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Abstract—In this paper, using fractional differential and 

integral operators, constructed are two-dimensional 

mathematical models of viscoelastic deformation, which 

are characterized by memory effects, spatial non-locality, 

and self-organization. The fractal rheological models by 

Maxwell, Kelvin and Voigt, their structural properties 

and the influence of the fractional integro-differential 

operator on the process of viscoelasticity are investigated. 

Using the Laplace transform method and taking into 

account the properties of the fractional differential 

apparatus, analytical relations are obtained in the integral 

form for describing the stresses of generalized two-

dimensional fractional-differential rheological models by 

Maxwell, Kelvin, and Voigt. Since the fractional-

differential parameters of fractal models allow describing 

deformation-relaxation processes more perfectly than 

traditional methods, algorithmic aspects of identification 

of structural and fractal parameters of models are 

presented in the work. 

Explicit expressions have been obtained to describe the 

deformation process for one-dimensional fractional-

differential models by Voigt, Kelvin, and Maxwell. The 

results of identification of structural and fractal 

parameters of the Maxwell and Voigt models are 

presented. The estimates of the accuracy of the obtained 

identification results were found using the statistical 

criterion based on the correlation coefficient. The 

influence of fractional-differential parameters on 

deformation-relaxation processes is investigated. 

 

Index Terms—A mathematical model, derivatives of 

fractional order, rheological models, deformation 

processes. 

 

I.  INTRODUCTION 

The fractional integro-differential apparatus dates back 

to the birth of a differential calculus, so, today, in the 

theoretical aspect, it is well developed. However, despite 

this, the practical application of fractional derivatives and 

integrals for the description and study of physical 

processes has been started fairly recently and is becoming 

more and more relevant in various fields - technology [1], 

hydrology [2], physics [3], biology [4] , medicine [5] and 

others. Such interest can be justified by the fact that 

fractional differential operators allow us to describe the 

new properties of systems in comparison with systems 

that use derivatives of the integral order, which in turn 

allows us to describe and investigate more precisely 

models of the real world. 

In the paper [6], a simple and optimal form of 

fractional-order feedback approach assigned for the 

control and synchronization of a class of fractional-order 

chaotic systems is proposed. In the paper [7] introduce 

the classical EOQ model with a linear trend of time-

dependent demand having no shortages using the concept 

of fractional calculus. 

In the work [8] investigates the effectiveness of the 

physical-fractional and biological-genetic operators to 

develop an Optimal Form of Fractional-order PID 

Controller (O2Fo-PIDC). Implementation results are 

showed that the performance of the fractional-order PID 

controller is much better that PID controller and also 

instead of relatively complex and expensive controller, it 

is possible to use fractional-order PID controller for the 

problem [9].  

The development of the idea of fractional integro-

differential apparatus for simulation of complex systems 

involves several scientific schools associated with the 

names: V. Uchaikin [10], A. Nakhushev [11], F. 

Mainardy [12], R. Nigmatulin [13], and I. Poddubny [14] 

and other scholars of the past and present. 

Modeling the processes of viscoelastic deformation [10, 

15-19] and heat-and-mass transfer [20-25] in 

environments with a fractal structure characterized by 

memory effects, spatial non-locality and self-organization 

must be also based on the use of the mathematical 

apparatus of fractional integro-differential operators. 

Fractional derivatives by time characterize the effects of 
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memory (hereditament) or non-Markovian simulation 

processes, while fractional derivatives by spatial 

coordinates reflect the self-similar nonhomogeneity of the 

fractal environment. 

Taking into account the mathematical apparatus of 

fractional integro-differential calculus and the structural 

properties of rheological models, one can obtain various 

fractal schemes of viscoelastic deformation which will 

describe bodies such as Jeffris’s, Maxwell’s, Kelvin’s, 

Voigt’s, etc.The use of differential equations of fractional 

order for constructing mathematical models of visco-

elastic deformation allows for more adequate, based on 

physical considerations, the generalization of 

experimental data to identify model parameters [15]. 

One of the not completely solved problems is the 

problem of using the models of viscoelasticity of the 

fractional-differential type for constructing the 

corresponding phenomenological theories on the basis of 

known experimental data [26]. Classical identification 

methods have not been found to consistently provide the 

desired result when searching for fractal parameters. This 

can be explained by the fact that fractal parameters are 

often included in the Mittag-Leffler function, depicted as 

an infinite series. As a result of identification of finite 

numbers in the Mittag-Leffler series, we obtain a 

nonlinear system of algebraic equations, the solution of 

which is associated with large and laborious 

mathematical calculations. Taking into account the above, 

the identification of fractional-differential parameters 

requires some optimal non-classical method, or as is done 

in the work [26], the iterative method of coordinate 

descent is applied to the classical method of minimal 

squares. 

 To find the solution of integral and differential 

equations, both analytical [22, 23, 27] and numerical 

methods are used [17, 20, 21, 24, 25, 28, 29]. One of the 

applied analytical methods for solving fractional-

differential equations is the Laplace transform method 

[10, 14, 27]. 

At present, a significant preference is given to 

numerical methods, since, as pointed out in [20], 

analytical methods for solving fractional diffusion 

equations are ineffective, and the theory of numerical 

methods for their solution is fragmentary and far from 

being complete. The numerical methods of current 

interest include the methods using finite-difference 

approximations [20, 21, 24, 25, 28, 29]. In the works [20, 

21, 24] a numerical method is constructed using explicit 

and implicit difference schemes for solving one-

dimensional and two-dimensional heat-conduction 

problem with derivatives of a fractional order. An 

insignificant number of works [24, 25] is devoted to the 

study of boundary-value fractional order problems with 

boundary conditions of the third kind. 

 

II.  PROBLEM FORMULATION 

The basis of the simulation of two-dimensional 

deformation-relaxation processes in the fractal 

environment is the generalized classical theory of linear 

visco-elasticity and the properties of  fractional-

differential apparatus. 

Maxwell’s fractal model (Fig. 1) is characterized by a 

series connection between the elastic element H and the 

viscous element N, while Voigt’s model (Fig. 3), on the 

contrary, is a parallel connection. Kelvin’s fractional 

differential model (Fig. 2) consists of a series connection 

of the Voigt body  F and the elastic element H. 

Taking into account the theory of the mechanics of 

hereditary environment [30-32], one can proceed from 

Kelvin’s fractal model to  Maxwell's fractal model, taking 

away the elastic element, and thus taking that
1 0  . 

Thus, using various modifications of structural elements, 

various schemes of viscoelastic deformation can be 

obtained, which, in turn, can be described by differential 

equations of fractional order. 

Non-fractal rheological models can be obtained by 

replacing the fractal element in the fractional-differential 

models with the viscous one. Given that viscocity   

(
   , where   is modulus of elasticity,   is 

relaxation time,   is fraction order  0 1  ), and 

taking that 1  ,  we obtain classical rheological 

models. 
 

 

Fig.1. Maxwell's fractal model          Fig.2. Kelvin’s fractal model 

 

Fig.3. Voigt’s fractal model 
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Taking into account the above written, as well as the 

structural properties of rheological models investigated in 

[33] for the one-dimensional case, two-dimensional 

Voigt’s-, Kelvin’s-, and Maxwell’s models, with 

allowance for orthotropy in the fractal environment, can 

be described by the corresponding systems of equations: 

Foigt’s model: 

 
 11 11 11 12 22 11 222 ,t t t tС D С D D D                   (1) 

 

 22 21 11 22 22 11 222 ,t t t tС D С D D D                  (2) 

 

          
12 33 12 122 ,t tС D D                         (3) 

 

Kelvin’s model: 
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   
1 1 2

12 12 33 12 12

1 2 1 2

2 ,t tD С D
 

  
   

  
  

   
    (6) 

 

Maxwell’s model 

 

 11 11 11 11 12 22 2 11 222 ,t t tD С С D D                    (7) 

 

 22 22 21 11 22 22 2 11 222 ,t t tD С С D D                    (8) 

 

   
12 12 33 12 2 122 .t tD С D                      (9) 

 

where    11 22 12 11 22 12, , , , ,T Т          is the 

vector of strains and stresses, components of which are 

dependent on time t and spatial variables x1 and x2,  

1 2, ,    are elastic modulus, ,tD  
tD

   are fractional 

derivatives in accordance with time and order, 

respectively ,    (for Voigt’s model - 0 1    , 

for Kelvin’s and Maxwell’s - 0 , 1   ), 

11 12 21 22 33, , , ,С С С С С  are components of the elastic 

tensor for an orthotropic body, expressed through the 

formulas: 
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332 ,C                      (10) 

 - shear modulus, 
11 22,E E - Young’ moduli, 

1 2,  -

Poissons’s ratios 

The fractional derivative in the sense of Riemann-

Liouville order   of function  f x   can be written in 

the following way [10]: 

 

   
 

   
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x

xf x D x f d
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0 1  ,     is Gamma function, 
xD  is an integer 

derivative of the first order variable  x. 
In the case where we put ,0 in the relations (1) – (3), 

аnd 1,    in (4)-(9), we obtain the classical two-

dimensional models by Voigt, Kelvin, and Maxwell in 

the orthotropic case, respectively. 

 

III.  ANALYTICAL METHOD FOR REALIZATION OF TWO-

DIMENSIONAL MODELS OF VISCO-ELASTICITY USING 

FRACTIONAL DERIVATIVES  

The analytical relations in the integral form for 

describing strain-stress for rheological models are 

accomplished using the Laplace transform method and 

taking into account the fractional-differential apparatus 

and its properties. The following initial conditions are 

added to the above expressions (1) - (9): 
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where  11,22,12ij  , ,i ia b  are  some constants. 

Carry out the Laplace transform for Kelvin’s fractal 

model.  

The solution of the corresponding system (4)-(6) 

reduces to finding a solution for each equation, for this 

we write as follows: 

 

 
 
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where 1,2,3k  ,  ˆ
kf   is Laplace’s pattern of the 

transformation of functions  kf t , which are as follows: 
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kC  are some coefficients that can be represented:  
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Find transform of the solution: 
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To perform the inverse Laplace transform, it is 

convenient to apply the expression   1 2
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Then:   
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where 
1L

 is an operator of the inverse Laplace 

transform.  
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in our case we obtain: 
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For further transformations, we use Mittag-Leffler’s  

two-dimensional function [34]: 
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The expression (21) can be rewritten in the following 

form: 
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Using the theorem on the resultant of two functions [10] 

and substituting the corresponding values of  tfk  and 

kC , we obtain the solution of the relations: 
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




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t

t

t

t


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
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









 

(25) 

 

     
 

 1 2
12 3 33 12 12

1 20

2

t

tC G t A G t C D d



      

  
    

  


 

(26) 

 

where  

 

   1

,G t t E At 

 

  ,  1 2

1

A


 



. 

 

Analytical formulas for the integral representation of 

Maxwell’s model can be obtained similarly by solving 

each equation from the system (7)-(9) by the Laplace 

transform method, or from Kelvin’s model, putting in the 

relations (24)-(26)  that 
1 0  . 
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The relationship between stresses and deformations for  

Maxwell’s fractional-differential model in an integral 

form can be represented as follows: 

 

        

       ,2
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2
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2222212
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1121111
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
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











dDCtF

dDCtFtFC

t

t

t

t








  

(27) 

 

        

       ,2
1

2
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2222222
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0

222



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











dDCtF

dDCtFtFC

t

t

t

t


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


 

(28) 

 

       12 3 33 12 2 12

0

1
2

t

tC F t F t C D d 


       


     

 

(29) 

 

where  

 

  1

, .
t

F t t E




  

  
  

 

 

 

For the integral representation of the relations (1)-(3),  

the properties of fractional derivatives [10, 34, 35], as 

well as the relation (11) are taken into account. As a 

result of the appropriate transformations, we obtain the 

analytical relations for stresses in the integral form for  

Foigt’s fractal model: 

                          

   
      
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


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





































dtD

dtD

t

t

t

t
 

(30) 

 

   
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













































dtD

dtD

t

t

t

t

  

(31) 

 

 

 

 

 
 12 12

0
1 1

t

t

t t
D d

    
   

 

    
  

    
 


  (32) 

 

 

IV. IDENTIFICATION OF FRACTAL PARAMETERS OF 

MODELS AND ANALYSIS OF NUMERICAL MODELING 

RESULTS  

For one-dimensional fractional-differential models of 

Voigt, Kelvin, and Maxwell, the explicit form of the 

expression describing the deformation can be represented 

as follows: 

 

 
 

   

   
   

0
1 1

220
1 12

2

2 ,
2 2

F t t t t h t t

t t t h t t





  

 




  



    





     
  

    
    

 

(33) 
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   (34) 
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
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

    
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

     
  
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    

    (35) 

 

where 
0  is the value of the stress at the initial time , 

 h t  is Heaviside function (   0h t   at 0t  ,   1h t  at  

0t  ), 1t   is unload time. 

The task of identification is divided into two subtasks: 

identification of structural parameters (elastic modulus, 

relaxation time, viscosity, initial stress, etc.), 

identification of fractional-differential parameters of 

models   and  .  

Since the structural parameters of fractional-

differential rheological models a priori should coincide 

with the structural parameters of the classical rheological 

models, we will identify  these parameters using the creep 

law for a specific model in its classical interpretation. 

Tus, let us present the law of creep for models: 

 

Voigt’s model:   

 

   0 1 ,
t

kl

F t e 





 


                       (36) 

 

Kelvin’s model  
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  1 2

1 2 1

1 t
kl

K t e 
  

  
   

.                (37) 

 

To express the creep equation for Maxwell’s model, as 

was done in the previous cases for Kelvin’s and Voigt’s 

models,  is not possible in the classical theory. This is 

explained by the fact that, putting const   in the 

Maxwell equation, we obtain   tD t








. It follows 

that the Maxwell body under the action of constant stress 

will flow as a Newtonian fluid with a constant rate of 

deformation [31]. 

Taking into account the above written, in order to find 

the structural parameters of Maxwell’s model, we use the 

deformation equation that describes Maxwell’s fractional-

differential model while assuming that the fractional 

parameters  ,  are equal to one. 

 

        0
1 14 2 .kl

M t t t t h t t





     
        (38) 

 

Having a sample of experimental values [36] 

 , ,

kl

F K M i it   using the method of minimum squares, 

we minimize the deformation functions of the models: 

 

          
2

, , 0

1

, , , min.
n

kl

i F K M i

i

t   


        (39) 

 

Assuming that the structural parameters in the relations 

(33)-(35) were found, the values of fractional-differential 

parameters are identified by minimizing the deformation 

functions. To do this, using the method of minimum 

squares and having a set of experimental data [36], we 

can write : 

 

            
2

, ,

1

, , min.
n

i F K M i

i

t   


           (40) 

 

In order to clarify the identification parameters, the 

method of coordinate descent [26] was used. 

For the quantitative estimation of the difference 

between the results obtained for the fractional-differential 

creep equations (33)-(35), a statistical criterion based on 

the correlation coefficient was used. 

The criterion looks like: 

 

2
2,

1
n








  



                   (41) 

 

where n  is the number of points for which the 

comparison of values is made,   is the correlation 

coefficient, which is determined by the ratio: 
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            (42) 

 

where ,i i   are deformation values for each model 

according to the obtained expressions and experimental 

data , 
0

1
,

1

n

avg i

in
 





  

0

1

1

n

avg i

in
 





 . 

Here are the results of the identification of structural 

 0 ,  and fractal  ,   parameters for Maxwell’s 

model (Fig. 4) and Voigt’s one (Fig. 5) at ambient 

temperature 23T C  .Using the experimental data 

[36],  Maxwell’s model was investigated for specimen No. 

6, and  Voigt’s model – for No. 57 (Table 1). 

Table 1.Values for identification parameters, criterion and correlation 

coefficients. 

 

Identification 

parameters, 

 

criterion 

value 

 

Specimen No. 6,  
315.3(10 )pа  

 

W= 30 % 

Specimen No. 57, 
317.3(10 )pа    

W= 7.5 % 

0

3(10 )pa





 
3.1424 4.2859 

3(10 )h


 

0.1804 6.8769 

  0.0024 0.1858 

  0.1922 0.1867 

  0.9921 0.6891 

  26.15 3.153 
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Fig.4. Identification of fractional-differential parameters of Maxwell's 

model
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Fig.5. Identification of fractional-differential parameters of Voigt’s 

model 

A numerical experiment to determine the dependence 

of deformation  t  (Fig. 6) and stress  t  (Fig. 7) 

for fractal models was carried out as follows. For the 

following species of wood such as oak and pine, the 

moduli of elasticity of which are respectively 

( 14300 , 12100oak pinepа pа      ) ,it is determined 

how the deformation and stress at different and fixed 

fractional differential parameters of the models will 

change. For example, for Voigt’s model, the fractal 

parameter   is fixed closer to 0 ( 0.1  ), with  being 

variable, and vice versa  is fixed closer to 1 ( 0.9  ), 

with  being variable. On analyzing the results obtained, 

it can be noted that at the fixed parameter 0.1   with an 

increase in the fractional-differential parameter  , the 

value for the deformation decreases, however, at the fixed 

fractal parameter 0.9  , the value for the deformation 

increases as the parameter increases. 

Fig. 7 shows stress curves for Maxwell-Kelvin-type 

fractional-differential models for a fixed 

parameter 0.9   and a variable parameter   

where 0.2   , 0.3  . It is obvious from 

graphic dependences that for both models the smallest 

value for stress is reached at 0.8  , and the largest - at 

0.2  .  

Since the Maxwell model can be obtained from the 

Kelvin model, as shown above, and vice versa, the Kelvin 

model, by modifying and adding another elastic element,  

can be  obtained from the Maxwell model, from the 

graphic dependences it can be concluded that the curves 

are quite close to each other. Thus, at some point in time, 

the stress values for the Kelvin and Maxwell fractal 

models coincide. 
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Fig.6. Dependence of Voigt’s  model on fractal parameters 
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The Maxwell model (alpha=0.2)
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The Maxwell model (alpha=0.8)

 The Kelvin model (alpha=0.2)

The Kelvin model (alpha=0.5)
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Fig.7. Dependence of Maxwell’s and Kelvin’s models on fractal 

parameters 

 

V.  CONCLUSIONS 

Taking into account the fractional-differential 

apparatus, two-dimensional mathematical models of 

deformation-relaxation processes in fractal environments 

have been constructed. For the fractional-differential 

models of Maxwell, Kelvin, and Voigt, expressions 

describing the stresses in the integral form are found. The 

identification of fractal parameters and the criterion of 

error estimation are given. Investigated and analyzed is 

the influence of fractal parameters on the rheological 

properties of viscoelastic environments. 
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