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Abstract—In today's data driven, automated and digitized 

world, a significant stage of information extraction is to 

look for special keywords, more formally known as 

'Named Entity'. This has been an active research topic for 

more than two decades and significant progresses have 

been made. Today we have models powered by deep 

learning that, although not perfect, have near human level 

accuracy on certain occasions. Unfortunately these 

algorithms require a lot of annotated training data, which 

we hardly have for Bengali language. This paper 

proposes a partial string matching approach to identify a 

named entity from an unstructured text corpus in Bengali. 

The algorithm is a partial string matching technique, 

based on Breadth First Search (BFS) search on a Trie 

data structure, augmented with dynamic programming. 

This technique is capable of not only identifying named-

entities present on a text, but also estimating the actual 

named-entities from erroneous data. To evaluate the 

proposed technique, we conducted experiments in a 

closed domain where we employed this approach on a 

text corpus with some predefined named entities. The 

texts experimented on was both structured and 

unstructured, and our algorithm managed to succeed in 

both the cases.  
 

Index Terms—Named Entity Recognition, Dynamic 

Programing, Trie, String Matching, Edit Distance. 
 

I.  INTRODUCTION 

Named Entity Recognition problem (NER) holds a 

very important position in the domain of Natural 

Language Processing (NLP) and Information Retrieval 

(IR) [1]. In formal words, a Named Entity (NE) is some 

abstract or real object, which can be a person, a location, 

an organization or even numerical data that can be 

classified and denoted with a proper name. Named-entity 

recognition (NER) is a task of Information Extraction (IE) 

that identifies and tags named entities from a text into 

predefined categories such as the names of persons, 

organizations, locations, expressions of times, quantities, 

numerical values etc. Early approaches to solve this 

problem used handcrafted algorithms whereas now with 

the advancement of data science, data mining and access 

to big data we are fortunate to employ the power of 

machine learning for solving this problem. However, we 

do not have much structured and annotated data for 

Bengali. So, we cannot use the state of art machine 

learning models to solve this problem. This is why our 

paper is limited to developing a partial string matching 

approach for solving the NER problem. 

In today’s world scenario, a lot of our tasks are 

automated. Previously which were done by human agents 

are now being done by computers. A very popular 

example is scanning zip codes in USA by OCR 

technology. The time is not much far when all our day to 

day tasks will be governed by computers. Information 

plays a vital and inseparable role in our day to day life. A 

lot of our dealings is done by textual data. So, we need 

robust systems to retrieve information from textual data. 

These are active research areas of fields like NLP, IR etc. 

NER covers a fair part of retrieving information from 

textual data. If we manage to identify Named Identities 

from a text, then the text becomes structured and it 

becomes easier to parse a semantic meaning from it. 

Motivated from these needs, this paper tries to explore 

string matching based approach to solve the problem of 

NER for Bengali language. 

Literature contains several methods to solve NER 

problem. From [1] we see that most of the NER research 

tasks have been devoted to the study of English language, 

since we have huge amounts of annotated data for 

English. Moreover English is a simple yet very well 

structured language which allows us to solve this NER 

problem for English with higher ease. For example, all 

nouns in English starts with a capital letter, a number of 

observations like this make the task much easier.  

However, some other research works address language 

independence and multilingualism problems. German is 

well studied in CONLL-2003 [2] and in earlier works. 

Similarly, Spanish and Dutch were also explored by a 
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major devoted conference: CONLL-2002 [3]. Japanese 

had been studied in the MUC-6 conference [4], the IREX 

conference, and other works. French, Greek, Italian, 

Chinese is studied in an abundant literature. Many other 

languages also received some attention for example, 

Basque, Bulgarian, Catalan, Cebuano, Danish, Hindi, 

Korean, Polish etc. But unfortunately very few work has 

been done for Bengali language, a notable one being [5]. 

   The technique proposed in this paper involves a 

partial string matching algorithm to solve Named Entity 

Recognition problem. It not only detects the named-

entities correctly present in the text, but also estimates the 

probable named-entities from erroneous text. In brief, this 

algorithm involves a linear sweep of the suffixes of the 

text. Next, for each of the suffixes a Breadth First Search 

(BFS) is performed on a Trie data structure. Also to 

account for error in text, we modify the text and use the 

notion of edit distance. In order to ensure that the same 

computation is not repeated again and again, we apply 

dynamic programming. These steps extract the named-

entities from a text.   

To evaluate this technique a very robust and optimized 

implementation of the algorithm was made, and intensive 

experimentation was performed. We extracted 

unstructured textual data from Bengali newspapers and 

observed the outcomes. We also tested the technique on 

structured data by creating a chatbot to run structured 

queries. The technique was successful in both the cases. 

This paper makes the following contributions: 

 

 An efficient technique has been proposed based on 

dynamic programming to solve the problem of 

NER in a closed domain. 

 An optimized implementation of this technique, 

which is hosted in github. Moreover Intensive 

experimental analysis was done to perceive the 

correctness and effectiveness of the proposed 

approach.  

 The technique can be used for purposes other than 

NER. Since this is a generalized partial string 

matching algorithm, we can apply this technique 

in solving many other problems. 

 

The rest of the paper has been organized as follows. 

Section II discusses significant works on the field of NER. 

Section III presents the proposed approach that 

recognizes named entities based on dynamic 

programming. Section IV does an intensive analysis of 

the correctness of the algorithm and compares it with 

other alternatives. Section V describes an experimental 

analysis of the proposed approach. Section VI points out 

some other possible applications. Section VII concludes 

the whole work. 

 

II.  RELATED WORK 

The problem of Named Entity Recognition has been 

studied for more than two decades. Several techniques 

have been proposed during this long period of time. 

However, most of the works in this field require 

structured data to work with. Some techniques originate 

from simple handcrafted rules while the recent techniques 

employ the power of machine learning. The most 

significant works on this domain have been described 

below.    

One of the very first works of this field was conducted 

by Rau et al. [6]. This paper gave a complete description 

of an algorithm that extracts company names from 

financial news. This algorithm also succeeded in 

recognizing subsequent references to a company. The 

algorithm was a combination of clever heuristics, 

exception lists and extensive corpus analysis. The 

algorithm generates the most likely variations that those 

names may go by, for use in subsequent retrieval. The 

system had extracted thousands of company names with 

over 95% accuracy and succeeded in extracting 25% 

more companies that were indexed by a human. 

Earlier research rate was very low. It accelerated in 

1996, with the first major event dedicated to the task: 

MUC-6 [1]. From then this problem became more and 

more popular among researchers and paved the way to 

numerous scientific events: HUB-4, MUC-7 and MET-2, 

IREX [7], CONLL [2], ACE [9] and HAREM [10]. 

A number of researches were devoted to diverse 

domains.  D. Maynard et al. [11] designed a system for 

emails, scientific texts and religious texts. E. Minkov et al. 

[12] created a system that was specifically designed for 

email documents. These experiments demonstrated that 

NER problem can easily be solved in any domain. 

However, transferring such a system to a new domain 

remains a major challenge. T. Poibeau and Kosseim [13] 

experimented with some systems on both the MUC-6 

collection composed of newswire texts, and on a corpus 

made of manual translations of phone conversations and 

technical emails. A drop in performance was observed for 

every system (about 20% to 40% of precision and recall). 

The currently dominant technique for solving the NER 

problem is supervised learning. This includes use of 

hidden markov models (HMM), support vector machines 

(SVM), conditional random fields (CRF), decision trees, 

artificial neural networks (ANN) etc. Some good works 

are done by M. Asahara et al. [13], A. McCallum et al. 

[15] etc. For supervised learning, the precision of 

recognition is about 76% and the recall is about 48%. 

Zhou et. al. [16] proposed a Hidden Markov Model 

(HMM) based chunk tagger, from which a named entity 

recognition system was constructed to identify and 

classify names, times and numerical quantities. Through 

the HMM, the system was built upon four types of 

features - simple deterministic internal feature of the 

words, internal semantic feature of important triggers, 

internal gazetteer feature and external macro context 

feature. In this way, the NER problem could be resolved 

effectively. Evaluation of the system on MUC-6 and 

MUC-7 English NE tasks achieved F-measures of 96.6% 

and 94.1% respectively. Surprisingly this was much 

better than machine-learning systems. 

Semi Supervised Learning (SSL) is a recent but fairly 

new significant idea. The technique is mainly 

bootstrapping and involves a small degree of supervision, 
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i.e. a set of seeds, for the learning process. M. Pasca et al. 

[17] used techniques inspired by mutual bootstrapping. 

However, they innovated through the use of D. Lin’s 

(1998) distributional similarity to generate words from 

the same semantic class to allow pattern generalization. 

One of the contributions of this paper is to apply the 

technique to very large corpora (100 million web 

documents).  The authors demonstrated that starting from 

a seed of 10 examples facts it is possible to generate one 

million facts with a precision of about 88%. Another 

problem related to Named Entity Recognition can be 

name ambiguity; named entities in the web are highly 

ambiguous. For example, query containing an ambiguous 

name will return web pages that belong to all of the 

persons sharing that name. Selvaperumal et al. [19] 

presented a semi-supervised approach for solving the 

problem.  

Unsupervised learning generally involve clustering, for 

example, Y. Shinyama and Sekine [18] observed and 

used the idea that named entities often appear coherently 

in several articles, whereas common nouns do not. They 

found a strong correlation between a word, being a 

named-entity and appearing punctually and 

simultaneously in multiple news sources. This technique 

allows identifying rare named entities in an unsupervised 

manner. 

Chaudhuri et al. [5] is one of the few papers that 

experimented with named-entity detection in Bengali. 

This paper proposed a three-stage approach of named- 

entity detection. The stages are based on the use of 

Named-Entity (NE) dictionary, rules for named-entity 

and left-right co-occurrence statistics. Experimental 

results obtained on Anandabazar Patrika (Most popular 

Indian Bangla newspaper) corpus were quite encouraging. 

Some recent groundbreaking works related to Named 

Entity Recognition are - Santos et al. [20] used neural 

character embedding to improve NER performance, Chiu 

et al. [21] presented a neural network architecture that 

automatically extracts the features using a hybrid 

bidirectional LSTM and CNN architecture and got 91.62 

F1 score, Lample et al. [22] introduced two new neural 

network architectures - one consisting BLSTM and CRF 

and the other follows a transition-based approach inspired 

by shift-reduce parsers. Yang et al. [23] used a deep RNN 

to extract both morphology and context information on 

both character and word levels. Also [24] used a 

combination of BLSTM, CNN and CRF.  

Also, there have been some recent works related to 

Named Entity Recognition for Bengali and other Asian 

languages. Maha et al. [25] presented an ontology based-

approach for semantic annotation for Arabic language. 

Kale et al. [26] discussed various approaches for Named 

Entity Recognition for Indian languages and performed a 

comparison among them. Syeful et al. [27] explored some 

methods to identify proper nouns from Bengali language, 

which can be treated as a rudimentary version of Named 

Entity Recognition. Some works on trie based 

approximate matching can be found in [28] , [29] and 

[30]. 

 

III.  PROPOSED APPROACH 

In this paper, a partial string matching technique is 

proposed which augments a Breadth First Search (BFS) 

on a Trie data structure with dynamic programming. This 

process comprises four steps which are - Dictionary 

Construction, Linear Sweep, Dynamic Programming and 

Credibility Estimation. All these steps are described 

below. 

A. Dictionary Construction 

In this paper, since we are working in a closed domain, 

we can exploit the flexibility of restricting our dictionary 

to contain only the named entities. 

So our dictionary will be limited only to store the 

named entities. Moreover our dictionary should support 

three operations. 

 

i) Insert 

ii) Search 

iii) Delete 

 

To conduct these three operations efficiently, this 

technique uses a Trie or Radix Tree data structure which 

allows all these three operations in O(input length) time. 

So, a Trie data structure is constructed and the named 

entities are inserted into it. Every node of the Trie has 

some attributes like node id, node value (i.e. the character 

it represents), end-mark (i.e. does it completes a word or 

not), array of pointers to children etc. 

B. Linear Sweep 

For the next stage, we need to consider a substring 

from the text corpus and then identify the presence of a 

named entity. To do this in lieu of trying out all the N2 

substrings where, N = length of text, this technique does 

something clever. This technique simply takes all the 

suffixes, where a suffix Si is a substring starting at index i 

and ending in the last index N. A linear sweep of I is 

performed and all the possible suffixes of the text are 

taken to continue the computation. 

C. Dynamic Programming  

After obtaining a suffix string, we need to check for the 

occurrence of a named-entity in the substring. This 

technique does this by performing a BFS search on the 

Trie structure, augmented with Dynamic Programming.  

This follows just the usual BFS search strategy, we 

start from the root, check all the possible paths and then 

extend our position to the next level. BFS algorithm 

usually uses a queue data structure to maintain the flow 

and this ensures a shortest path. But in our case we would 

see in the following paragraphs that the distances from 

one node to the next may be either 0 or 1. For this we will 

use a technique of 0-1 BFS and use a Deque (doubly 

ended queue) data structure. 

But, to control the transitions, this technique uses a 

dynamic programming approach to ensure that same path 

is not visited multiple times. This dynamic programming 

model has 2 states: 
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i) Current node: a node of the Trie, which has attributes 

like value, children and end-mark. 

ii) Current index: the index of the substring that is 

being matched. 

 

This technique also uses the idea of edit distance to 

restrict the propagation of the dynamic programming 

algorithm. In each step, we are on a particular node of the 

trie and can do one of the followings. 

 

i) Match: If the currently indexed character of the 

substring matches with the character of the Trie node then 

we have found a match. So, we will go down that path, 

the index will be incremented but the edit distance will 

remain the same. For example, let the substring be “কলম” 

“কলম” and let index be 1 i.e. it points to ‘ল’ (for 0-

indexed string). Now if we are in a Trie node which 

represents the character ‘ল’, we will find a match. 
ii) Insert: If the currently indexed character of the 

substring does not match with the character of the trie 

node, we may need to insert the correct character in the 

substring, this will increment the edit distance by 1 and 

the index will be also increased, since we have inserted 

the correct character, so we will point to the next one. For 

example, let the substring be “কলম” and let the index be 

1 i.e. it points to ‘ল’. Now if we are in a Trie node which 

represents the character ‘ম’, we will find a mismatch. So, 

we can insert a ‘ল’ in this position and move on to the 

next index. 
iii) Delete: Again, if the currently indexed character of 

the substring does not match with the character of the 

Trie node, we can also delete that character in the 

substring, this will increment the edit distance by 1 but 

the index will remain unchanged, since we have not 

found the correct character. 

iv) Skip: Also if we find a mismatch, we can skip the 

index and move on, this will increment both the index 

and the edit distance. This case may seem unnecessary 

and redundant, but for cases when the first character is 

missing this case will be required otherwise we will fail 

to find a match. 

 

The transitions can be illustrated in Fig. 1: 

Now if we find an end-mark on the current node we 

need to keep a record of that. Because, two scenarios may 

arise: 

 

i) It is indeed the end of the word. 

ii) It is merely a prefix of the word. 

 

So, we will need a data structure where these records 

will be stored. This technique stores the edit distance and 

the node id of the Trie, because the string can be obtained 

by backtracking from that node.  

 

Fig.1. Dynamic Programming Transitions 

Now it is possible that the correct string is already 

present in the data structure but with a higher edit 

distance, in such cases this technique will update that 

string with the smaller edit distance. 

This method will be given a constraint on edit distance. 

Whenever that constraint is violated, the computation will 

be stopped. 

After each computation of a state, the state is marked 

in a memo type data structure to ensure that the algorithm 

is not re-computing the same state again (overlapping 

sub-problems). As previously mentioned, the states are 

represented by Trie node id and index, this is enough to 

uniquely represent a state which will be proved in the 

next section. 

This technique uses a Deque, for the cases when edit 

distance stays the same the new state is pushed to the 

front of the Deque and when the edit distance increases 

the new state is pushed to the back of the Deque. 

D. Credibility Estimation: 

After the dynamic programming and linear sweeping 

steps, a collection of probable candidates is obtained. 

Now, these candidates satisfy the constraint of edit 

distance. However, this may not be sufficient. To ensure 

the robustness further we used another metric. Simply put, 

this is the percentage accuracy which can be defined as: 

 

Percentage
Accuracy

=
TotalLength − EditDistance

TotalLength
× 100 % 

 

The reason for this metric is that, often we would find 

cases where some strings length are smaller than the edit 

distance of the desired string. So, in such cases, the 

algorithm may wrongfully output those smaller length 

strings since their edit distance is still smaller. To avoid 

this problem, this metric is used. 

We can present the pseudo-code for this algorithm as 

follows: 

 

Method constructDictionary ( data ) : 

     

    Global trie = new Trie() 
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    for each string in data : 

 

        trie.insert(string) 

 

END 

 

 

Method linearSweep ( input ) : 

 

    for i = 1 : length(input): 

  

        substring = string [ i : length(input) ] 

 

        DP (substring , editDistanceConstraint )  

 

END         

 

 

Method DP ( substring, editDistanceConstraint ) : 

  

    Global Candidates, trie            

 

    deque = new Deque() 

 // deque element = (nodeId, index, edit distance) 

  

    deque.pushBack ( new state(trie.root,0,0) ) 

 

    while ( deque.notEmpty() ): 

 

        state = deque.popFront() 

 

        nodeId = state.nodeId 

        index = state.inex 

        edit = state.edit  

 

        if ( state.endMark == true ): 

 

                Candidates.push( new(nodeId,edit) ) 

 

        if ( memo[nodeId][index] == done ): 

 

                continue 

                 

        // skip 

        if ( editDistanceConstraint not violated):  

    deque.pushBack(                            

new state(child,index+1,edit+1)) 

 

        for child in trie[nodeId].children: 

 

            if(trie[child].value ==substring[index]): 

   // match  

              deque.pushFront(                    

  new state(child,index+1,edit)) 

 

                else if ( editDistanceConstraint not violated):   

 

  // insert 

              deque.pushBack(  

  new state(child,index+1,edit+1) ) 

  // delete 

              deque.pushBack(  

  new state(child,index,edit+1) ) 

 

        memo[nodeId][index] = done  

 

END  

 

 

Method credibilityEstimation () : 

 

    Global Candidates, trie 

 

    for each candidate in Candidates : 

  

        string = trie.backtrack(candidate.nodeId)  

         

        percentageAccuracy =  

 ((length(string) – candidate.edit)/length(string))                  

 *100 

     

    return strings in descending order of  

percentageAccuracy 

 

END 

 

IV. ANALYSIS, CORRECTNESS AND COMPARISON 

A major issue of dynamic programming is determining 

the state variables. This technique uses trie node id and 

index of the substring. However, it would be seen that we 

also need the edit distance as a state variable. This is 

redundant as we are traversing the trie following a 

breadth first search (BFS) algorithm. So it is already 

ensured that, we will be traversing only in shortest path, 

so it is completely unnecessary to include edit distance as 

a state variable. 

Next we have two types of transitions, when we have 

found a match we should proceed without penalty thus 

the edit distance should be the same, on the contrary in 

other cases we need to penalize the transition. So, we 

cannot use a queue for this algorithm, rather we must use 

a double ended queue (deque). When we need to penalize 

the transition we would push it to back, otherwise we 

would push to the front. This will ensure the shortest path 

condition. 

Now if we processed the whole text at once then we 

would not be able to obtain all the possible named entities. 

For example, let us assume that an entity starts from 

index 15, surely we can skip the first 15 characters and 

then start matching. But unfortunately the 15 skipped 

characters would have been added to edit distance, so 

even if the entity may have been present correctly it 

would be highly penalized. 

To overcome this limitation this technique takes an 

elegant approach. It considers all the suffixes of the input 

text. This will allow us to start our computation from any 

desired index. Prefix matching of suffixes essentially 

leads to complete search. 
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Now, the asymptotic time complexity of the dynamic 

programming method is for the worst case O(M*E), 

where M = total number of Trie nodes and E = maximum 

edit distance considered. For a Trie containing a huge 

dictionary the number of nodes may seem to be high, but 

it is not. Since a lot of prefix overlapping takes place in 

reality. So, ultimately we are left with a reduced number 

of nodes. Still this number can be very high for a huge 

dictionary. So, the dynamic programming method should 

require a great amount of time. But this does not happen 

because in reality not all the nodes are visited. Actually 

only a small portion of the Trie is traversed. This became 

more apparent in experimental analysis. Although we 

have a huge theoretical upper bound time complexity, it 

almost never takes place.   

Again a complete linear sweep ensures that we will be 

able to detect an entity with the least edit distance 

possible. For example, if an entity starts from index 5 and 

it includes 2 errors, then when we take the suffix starting 

from index 3 we will have an edit distance of 4 , again 

suffix starting from index 4 results in an edit distance of 

3 . Finally a suffix starting from index 5 will have only 

edit distance of 2. After this the edit distance will increase 

gradually, i.e. 3 at suffix starting at index 6, 4 for suffix 

starting at index 7 and so on. So this ensures that we will 

always be able to detect the entities at their least possible 

edit distance. No entity will be missed or be treated 

unjustly. This algorithm will always produce correct 

output. 

Now we have two parameters in this method: 

 

i) Edit distance tolerance 

ii) Percentage accuracy tolerance 

 

We can tune these two parameters. If we increase edit 

distance tolerance then the algorithm will take more time 

to compute. On the other hand, if we reduce the edit 

distance tolerance too much some entities that are 

afflicted with error may be missed. Similarly for 

percentage accuracy tolerance, when we increase it, the 

search becomes stricter and we may miss some entities. 

On the contrary reducing it too much may result in 

detecting some entities that are not actually present.  

Now it may seem that our algorithm takes a lot of time 

and thus inefficient. However, if we compare this 

approach to other string processing approaches, we would 

see the opposite. Indeed our approach is highly efficient. 

For the sake of simplicity let us first consider that all 

the entities are presented correctly. In that case we can 

simply try out all the substrings and then look for 

matches in them. If the length of the input string was N 

and there were M entities it would take O(N3. M) time if 

we had used efficient string matching algorithms like 

KMP algorithm, Z algorithm, Robin Carp algorithm etc. 

Since there are N2 substrings in total and they can be of 

length N at most, we can estimate an upper bound of O(N) 

for checking each substring and as number of entities are 

M, so for checking all the entities this time complexity 

becomes O(N . M). Thus for all substrings the overall 

time complexity becomes O(N3. M). 

However we can improve this, as we can just employ 

these string matching algorithms on the entire string at 

once, we need not consider all the N2 substrings. This 

reduces the time complexity to O(N . M). 

But, this approach will fail if the entities are not 

represented properly, there may be some error associated 

with them. In that case we would have to consider all the 

substrings and calculate edit distance with each of the 

entities. Now the number of entities is M , total length of 

text is N, thus the total number of substrings is N2. And 

each calculation of edit distance, using efficient dynamic 

programming will need at most O(N2) time, since the 

substring can be of at most length N. So the overall time 

complexity for calculating edit distances of the substrings 

with all the entities will become O(N2 . M . N2) thus O(N4. 

M) . This is really time consuming. 

On the other hand our proposed algorithm needs to 

consider only N suffixes in lieu of N2 substrings, again 

each call to dynamic programming method has a worst 

case time complexity of O(T . E) , where T = number of 

Trie nodes and E = the maximum edit distance we will 

consider. So the total time complexity is O(N . T . E). 

Now total Trie nodes T can be at most the sum of lengths 

of all the entities, but in practice this stays much smaller, 

which was observed from experiments on real data. Also 

our algorithm hardly ever visited all the Trie nodes, 

because of the properties of natural languages, they are 

not just random strings of characters, rather they have 

well defined grammar and well established vocabulary. 

So we can be assured that our algorithm will hardly ever 

require the theoretical O(N . T . E) time complexity. Thus 

the average case and even the practical worst case time 

complexity will be much smaller than the upper bound 

O(N.T.E).  

However this algorithm is not perfect like other 

Natural Language Processing algorithms. We would need 

to give as input the formats of the named entities. This is 

the only limitation. Our algorithm stays at a position 

between hand-crafted algorithms and state of the art 

machine-learning algorithms. 
 

V.  EXPERIMENTAL SETUP AND RESULT ANALYSIS 

In order to evaluate the proposed approach, we 

underwent a number of experiments and observed the 

outcomes. We created a very efficient implementation of 

the algorithm in php language, so that we can use this for 

web based applications. Hopefully in the future this 

algorithm will also be implemented in other popular 

languages e.g. python, java etc. The source code can be 

found in the following github repository  

https://github.com/robin-0/Partial-String-Matching 
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We experimented on our algorithm using some texts in 

Bengali. Unfortunately, we failed to find any proper 

dataset for the task. So we extracted some texts from 

Bengali newspapers, mostly from the Daily Prothom Alo, 

most popular newspaper of Bangladesh. 

To honor the recent achievements of Bangladesh 

Cricket Team, we experimented our algorithm on sports 

related news articles. We trained our model with (i.e. 

provided named-entity data for) country names, player 

names, numbers etc. The outcomes of the experiments 

were very satisfactory as our algorithm managed to 

identify all the named-entities, present on the text. 

Outcome of one of the experiments the tests is presented 

below: 

 

 
 

As we can see the algorithm manages to identify all the 

country names, player names and numerical identities. 

Another strength of this algorithm is since we operate of 

prefixes we do not need to do any stemming explicitly, 

the algorithm itself inherently does the stemming. This is 

why our algorithm manages to identify ‘অস্ট্রেলিয়া’ from 

the word ‘অস্ট্রেলিয়ার’. Also we can note that, due to our 

consideration of edit distance and linear sweeping the 

algorithm is capable of extracting named-entities even if 

some prefix or suffix or even intermediate characters are 

missing. As we can see that we were able to identify 

‘আলিি হ াস্ট্রেন’ even when only ‘আলিি’ was given, 

and we managed to detect ‘জন হ লটিংে’ whereas only 

‘হ লটিংে’ was given. 

And in order to address our actual practical time 

complexity rather than theoretical upper bound, let us 

define the percent average number of visited states as: 

 
Average Number ofVisited States(%)

=
Total Number of Visited States

Total Suffixes × Total States
× 100%

 

 

This metric represents how much time our algorithm 

actually needs compared to the theoretical upper bound of 

O(NTE). For this particular example, we found this value 

to be only 3.8336%. So, actually our algorithm is needing 

only 3.8336% of O(NTE), where N= length of string, T = 

total Trie nodes, E = edit distance limit. This is 

surprisingly small. We found that in all our experiments 

this metric never exceeded 10% and most of the time it is 

expected to be around 5%. The inherent properties of the 

natural languages ensure that words are not merely a 

random permutation of characters, rather they follow 

certain established rules, this property significantly 

reduces our actual computation time. 

Now, to make our task more challenging, we then 

added some noise to the text, i.e. we randomly deleted 

some characters and randomly inserted some characters. 

We had the ability to change the amount of noise. It was 

seen that as long as the noise was within the limit of our 

edit distance constraint, our algorithm successfully 

managed to identify all the named entities. However if we 

add more noise compared to our edit distance tolerance, 

the system starts to fail, which is expected. This added 

noise can be taken into account by relaxing the edit 

distance tolerance, but in our real-world the texts usually 

do not contain that much of noise, so our algorithm is 

practical. 

The same example with random noise becomes as 

follows: 

 

 
 

And the output is: 
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We can see that, though we added some noise by 

randomly inserting and removing characters, our 

algorithm still manages to identify the named-entities.  

For examples it succeeded to identify ‘অস্ট্রেলিয়া’ from 

‘অস্ট্রেলিনয়া’ , '১৯' from '১চ৯' and so on. Also this time 

the percent average number of visited states is only 

3.676%.  

Table 1. Result Analysis 

Dataset Edit Distance 

0 

Edit Distance 

1 

Edit Distance 

2 

Dataset 1 100.00 % 100.00 % 100.00 % 

Noisy Dataset 1 

σ = 1.5 

66.67 % 83.33 % 83.33 % 

Noisy Dataset 1 

σ = 2.0 

50.00 % 66.67 % 66.67 % 

Noisy Dataset 1 

σ = 2.5 

33.33 % 66.67 % 66.67 % 

Dataset 2 60.00 % 60.00 % 60.00 % 

Noisy Dataset 2 

σ = 1.5 

40.00 % 40.00% 60.00 % 

Noisy Dataset 2 

σ = 2.0 

30.00 % 30.00 % 30.00% 

Noisy Dataset 2 

σ = 2.5 

20.00 % 30.00 % 30.00 % 

Dataset 3 81.81 % 81.81 % 81.81 % 

Noisy Dataset 3 

σ = 1.5 

63.60 % 72.72 % 81.81 % 

Noisy Dataset 3 

σ = 2.0 

54.54 % 54.54 % 72.72 % 

Noisy Dataset 3 

σ = 2.5 

27.27 % 36.36 % 54.54 % 

 

We performed similar experiments on several other 

datasets and recorded the outcomes. We also added 

noises and observed that accuracy declines. However, by 

tuning the constraints we can further improve the 

accuracy. Some of the results are shown in Table 1. 

These datasets and several others can be found on the 

github repository https://github.com/robin-0/Partial-

String-Matching . Actually when we add noise, the 

accuracy declines because then the text does not remain 

grammatically correct anymore, as we randomly deleted 

and randomly inserted random characters. Hopefully in 

practice we are very unlikely to face such cases. Thus we 

can conclude that our technique works satisfactory in 

practice.  

These experiments were for unstructured data. We also 

did some experimenting on structured data by creating a 

chatbot which will receive some query from the user and 

look for different named-entities in the text and provide 

information based on that. We also obtained successful 

outcomes from these experiments. We trained the chatbot 

with car brand names, model numbers, etc. and it 

managed to detect them. For example: 

User Query: 

 

 
 

Bot perceived: 

 

 
 

Thus the bot was able to extract the named-entities 

from the user's query. 

Thus our algorithm is proved work very well for both 

structured and unstructured data. 

 

VI.  APPLICATIONS 

This algorithm was developed to recognize named- 

entities from unstructured text, more precisely Bengali 

text. We developed this algorithm with the sole purpose 

of named entity recognition. However this same 

algorithm can be used to extract information from texts, 

or even can be used as a spell-checker. In the later case 

the dictionary should contain all the words. And as seen 

from the experiments this algorithm can also be used to 

construct IR powered chatbots. 

 

VII.  CONCLUSION 

Named Entity Recognition is a very important problem 

in the fields of NLP and IR. In today’s age of information 

technology a big challenge is to parse texts to extract 

information from them. This is the preprocessing step for 

a lot of digital services today. But unfortunately very 

little work has been done for Named Entity Recognition 

for Bengali language. 

In this paper, a technique is proposed for named entity 

recognition (NER) task in Bengali language within a 

closed domain using partial string matching. This 

https://github.com/robin-0/Partial-String-Matching
https://github.com/robin-0/Partial-String-Matching
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technique is based on dynamic programming. We take all 

the suffixes of a string. Then we perform a BFS search on 

a Trie data structure. In order to consider errors in text we 

use the notion of edit distance, and to prevent the same 

computation taking place again and again we employ 

dynamic programming.  

This technique was discussed in a very detailed manner 

using pseudo-codes. We analyzed the algorithm and 

proved its correctness. Moreover we have created an 

optimized implementation of the algorithm and 

experimented with it thoroughly. The experiments were 

successful and the algorithm performed as expected. 

Experiments were done for both structured and 

unstructured data. However we can prune the algorithm 

by tuning the parameters, it draws a balance between 

efficiency and accuracy. Since we don't have adequate 

data for Bengali to train a machine-learning model, this 

partial string matching approach is the best approach we 

can follow currently. Our technique stands in between 

hand-crafted algorithms and state of the art machine-

learning algorithms.  
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