listing down, which OS process is using

which system resources at what time. There are various

tools available to trace down kernel activities like LTT,

LTTng, DTrace, FTrace etc. these tracing tools provides

details about processes running in the background and

their resource uses. This traced information can assist

performance optimization of operating system. These

tracing tools provide details about process and resources

they use but lack to analyze log data and extract

knowledge from it. [1] Another approach to improve the

system’s performance is to optimize the scheduler.

Scheduler is one of the major components which affect

system performance largely. The aim of the scheduling is

to share the resources by a number of processes.

Scheduling is central to an Operating-system’s design and

constitutes an important topic in the computer science

curriculum. Heuristics like Genetic Algorithm (GA)

[2][3], Ant Colony Optimization (ACO) [4][5] have been

implemented on the scheduler to optimize system

performance like maximize resource utilization, minimal

execution time etc. which shows better results. While

scheduling a process on one of the cores, the scheduler

considers the average waiting time, turnaround time, time

quantum for a process, number of context switches,

earliness, the tardiness of process etc. But the scheduler

does not take CPU load into consideration. As a result of

this, the cores get unevenly loaded and many of the cores

will be kept in ideal state. Cohort Intelligence (CI) is

recently introduced meta-heuristics [6][7] it works on

self-supervised learning behavior in a cohort. Cohort

refers to a group of candidates which communicate with

each other to achieve the common goal of the cohort by

improving individual’s behavior. In the cohort, every

candidate observes every other candidate and tries to

adopt a new behavior. Each candidate must follow other

candidate or itself in the cohort, which results in

improvement of behaviors of the candidate. In this way,

every candidate helps in improving the cohort’s behavior.

The cohort is considered to be saturated if the behavior of

candidate within adjacent iterations is nearly equal, a

maximum number of iterations occur [6][7].

This paper proposes an approach to use the LTTng 2.7

tool for tracing out the kernel (Ubuntu12), analyze the

trace data and pass CPU load information to CI algorithm.

CI algorithm works on that data and gives a set of cores

as an output to reschedule the processes. Finally, a

simulation is shown how to migrate process on core or set

of cores to balance system’s load.

The remainder of this paper is organized as follows.

Section II covers literature survey regarding kernel

tracing, system optimization techniques, and cohort

intelligence. In section III, steps to trace Linux system

(Ubuntu12) are listed. Section IV gives an overview of

system architecture. Section V gives flow chart of CI

algorithm and explanation of how CI is used in the

proposed system. Section VI shows a mathematical

model of proposed system. The result and analysis of the

proposed system are presented in section VII. The

concluding remark is presented in section VIII of the

paper.

II. RELATED WORK

Anderson et al. [1] suggested software performance

60 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

optimization methodology. Scheduling solutions based on

data mining. Parameters considered for optimization

throughout the paper are response time, throughput,

scalability, waiting time, turnaround time, and resource

utilization. They studied system performance by two

methods (1) Experimentation (2) Analytical modeling.

The paper suggested the optimization in various fields:

The work suggests a solution for (1) Distributed system

(2) Single processor (3) Symmetric multiprocessing

system 4.Asummetric multiprocessing system. The work

shows resource scheduling with machine learning,

schedule java thread to minimize garbage collection and

synchronization, trace data used to find patterns and

analyze them, optimization of e-commerce websites,

finding frequent patterns on trace data to detect bugs,

capturing semantics of data, machine learning to

recognize workload and to select appropriate disk

scheduling policy, GA library developed in kernel to tune

various part of kernel, dynamic customization of system,

self-tuning of kernel activities, tests to recognize

correlation between OS performance and scheduling

parameters, decompose workload and again reallocate

jobs to machines, manipulating threads priority, core to

core data transmission with low cost, scheduling

algorithm which calculate number of events and match it

with expected performance ratio, queue is used to add

jobs from one end and delete on another end; if no job is

found in queue that queues extract job from another

queue.
Bhulli [8] introduced a framework for trace kernel

activities, the framework is named KTrace, Paper survey

represent Strace, the Linux kernel debugger, Dtrace.

Strace tool provides the complete picture about system

calls and the signal received between user mode and

kernel mode. The disadvantage of Strace is that it is

limited to system calls and signal behavior of the system.

The Linux kernel debugger is a direct way to analyze

Linux kernel. The disadvantage of this tool is it needs

external breakpoint to observe kernel memory and data

structure. Dtrace is used for Solaris OS and works well

for Solaris kernel. The disadvantage of Dtrace is it cannot

be directly used to trace Linux kernel because of different

Linux and Solaris kernel. The paper introduces complete

working of Strace and Dtrace. The paper presents a

design of kernel module with a list of events and

variables to be considered. The buffer tracing criteria,

methods to access buffer to trace the logs. At the end,

they provide results of Ktrace and compared with Strace,

with one tracing application. In future scope, they

suggested that the number of events and variables can be

increased for total kernel trace.

LaRosa et al. [9] presented system architecture for

kernel tracing. The new concept of window slicing and

window folding is introduced to find frequent patterns

item set. The paper used LTT tool to trace kernel and

system calls. For log analysis, they used MAFIA

algorithm, with data preprocessing tool and maximal

frequent item set (MFI) mining. They took trace with the

isolated environment (no user activity), with the noisy

environment (user activity). Then they took two traces

with similar circumstances. They used minimal support

concept between 0.1 to 0.9. They created items based on

(1) present in the single item set (2) present in multiple

items set (3) present with interference (4) not present.

The results are calculated based on (1) varying fold-slice

window time (2) Varying support value (3) minimal

support decides the quality of results. The literature work

includes papers for intrusion detection, bugs, and

malware detection. The future work suggests that stream

mining of frequent item set. Identify any loss because of

window slicing and Performance improvement by data

filtering methods.

 Kaur et al. [3] proposed an optimization of execution

time and penalty cost of processes with a common

deadline on a single processor. The paper calculates

earliness and tardiness to calculate the penalty. They have

used 3 processes with deadline length 12. The paper has

presented 6 orders of scheduling and calculated earliness

and tardiness of each process. The paper used GA with

initial population size 20, roulette wheel selection, two

point crossover and 0.05 mutation rate. Results show GA

gives less execution time than other heuristics.

Punhani et al. [10] proposed GA to optimize CPU

scheduling based on two objectives (1) waiting time (2)

execution time with priority. Authors have used two

fitness functions to represent low average waiting time

and priority of jobs. GA is used to find a good solution,

delete bad solution and make a copy of good solution.

Rank based selection is used with two point crossover.

GA parameters used in the paper are population size: 10,

generation count: 10, the probability of crossover: 0.8, the

probability of mutation: 0.2.They used NSGA-II to show

results for 10 cases for 5 processes. Paper presents

pseudo-code for NSGA-II algorithm. Results are

compared with SJF and priority scheduling. The author

suggested that starvation should be taken into

consideration as future scope.

Maktum et al. [2] proposed GA for processor

scheduling based on average waiting time. The authors

have used fitness function to represent average waiting

time. Number of waiting processes to the total number of

processes. Chromosomes of size 5 are taken which

represents set of processes. Crossover of a single point

and mutation rate is 0.005 is considered. 10 cases are

taken and compare with FCFS and SJF. The graphical

representation is given for a set of processes against

average waiting time. Future scope suggests considering

turnaround time and context switch.

Yasin et al. [11] suggested a technique to RR so that

waiting time, turnaround time, and context switches get

minimized. The scheduling algorithm depends on

following selection criteria (1) Fairness (2) CPU

Utilization (3) Throughput (4) Response Time (5)

Waiting Time (6) Turnaround Time (7) Context Switch.

The algorithm works with priority. They have presented

Flow Chart of Prioritized Fair Round Robin (FPRR)

algorithm along with its step by step explanation. The

assumptions are it is a single processor, overhead is

solved by considering a priority and burst time of the

process. Results are compared with RR, IRRVQ, and

 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence 61

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

Priority RR. The conclusion suggests that the proposed

algorithm is good for time sharing system.

Kotecha et al. [5] presented a combination of two

algorithms called EDF and ACO for scheduling. When

the system is underloaded EDF is used, and when the

system is overloaded ACO is used. Switching occurs at

run time. The adaptive algorithm is compared with EDF

and ACO by success ratio and effective CPU uses with

10 cases. Load at a particular time is calculated by the

sum of the execution time of task to the total period of

tasks. The success ratio is total scheduled jobs to the total

arrived jobs.

Kulkarni et al. [6] proposed a self-supervised algorithm

called cohort intelligence. The cohort intelligence

algorithm works by observing other candidates in the

cohort (cluster) and tries to adapt the behavior of best

candidate observed. The paper shows results taken over

four functions and these results are compared with

Sequential Quadratic Programming (SQP), Chaos-PSO

(CPSO), Robust Hybrid PSO (RHPSO) and Linearly

Decreasing Weight PSO (LDWPSO).

Vyas et al. [12] presented an approach of load

balancing using master-slave model and Berkeley Lab

checkpoint and restart toolkit. Migration of process takes

place from highly loaded node to lightly loaded node.

Master divides the work into tasks and gives it to slaves

after executing a process slave write back its output to

master. Master now calculates the aggregate result of all

slaves. Two algorithms have been used in the paper to

migrate pre-emptive and non-pre-emptive process (1)

Sender-initiated algorithm (2) Receiver initiated

algorithm. In sender initiated algorithm highly loaded

node tries to send its process to another node. In receiver

initiated algorithm lightly loaded node tries to receive

process from an overloaded node. Process migration is

done by transferring address space and state of the

process. The paper present an approach for migration as

client submit process on the master node (server), master

start execution of process without calculating memory

and processing power if memory or power is insufficient

then master transfer that process to slave. Memory and

processing power of slave are known to master in

advance. Selection of slave is based on Round Robin

technique. Another technique is if the master is not

having enough memory for process then it perform

checkpoint using BLCR mechanism. Once the checkpoint

is created process is transferred to the available node via

file transfer mechanism. Then slave start execution of the

process using BLCR mechanism and Multithreading.

 Vallee et al. [13] worked on process virtualization

using kernel service called ghost process. The ghost

process mechanism has been implemented in the

KERRIGHED Single System Image (SSI) in cluster

operating system. Migration of process is done on the

basis of checkpoint and restart. One process creates a

ghost process and it handles other tasks. Working of

ghost process is to send other processes to the destination

node via the network. The paper shows sudo code for

process migration, checkpoint and restart, checkpoint and

restart for the disk. Checkpoints are put on memory and

on the disk. Implementation is done on Kerrighed cluster

operating system based on Linux 2.4.24 with 1 GHz

processor, 512 RAM, 100Mps Ethernet.

Zarrabi et al. [14] presented dynamic process migration

framework in the Linux system to increase compatibility

and reduce system overload. The architecture considers 3

steps (1) Checkpoint/ restart subsystem (2) Migration

coordinator at source machine (3) Migration daemon at

the destination. Checkpoint/restart provides infrastructure

for migration. Source coordinator carries out required

events to migrate process. The Same process is done by

the daemon on the source machine. The architecture

shows four main layers as (1) Subsystem-specific layer (2)

Transfer medium layer (3) Core system control layer (4)

Userspace interface layer. The paper use ioctl system

commands to interact with device files. The process is

migrated on the basis of the address space. CPU load and

memory are continuously monitored while migrating a

process.

Mustafa et al. [15] presented an approach to the

dynamically checkpointing state of the process,

transferring address space of the process, and storing the

data on hard disk. The paper works on the reduction of

hard disk access time to transfer address space between

machines in distributed environment. Read privileges are

given to destination system. The paper shows read

mechanism in between two machines. The migration of

process takes place in three phases (1) Detecting phase (2)

Transfer phase (3) Attaching phase. Algorithmic steps to

carry out migration of process are presented in the paper.

The migration model in the paper works on source and

destination architecture. The synthesized literature

motivated us to perform kernel trace on ubuntu12 and

apply metaheuristic to optimize the performance of the

system by (1) Maximizing the CPU utilization (2)

Determining the optimal set of cores to run processes.

III. KERNEL TRACE

Kernel tracing is the record of activities running inside

the operating system at the particular time. Many tools

are available to successfully trace kernel but they don’t

analyze the system. LTTng is latest among all tools.

LTTng tracing is the first part of this paperwork after that

the trace is analyzed and passed to CI for suggesting near

optimal solution.

LTTng is an open source tracing framework for Linux.

This tracing tool provides details about processes running

on the system.

To use LTTng on Ubuntu following packages needs to

be installed on the system:

A. LTTng-tools: libraries and command line interface

to control tracing sessions.

B. LTTng-modules: Linux kernel modules for tracing

the kernel

C. LTTng-UST: user space tracing library

1. LTTng installation steps:

 sudo apt-add-repository ppa:lttng/ppa

62 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

 sudo apt-get update

 sudo apt-get install lttng-tools

 sudo apt-get install lttng-modules-dkms

 sudo apt-get install liblttng-ust-dev

2. Linux kernel tracing steps:

 Create a session:

sudo lttng create

 Enable some/all events for this session:

sudo lttng enable-event –kernel

sched_switch,sched_process_fork

OR

sudo lttng enable-event --kernel –all

 Start tracing:

sudo lttng start

 To stop tracing:

sudo lttng stop

3. Install babeltrace as:

 sudo apt-add-repository ppa:lttng/ppa

 sudo apt-get update

 sudo apt-get install babeltrace

4. View trace:

 babeltrace ~/lttng-traces/my-session1

IV. SYSTEM ARCHITECTURE

Fig.1. System Architecture

Fig.1 shows three separate modules of system

architecture. In the first module, the system (Ubuntu12) is

traced with the LTTng 2.7 tool using commands shown in

section III. After tracing the system (Ubuntu12) the

traced data is converted into a readable format by

babeltrace and log file is generated. The next step is to

preprocess the log file to extract useful information. In

preprocessing, tokens are generated from trace file and

separate text files are created for each core. Then based

on the value of core each process data is stored in a

respective text file. These text files will be referred at the

time of process migration from one core to another core.

The second module shows the application of CI algorithm

on the traced data. CI takes core load and priority as

initial input and generates candidates from initial data.

1 Path to which trace is stored

The third module is the migration of CPU intensive

processes based on the output of CI algorithm in the

previous module.

V. COHORT INTELLIGENCE

CI is a metaheuristic that works on self-supervised

learning approach in the cohort. In CI candidates

communicate with each other to achieve the common

goal. Every candidate improves its behavior by observing

other candidates in the cohort. Candidates improve their

behavior by partly or fully absorbing behavior of the

other candidates. Fig.2 shows the working of CI[6][7] for

proposed system. The first procedure to apply the

algorithm is to initialize the number of candidates in the

cohort, the reduction factor (r), the number of iterations

(I), variations in candidates (t). The next step is to

calculate probability associated with each candidate using

probability formula. After calculating the probability

roulette wheel is applied to select the following

candidates. Each candidate observes the best candidate in

the cohort and tries to follow the best candidate. The next

step is to recalculate the upper bound and lower bound

associated with iteration. Each time the range of bound

get decreased. Iterate the procedure till a maximum

number of iterations occurs. The final output of CI is the

set of cores which are the near optimal solution to

migrate the processes.

Fig.2. Cohort Intelligence Flow Chart

Initialize Number of Candidates (C),

Interval Reduction Factor (r), Number

of Iterations (I), Quality Variation (T)

START

Probability (P) Associated with each

Candidate in the cohort is calculated

Using Roulette Wheel Approach Every

Candidate Selects New Candidates

behavior to follow from within C

Available Choices

Every Candidate Shrinks its Sampling

Interval Value

Now Every Candidate Decides to Follow

Best Candidate Suggested by Objective

Function

Candidates are updated to New Values

for next Iteration

Cohort Exceeds

Maximal Iterations

Accept Current Solution as Final

Solution

STOP

 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence 63

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

The proposed system uses four cores as starting objects.

Each object is represented as core load and priority value.

From these four cores, we have created eleven candidates

as initial population. The probability of each candidate is

calculated using probability formula.

 ()⁄

∑
 ()⁄

 (1)

Then fitness value of each candidate is calculated and

overall cumulative fitness value is calculated, this

cumulative fitness value lies in between 1 to 0.99. The

next step is to allocate the space for each candidate on the

roulette wheel. Then a set of followers and followee is

generated using random function. Then for each follower,

a random followee is selected. This will generate eleven

set of new followers and followee. Now the follower will

take followee’s values (behavior). The next step is to

calculate upper bound and lower bound for each

candidate. The proposed system has upper bound as 8 and

lower bound as -8. Up to this stage, we get old candidate

set and newly formed candidate set and new bound limits.

Next step is to iterate the same above procedure up 100

iterations. In each iteration, the limit of bounds gets

reduced so that the values of the solution will be saturated

at a point. This is considered to be near optimal solution.

The final solution from CI is the set of cores which will

be near optimal to run the processes with the optimal use

of cores at a time.

VI. MATHEMATICAL MODEL

Consider () as the behavior of an individual

candidate in the cohort, which it tries to improve by

modifying the associated set of features

 ()

Consider a cohort with number of candidates C, every

individual candidate () belongs a set of

characteristic (

) which makes the

overall quality of its behavior () . The individual

behavior of each candidate c is generally being observed

by itself and every other candidate (c) in the cohort. This

naturally urges every candidate c to follow the behavior

better than its current behavior.

1. Initialize the number of candidates (C), sampling

interval reduction factor r [0, 1] for each quality,

the number of iterations (n), and the number of

variations (t).

2. The probability of selecting behavior () of

next candidate c is calculated by equation 1.

3. Every candidate generates random number rand ε

[0,1] and uses roulette wheel to decide next

behavior ()and its features

 *

+

4. Every candidate shrinks the sampling interval

 for every feature

a)

 (*

 (

)+ *

 (

)+)

 ()

b) Roulette Wheel

5. Each candidate samples t qualities from updated

sampling interval for every its feature

and compute a set of associated t behaviors

a) () () ()

Select the best behavior ()from

b) Updated behavior set

 () () ()

6. Accept any of the behaviors from updated

behavior set and stop if maximum iteration occurs

else continue to step 2.

VII. RESULT AND DISCUSSION

Fig.3 shows the output of kernel trace data using

LTTng 2.7 tool on Ubuntu12. To trace the kernel,

commands shown in section III have been used. Three

libraries are installed to use LTTng 2.7 tool. To trace the

kernel, the session is created then process fork and

schedule switch these two events are traced. To start

tracing start command is used after few seconds stop

command is run to stop tracing. Then to view the traced

data in readable format babeltrace is installed using

commands shown in section III. Babeltrace is a trace

viewer and converter reading and writing then common

trace format (CTF). Its main use is to pretty-print CTF

traces into a human-readable text output ordered by

time.Then the path of traced data is given to babeltrace.

The output shows time of the trace, name of the process,

PID of the process, state of the process, next command to

run, PID of next command etc.

64 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

Fig.3. Kernel Trace

Cohort Intelligence is applied to a set of cores to

determine near optimal set of cores to run the processes

so that all cores will near equally be balanced. Fig.4

shows, core load and core priority are the initial input

taken by CI. Based on this input the CI generates eleven

candidates and then these eleven candidates look into one

another behaviors to find near optimal solution. Roulette

wheel is applied to find the next following candidate.

Each candidate follows other candidate or itself. At each

iteration, the values of the candidates get updated. At

each iteration, the bound limits are calculated for each

candidate and this limit range is degraded at every

iteration so that after every iteration the solution gets

saturated. Total 100 iterations are generated to find a final

solution which is shown in Fig.5, this shows the near

optimal set of cores to run the processes.

Fig.4. Cohort Intelligence

Fig.5. Cohort Intelligence Output

Table 1 shows an overall explanation of the CI

working. The affinity of the process is the number of

cores on which the process is running. Initially affinity bit

for all processes is zero to seven. This means all

processes can run on any core (core 0 to core 7) at any

time. Table 1 shows initial load on core 0, core 1, core 2

and core 3. L is the load on the core and P is the priority

assigned to that core by CI algorithm. Table 1 shows that

core 0 has load 5.96 and priority 1, core 1 has load 5.56

and priority 4, core 2 has load 5.57 and priority 1, core 3

has load 5.5 and priority 1. After applying the CI

algorithm with initial load and priority the output of CI

suggest that the processes on the cores 0, 1 and 2 need to

be migrated within each other to utilize the cores

optimally by balancing the load on cores 0, 1 and 2.

Fig.6 shows a graphical representation of core values

suggested by CI in each iteration. Fig.6. show that core 0

is heavily loaded as compared to rest of the cores. The

final solution suggested by CI at 100th iteration is to

migrate processes on cores 0, core 1 and core 2. As graph

shows, core 0 is heavily loaded and core 2 is lightly

loaded.

Fig.7 shows tokens generated from the trace file. This

token file shows attributes of processes like cpuid, tid,

state, priority etc. Using this token file the separate text

files are generated named as core0, core1, core2 etc. as

represented in Table 2 with their file sizes. Each text file

will represent all the processes running on that core.

These text files will be used in the step of process

migration.

Table 1. CI Output

Initial

Affinity

(Cores)

CI Input Affinity

Suggested by

CI

(Cores)

Core0 Core1 Core2 Core3

L P L P L P L P

0-7 5.96 1 5.56 4 5.57 1 5.5 1 0-2

 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence 65

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

Fig.6. Iterations vs. Cores values

Fig.7. Tokens of Trace File

Table 2. Core Wise Load Distribution

File Size (KB)

Core0 504

Core1 568

Core2 848

Core3 712

Core4 176

Core5 1184

Core6 80

Core7 168

After Applying the CI algorithm the new affinity bit is

generated, which shows that the processes on these cores

need to be migrated. Fig.8 and Fig.9 show a simulation of

process migration. The process named firefox with pid

2535 is initially having affinity bit 0, using Linux

command2 we migrated this process to core 1. The Fig.8

shows the load on core 1 was 2.35 and after migration of

2 taskset -cp 1 2535

process (PID 2535) the load became 2.36 which is shown

in Fig.9. This is how the migration took place within

cores.

Fig.8. Process Migration Simulation1

Fig.9. Process Migration Simulation2

VIII. CONCLUSION

The kernel of Linux system (Ubuntu12) is successfully

traced using LTTng 2.7 tool and traced data is stored in a

text file and analyzed to detect affinity bit value of

processes. The CPU load values are passed to CI

algorithm which uses self-supervised learning approach

to determine near optimal set of cores. Finally, a

simulation of process migration is presented which shows

effective utilization of cores to optimize the performance

of the system.

ACKNOWLEDGMENT

This paper is based on my Post Graduation thesis in

Savitribai Phule Pune University, Pune, India. I want to

express my sincere gratitude to Professor Anand Kulkarni,

Symbiosis Institute, Pune, India for his support.

66 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 59-66

REFERENCES

[1] G. Anderson, T. Marwala, and F. V. Nelwamondo, “Use

of Data Mining in Scheduler Optimization,” p. 10, 2010.

[2] T. A. Maktum, R. A. Dhumal, and L. Ragha, “A Genetic

Approach for Processor Scheduling,” in IEEE

International Conference on Recent Advances and

Innovations in Engineering (ICRAIE), Jaipur, India, 2014,

pp. 9–12.

[3] A. Kaur and B. S. Khehra, “CPU Task Scheduling using

Genetic Algorithm,” in IEEE 3rd International

Conference onMOOCs, Innovation and Technology in

Education (MITE), 2015, no. 2003, pp. 66–71.

[4] Chiang, Y.-C. Lee, C.-N. Lee, and T.-Y. Chou, “Ant

colony optimisation for task matching and scheduling,”

Comput. Digit. Tech. IEEE Proc., vol. 153, no. 2, pp.

130–136, 2006.

[5] K. Kotecha and A. Shah, “Adaptive scheduling algorithm

for real-time operating system,” in IEEE Congress on

Evolutionary Computation (IEEE World Congress on

Computational Intelligence), 2008, pp. 2109–2112.

[6] A. J. Kulkarni, I. P. Durugkar, and M. Kumar, “Cohort

intelligence: A self supervised learning behavior,” in

Proceedings - 2013 IEEE International Conference on

Systems, Man, and Cybernetics, SMC 2013, 2013, pp.

1396–1400.

[7] A. J. Kulkarni and H. Shabir, “Solving 0–1 Knapsack

Problem using Cohort Intelligence Algorithm,” Int. J.

Mach. Learn. Cybern., no. Ci, p. 15, 2014.

[8] N. Bhulli, “ktrace_dissertation.pdf.”

[9] C. LaRosa, L. Xiong, and K. Mandelberg, “Frequent

pattern mining for kernel trace data,” in Proceedings of

the 2008 ACM symposium on Applied computing -

SAC ’08, 2008, p. 880.

[10] S. Punhani, Akash Sumit, Kumar Rama, Chaudhary

Avinash Kumar, “A Cpu scheduling based on multi

criteria with the help of Evolutionary Algorithm,” in 2nd

IEEE International Conference on Parallel, Distributed

and Grid Computing, 2012, pp. 730–734.

[11] A. Yasin, A. Faraz, and S. Rehman, “Prioritized Fair

Round Robin Algorithm with Variable Time Quantum,”

in 13th International Conference on Frontiers of

Information Technology, 2015, pp. 314–319.

[12] Ravindra A. Vyas, H. H. Maheta, V. K. Dabhi, and H. B.

Prajapati, “Load balancing using process migration for

linux based distributed system,” in Internationai

Conference on Issues and Challenges in Intelligent

Computing Techniques (ICICT), 2014, pp. 248–252.

[13] G. Vallee, R. Lottiaux, D. Margery, C. Morin, and J. Y.

Berthou, “Ghost process: A sound basis to implement

process duplication, migration and checkpoint/restart in

linux clusters,” in 4th International Symposium on

Parallel and Distributed Computing, ISPDC, 2005, vol.

2005, pp. 97–104.

[14] A. Zarrabi, K. Samsudin, and A. Ziaei, “Dynamic process

migration framework,” in International Conference of

Information and Communication Technology, ICoICT,

2013, pp. 410–415.

[15] B. A. Mustafa, N. T. Saleh, and A. M. Khidhir, “Process

Migration Based on Memory to Memory Mechanism,” in

The First International Conference of Electrical,

Communication, Computer, Power and Control

Engineering ICECCPCE, 2013, p. 5.

[16] Ahmed F. Ali, “Genetic Local Search Algorithm with

Self-Adaptive Population Resizing for Solving Global

Optimization Problems,” I.J. Information Engineering

and Electronic Business (IJIEEB),2014, vol.6, no.3, pp.

51-63.

[17] Hedieh Sajedi, Maryam Rabiee, “A Metaheuristic

Algorithm for Job Scheduling in Grid Computing,” I.J.

Modern Education and Computer Science (IJMECS),2014,

vol.6, no.5, pp. 52-59.

Authors’ Profiles

Aniket B. Tate has received B.Tech.

degree in Information Technology from

Shivaji University, Kolhapur, Maharashtra

in 2013. He is currently pursuing the M.E.

degree in Computer Engineering from

Savitribai Phule Pune University,

Maharashtra. His current research interest

includes Artificial Intelligence. Mr. Tate

has presented a paper in IEEE conference (IACC-2017).

Laxmi A. Bewoor has received M.E. degree

in computer from Savitribai Phule Pune

University, Pune, Maharashtra in 2006. She

is an Assistant Professor with Department of

Computer Engineering, Vishwakarma

Institute of Information Technology, Pune.

Her current research interest includes

Artificial Intelligence. Assistant Prof.

Bewoor has a professional membership with LMISTE.

How to cite this paper: Aniket B. Tate, Laxmi A.

Bewoor,"Optimization of System's Performance with Kernel

Tracing by Cohort Intelligence", International Journal of

Information Technology and Computer Science(IJITCS), Vol.9,

No.6, pp.59-66, 2017. DOI: 10.5815/ijitcs.2017.06.08

