
I.J. Modern Education and Computer Science, 2018, 4, 51-62
Published Online April 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2018.04.07

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Application of Hybrid Search Based Algorithms

for Software Defect Prediction

Wasiur Rhmann

Department of Computer Science and Information Technology, Babasaheb Bhimrao Ambedkar University, (A Central

University), Satellite Campus, Amethi, U.P., India

Email:wasiurrhmann786@gmail.com

Received: 20 November 2017; Accepted: 15 January 2018; Published: 08 April 2018

Abstract—In software engineering software defect class

prediction can help to take decision for proper allocation

of resources in software testing phase. Identification of

highly defect prone classes will get more attention from

tester as well as security experts. In recent years various

artificial techniques are used by researchers in different

phases of SDLC. Main objective of the study is to

compare the performances of Hybrid Search Based

Algorithms in prediction of defect proneness of a class in

software. Statistical test are used to compare the

performances of developed prediction models, Validation

of the models is performed with the different releases of

datasets.

Index Terms—Defect, Static metrics, Cyclomatic

complexity, Halstead metrics

I. INTRODUCTION

With the increase in size and complexity of the

software, software engineering community is moving on

the use of artificial intelligence techniques in the software

development. Software engineers are shifting their

intention to early detection of the defects in the software

during software development. Earlier identification of

defects in the software can help in proper allocation of

resources for testing and maintenance. As late detection

of defects can cause more rework to take remedial actions.

Fixing a bug after it comes in operation is more costly in

comparison to fixing it during development [1]. Due to

pressure of difficult deadlines to deliver the software,

software testing is usually performed in hasty. Detection

of higher defect prone classes may prove effective to

allocate proper resources. Due to limited manpower and

financial constraints there is need of cost effective

approaches in detection and repairing of defective

software components.

There are different types of defect detection techniques

used by researchers namely manual inspection, machine

learning [2]. Various machine learning techniques are

used for defect prediction namely: classification, artificial

neural network, regression tree etc. Although good

performances are reported by these techniques but setting

of various parameters is essential to obtain better results.

Static code measures are used to identify software

components that may contain defects. Researches on

various software attributes perdition like effort estimation

[3], maintainability [4], defect and quality prediction [5]

have gained attention of both academia and software

industry with the tremendous impact of software

applications on human’s life. Malhotra [2] presented a

framework based on Machine Learning techniques to

detect defects in the software. They applied different

techniques on the open source software android and

compared the performances using statistical techniques,

and they find out that support vector machine and voted

perceptron method don’t have ability to predict defect

correctly. Panichella et al. [11] used genetic algorithm for

training the prediction model. They trained two models

namely: Regression tree, generalized linear model and

defects were predicted on the multiple release of six open

source projects. Models trained with the genetic

algorithm outperformed the model with GA in terms of

detection of defect and cost of defect detection. Aljohani

and Qureshi[12] proposed a method to detect defect

earlier in the development with cheaper method. They

used code scanner and code review to detect defects and

to improve the quality of software.

Gyimothy et al.[13] used open source software for

empirical validation of fault proneness based on the OO

metrics. They used linear and logistic regression and

machine learning techniques namely: Neural network and

decision tree for creation of fault prediction model. NOC

was not found efficient for prediction of fault. Olague et

al. [14] used open source agile software for validation of

OO metrics. Software metrics named as WMC, CBO,

RFC and LCOM were found to be effective while NOC

metric was insignificant and less significant for two

versions. Yuming and Hareton et al. [15] used fault

prediction dataset for prediction of faults in two

categories: high and low. Pai[16] use Bayesian model to

predict the fault proneness models. Different researchers

explored the impact of object oriented metrics on the fault

prediction using various statistical techniques. In this

study we have performed empirical study to assess the

performances of various hybrid SBAs. Empirical

software engineering deals with the analysis of data

obtained from software repositories using statistical and

machine learning techniques. In our work [17] we have

used UML models to demonstrate the research process in

52 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

empirical software engineering. Different software

quality attributes may be predicted with the help of

software metrics. Maggo and Gupta[18]used machine

learning techniques for creation of software reusability

prediction model for object oriented software systems.

Severity of faults is based on its impact. Defect proneness

is dependent variable in our study and it is defined as the

probability of occurrence of defect in a class [19].

In this study, following research questions are

addressed:

RQ1Are hybrid search based algorithms are feasible to

use for defect the prediction of defects in open source

software?

RQ3 Which hybrid SBA is best and which is worst in

the prediction of defects in the open source software?

RQ4 Are the performances of 10-cross validation are

consistent for different data sets?

RQ5 Are the performances of SBAs are statistically

different?

Although different techniques are used by researchers

to predict defects in software yet up to author’s

knowledge no work has been reported on the application

of hybrid search based algorithms in defect prediction

and statistically compare the performance of different

hybrid SBAs. The main contributions of our work are as

follows:

(1) Comparison of various hybrid SBAs in the defect

prediction

(2) Comparison of hybrid SBAs in defect prediction

using Statistical techniques

(3) To obtain generalized and unbiased results

validation of model is performed

(4) Performance evaluation of the models with the 10

cross validation of the model

In the study we have done the following tasks to

complete our study.

 Genetic based feature selection technique is used

to select a subset from the set of independent

variables

 Application of appropriate data analysis technique

 Selection of suitable performance prediction

metric to properly represent the imbalanced data

 Evaluation of true capability of prediction model

using efficient validation technique

 Selection of Best hybrid SBA in the prediction of

defect using statistical technique

This paper is organized in six sections. Section 2

describes the dataset used in the study and gives the

statistical description of the dataset. Section 3 describes

the independent and dependent variables used in the

study and the software metrics which are used as

independent and dependent variables and the correlations

among different variables used in the study and different

hybrid search based algorithms used in the study. Section

4 describes the performance evaluation metrics used in

the defect prediction and Section 5 presents the statistical

test to compare the performances of the hybrid SBAs.

Section 6 and section 7 describe the applications of

presented work and validation of the presented study.

Finally, brief conclusion is given in section 8.

II. DESCRIPTION OF DATASETS USED IN THE STUDY

In this study, we have used the dataset obtained from

promise data repository [20]. KC1, KC2 and CM1

datasets are used for defect prediction.

Table 1. Description of dataset

Dataset No. Of instances

KC1 2109

KC2 522

CM1 498

A. Descriptive Statistics about datasets

To better understand the datasets, different data sets are

analyzed with various statistical measurements. Various

statistical measures are calculated for independent

variables of the datasets. Descriptive statistics of datasets

are calculated for various metrics of independent

variables helps to analyze and understand common

features of the different datasets. Different statistical

measures namely mean, median, mode, standard

deviation, skewness, kurtosis, Minimum, maximum.

Table 2 to Table 7 shows the descriptive statistics about

datasets kc1, kc2 and cm1.

III. MODEL DEVELOPMENT AND INTERPRETATION

This section describes different software metrics used

in the study for the development of software defect

prediction models, correlation between different software

metrics used in the study, feature selection algorithm

which selects subset of the useful metrics for the

development of the software defect prediction models and

different hybrid techniques, which are used for the

development of prediction models are described in this

section

A. Variables used in the study

In this study we have used 21 static code metrics as

independent variables named as: McCabe’s lines of

code(loc), McCabe’s cyclomatic complexity(v(g)),

McCabe’s essential complexity(ev(g)), McCabe’s design

complexity(iv(g)), Halstead’s total operators and

operands(n), Halstead’s volume(v), Halstead’s program

length(l), Halstead’s program’s difficulty(d), Halstead’s

intelligence(i), Halstead’s efforts(e), Halstead(b),

Halstead’ s time estimator(t), Halstead’s line

count(IOcode), Halstead’ s count of comments

 Application of Hybrid Search Based Algorithms for Software Defect Prediction 53

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

lines(IOComment), Halstead’ s count of blank(IOBlank),

IOCodeandComment, Unique_operaotors(Uniq_Op),

Unique_Operand(Uniq_Opnd), total operators(total_Op),

total_operand(total_Opnd), Flow of graph(branch count).

These metrics and their definition are given in table 8.

MacCabe found the relation between complex program

paths and fault proneness [21] while Halstead explained

that code which is difficult to read is more fault prone

[22]. There are four MacCabe’s metrics namely: loc,

cyclomatic complexity, essential complexity and design

complexity.

1. Loc It is lines of codes

2. Cyclomatic complexity

It measures the numbers of linearly independent paths

in the program. Each independent path contains at least

one new node or edge which is not included in any other

independent path of the program.

3. Essential complexity

It is defined as the cyclomatic complexity of reduced

flow graph and reduced flow graph of program’s control

flow graph is design by replacing all control structural of

program like (if else while etc) which have single entry

and exit point.

4. Design complexity

It is defined as cyclomatic complexity of reduced flow

graph of a control flow graph where reduced flow graph

is obtained by eliminating nodes that does not influence

the interrelationship of those design modules.

Halstead measures have three categories namely: base

measure, derived measure and line of code

5. Unique_operators It is defined as number of unique

operators in the code.

6. Unique_operands It is defined as number of unique

operands in the code.

7. Length (l) It is sum of total operators and total

operands in the program

8. Vocabulary It is sum of unique operators and unique

operands in the program code

9. Volume V=N*log2(mu) (the number of mental

comparisons needed to write a program of length N)

V*=Volume on minimal implementation=(2+

mu2')*log2(2 + mu2')

where mu=vocabulary, mu2' = the number of arguments

to the module

10. Difficulty D = difficulty = 1/L

11. Intelligence I = intelligence = L'*V'

12. Efforts E = effort to write program = V/L

13. Time to write program T = time to write program =

E/18 seconds

Dependent variable in our study is binary which is

defect prone or not.

Table 8. Software metrics with definitions

S.N. Metrics Definition

1 loc McCabe's line count of code

2 v(g) McCabe "cyclomatic complexity

3 ev(g) McCabe "essential complexity

4 iv(g) McCabe "design complexity

5 n Halstead total operators + operands

6 v Halstead "volume

7 l Halstead "program length

8 d Halstead "difficulty

9 i Halstead "intelligence

10 e Halstead "effort

11 b Halstead

12 t Halstead's time estimator

13 lOCode Halstead's line count

14 lOComent Halstead's count of lines of comments

15 lOBlank Halstead's count of blank lines

16 lOCodeAndCo

mment

numeric

17 uniq_Op unique operators

18 uniq_Opnd unique operands

19 total_Op total operators

20 total_Opnd total operands

21 branchCount % of the flow graph

22 defects {no, yes}

B. Correlations among metrics

Performance of a classification technique depends on

the set of dependent and independent variables. It is good

to select independent variables which are highly

correlated with dependent variables while correlation

between independent variables is not good for a good

classification technique. Correlated independent variables

represent redundant information. In this section

correlation analysis of the independent variables used in

the study is done. The value of correlation lies between -1

to 1. Positive value of correlation value implies that if one

variable increases then other variable will also be

increased. While negative value implies increase in one

variable implies decrease in other variable. Spearman’s

correlation test used for calculation of correlation

between variables. Correlation value above 0.8 is larger,

and values between 0.8 to 0.5 is moderate while below .5

is considered as low [23-24]. If a variable is correlated

with itself then correlation coefficient will be 1.

Correlation among independent variables of the dataset

kc1, kc2 and cm1 are given in the table 9, 10 and table 11.

C. GGA-FS (Generalized Genetic Algorithm based

Features Selection)

A feature selection method selects subset of features

which are used as independent variables in the prediction

model. It was found [25] that Features selection methods

produce the subset of features which can be used for

creation of model without affecting the classification

quality. GGA-FS is a feature selection algorithm based on

Genetic algorithm [26]. Application of genetic algorithm

54 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

helps to effectively optimize multi criteria optimization.

Every candidate solution is a subset of features and

represents the individual of population. If there are total

m features then there will be possible subsets of features

will be 2𝑚 . A feature subset is represented by binary

vector of length m where 1 will represent the selection of

that feature and 0 will represent rejection of that feature.

Fitness function of genetic algorithm is constructed on

the basis of accuracy of classification and cost of

classifying. This data pre-processing technique is

implemented in open source tool Keel

(http://www.keel.es.

Next, we discuss various hybridized SBAs used in this

study. In hybridized algorithms, the advantages of SBAs

as well as non-SBAs are combined into one algorithm.

Following are the hybridized algorithms used in this

study:

1. Fuzzy Adaboost (GFS-AB)

2. Fuzzy Logitboost (GFS-LB)

3. Logitboost with Single Winner Inference (GFS-MaxLB)

4. Hierarchical decision rules (HIDER)

5. Particle Swarm Optimization - Linear Discriminant

Analysis (PSOLDA)

GFS-AB, GFS-LB, GFS-MaxLB

Boosting algorithms combine multiple weak classifiers

to form a strong classifier and give higher performance

than individual classifiers. With the addition of new

classifier training dataset is reweighted and a voting

strength is assigned to the classifier. By combining weak

classifiers a compound classifier is generated on the basis

of weak classifiers. Both AB and LB come under the

category of boosting algorithms, and they learn fuzzy

rules where fuzzy rule base are weighted combination of

weak classifiers. GFS-AB and GFS-LB build the fuzzy

rules base in incremental manner. Boosting fuzzy rules

imply fitting a single rule to a set of weighted training

example. This process continues as many times as there

are rules in the base [27]. Thus, GFS-AB and GFSLB

help to build the rule base in an incremental manner by

down-weighting the training instances which are

correctly classified by a rule instead of removing them

which avoids conflicting rules in the rule base [28, 29].

The authors Sanchez and Otero [30] have analyzed the

disadvantages of using boosting algorithms to learn fuzzy

classifiers. The high interaction between the rules leading

to poor quality rule base is the main drawback. The

underlying reason of this drawback is the use of 'sum of

votes' scheme to generate the output. Thus, the authors

propose an interface scheme known as "single winner"

which does not combine the rules with the arithmetic sum

[30]. Using this interface scheme, the authors showed that

the resultant fuzzy rule base is of high quality as well as

good quality.

HIDER

It is a supervised learning algorithm. In this algorithm

hierarchical set of rules are produced which can be

applied for continuous as well as discrete domains [31].

When a training example is classified correctly by a rule

then all other previous rules will not match the condition.

PSOLDA

It is used for classification of the data. As Linear

Discriminant Analysis (LDA) does not use feature

selection technique so its performance degrades [32] so it

uses particle swarm optimization (PSO) technique for

feature selection technique and improve LDA in terms of

the classification accuracy.

In our experiments the parameters set for Genetic

algorithm based features selection are given in the table

12.

Table 12. Control parameters setting for Evolutionary feature selection

algorithm

S.N. Technique Parameters

1 GGA Cross Probability 0.7

Mutation Probability 0.01

Population Size 50

Number of Evaluations 500

Beta Equilibrate Factor 0.99

Number of Neighbors 1

Use Elitism Yes

Table 13 presents the parameters set for hybrid search

based algorithms.

Table 13. Control parameters setting for hybrid search based algorithms

S.N. Technique Parameters

1 GFS-adaboost-c Numlabels 3

Numrules 8

2 GFS-logitboost numlabels 3

numrules 25

3 GFS-MaxlogitBoost Numlabels 3

Numrules 8

4 HIDER-C populationSize 100

nGenerations 100

mutationProbability 0.5

crossPercent 80

extremeMutationProbability 0.05

pruneExamplesFactor 0.05

penaltyFactor 1

errorCoeficient 0

5 PSOLDA-C

Results of 10 cross validation of different models for

the dataset kc1, kc2 and cm1 are presented in the table 14,

15 and table 16.

http://www.keel.es/

 Application of Hybrid Search Based Algorithms for Software Defect Prediction 55

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Table 14. Performance of the hybridized SBAs models for given kc1

dataset

S. N. Technique Accuracy g-mean

1 GFS-adaboost-c 0.979

0.893

2 GFS-logitboost 0.949 0.929

3 GFS-MaxlogitBoost 0.922

0.891

4 PSOLDA-C

0.8909 0.791

5 HIDER-C

0.881 0.537

Table 15. Performance of the hybridized SBAs models for given kc2

dataset

S. N. Technique Accuracy g-mean

1 GFS-adaboost-c 0.969 0.9691

2 GFS-logitboost 0.9789

0.98302

3 GFS-MaxlogitBoost 0.9731 0.975

4 PSOLDA-C

0.929 0.8797

5 HIDER-C

0.9693

0.961

Table 16. Performance of the hybridized SBAs models for given cm1

dataset

S. N. Technique Accuracy g-mean

1 GFS-adaboost-c 0.979 0.967

2 GFS-logitboost 0.989 0.9754

3 GFS-MaxlogitBoost 0.9678 0.9132

4 PSOLDA-C

0.9738

0.962

5 HIDER-C

0.9738 0.962

Performances of different techniques are presented

graphically in fig. 1 and fig. 2. Fig. 1 compares the

performances of different techniques which are used in

the study for the creation of the software defect prediction

models on the basis of accuracy. Fig. 2 presents the

performances of different techniques used for the creation

of software defect prediction models on the basis of g-

mean of the techniques.

Fig.1. Performance comparison of different techniques with accuracy

Fig.2. Performance comparison of different techniques with g-mean

IV. PERFORMANCE EVALUATION METRICS

To evaluate the performances of the hybrid search

based algorithms two metrics namely g-mean and

accuracy are used [33].

A. g-mean

g-mean calculation is based on two accuracies:

accuracy of positives (a+) and accuracy of negatives (a_).

It is usually used in case of imbalanced data set. The

formulae for a+ and a- is given as:

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

kc1

kc 2

cm1

0

0.2

0.4

0.6

0.8

1

1.2

kc1

kc2

cm1

56 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

a+= TP

TP+FP

a-=
TN

TN+FN

g=√(𝑎 +) × (𝑎−)

B. Accuracy

Accuracy or correctness is defined as the ratio of the

number of classes correctly predicted to the total number

of classes.

Accuracy is calculated using the formula given below,

Accuracy= TP+TN

TP+FP+FN+TN
x100

C. Confusion matrix

Confusion matrix is used to predict the performance of

the prediction models. In confusion matrix rows refers to

actual outputs and column refers to predicted outputs.

Confusion matrix used for vulnerability prediction is

given in the table 17:

The meaning of different terms used in the confusion

matrix is given below:

Table 17. Confusion matrix of two class outcome variables

Predicted

 0(Not

defective)

1(Defective)

Actual 0(Not

defective)

TND FD

1(Defective) FND TD

TND (True Not Vulnerable): Denotes the number of

correctly predicted non defective classes;

False Not Defective (FND): It means the number of

incorrectly predicted non-defective classes.

False Defective (FD): It means the number of

incorrectly predicted defective classes.

True Defective (TD): It means the number of correctly

predicted defective classes.

Table 18. Validation results of different datasets with accuracy measure

Technique Kc1 Kc2 Cm1

GFS-adaboost-c 0.979

0.969 0.979

GFS-logitboost 0.949 0.9789

0.989

GFS-MaxlogitBoost 0.922

0.9731 0.9678

PSOLDA-C

0.8909 0.929 0.9738

HIDER-C

0.881 0.9693

0.9738

Validation method

In order to evaluate the performance of presented

model unseen data is used for testing the model. Testing

and training datasets are different as using same dataset

for testing and training the model may cause over fitting

of the model. In our study we have used 10 cross

validation in which dataset is divided in 10 equal parts

and one part is used as testing data while other 9 are used

as training the models. This process is repeated for 10

times each time with different part as test data from data

partitions and average is taken from results of 10 times

repetition.

Table 19. Validation results of different datasets with performance

measure g-mean

Technique Kc1 Kc2 Cm1

GFS-adaboost-c 0.893

0.9691 0.967

GFS-logitboost 0.929 0.98302 0.9754

GFS-MaxlogitBoost 0.891

0.975 0.9132

PSOLDA-C

0.791 0.8797 0.962

HIDER-C

0.537 0.961 0.962

V. STATISTICAL COMPARISON

In this section performances of the different techniques

are statistically evaluated and for the evaluation of the

performances of different techniques Friedman test is

used. Friedman test is a non-parametric test and described

below:

A. Friedman test

Friedman test is a non-parametric test that works on

multiple dataset. It is based on chi square distribution

with N-1 degrees of freedom. Here N is the number of

techniques used in the study. This study has 4 degree of

freedom as there are 5 techniques used to create

prediction models. Hypothesis is checked at α = 0.05.

Performances of the presented techniques on 3 data sets

are evaluated with Friedman test.

Testing hypothesis for accuracy

Null Hypothesis: There is no statistical difference

between the performances of various defect prediction

techniques

Alternate Hypothesis: There is statistical difference

between the performances of prediction techniques

Testing hypothesis for g-mean

Null Hypothesis: There is no statistical difference

between the performances of various defect prediction

techniques

Alternate Hypothesis: There is statistical difference

between the performances of prediction techniques

 Application of Hybrid Search Based Algorithms for Software Defect Prediction 57

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Table 20. Test Statistics Friedman Test

N 3

Chi-Square 7.379

df 4

Asymp. Sig. .117

Exact Sig. .102

Point Probability .008

Table.21. Mean ranks in Friedman test using accuracy measure

S. N. Technique Mean rank

1 GFS-adaboost-c 3.83

2 GFS-logitboost 4.67

3 GFS-MaxlogitBoost 2.67

4 PSOLDA-C

1.83

5 HIDER-C

2.50

Since p-value>0.05, so Null hypothesis is accepted.

Hence, there is no statistical difference between the

performances of different hybrid SBAs on the basis of

accuracy.

Table 22. Test Statistics Friedman Test

N 3

Chi-Square 8.881

df 4

Asymp. Sig. .064

Exact Sig. .032

Point Probability .002

Table.23. Mean ranks in Friedman test using g-mean

S. N. Technique Mean rank

1 GFS-adaboost-c 3.67

2 GFS-logitboost 5.00

3 GFS-MaxlogitBoost 2.67

4 PSOLDA-C

1.83

5 HIDER-C

1.83

Since p-value>0.05, so Null hypothesis is accepted.

Hence, there is no statistical difference between the

performances of different hybrid SBAs on the basis of g-

mean for the prediction of vulnerability.

VI. APPLICATIONS OF WORK

This section describes the applications of the study.

Once the defect prone classes of the software which is

being developed are identified, it will help the

organization in the following ways:

1. The designers can redesign such classes so that less

number of classes suffers from defects during the later

phases of software development as well as less number of

defects detected during software testing phase. Software

tester can effectively use resources to test the software by

performing rigorous testing of highly defect prone classes.

Tester can assign higher priority to higher defect prone

classes. Software developer can focus on critical classes

with more attention.

2. Static code metrics which are more related with the

defect proneness of class can be used by software

practitioners to set a quality benchmark for secure

software and this permissible range for secure software

should be used across different organizations to develop

secure software. Any deviation from secure range should

force software organization to take preventive measures.

3. This study explores the possibility of the use of

hybrid search based algorithms to predict the defect prone

classes and helps the security experts to take decision

regarding which technique is best among hybrid search

based algorithms to defect prediction.

VII. THREATS TO THE VALIDITY

A. Internal validity

Any threat which may be introduced in the research

design and can alter the conclusion is called internal

threat. Internal threat is possible if besides independent

variables there is some other factor which may influence

the both independent and dependent variable. In our case

there may be size of software which may affect the

metrics used in the study and the defect proneness of the

software. So this threat of confounding variable lies in

our study.

B. External validity

External validity of the study deals with whether

results of the study can be generalized. In our study we

have considered three data sets for experimentation

purpose. Data sets of the metrics are calculated on the C,

C++ software. So there is a threat of applicability of

proposed approach for other language like java etc.

However, we have described the setting of experiments

the results can be repeated and replicated.

C. Construct validity

Construct validity threats refer if the variables used in

the study are correctly referred to the same thing as that is

supposed to measure by them. Static metrics used in the

study are well-established and are effectively represents

the concepts they are supposed to refer. Selected metrics

accurately and properly refers the concept of static

variables thus they effectively reduce the threats of

construct validity. Since metrics and faults data are

collected from publicly available NASA datasets KC1,

KC2 and CM1, we have no information how they are

calculated and their accuracy cannot be assured. This is

possible threat of construct validity.

58 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

VIII. CONCLUSIONS

It is common practice in software engineering to

predict defective software classes for next release of the

software to effectively allocate the software testing

resources. Identification of defect prone classes may help

to prioritize the software classes for testing. This may

lead to saving of resources and cost of the system. In this

study we investigated the performances of various hybrid

search based algorithms for defective software classes’

prediction in the early phases of the software

development. We have used various static software

metrics for prediction of defective software classes and

applied it on different data sets kc1, kc2 and cm1. The

performance of difference model is evaluated using g-

mean and accuracy. The major findings of the work are:

GFS-logitboost hybrid SBA is better in terms of g-mean

and accuracy while PSOLDA-C hybrid search algorithm

is found to be least effective in terms of g-mean and

accuracy. To generalize our results we plan to perform it

on various large dataset. There is a need to investigate the

confounding effect of relationship between defect

proneness and static software metrics.

REFERENCES

[1] H. Lim, A. L. Goel, Software Effort Prediction, Wiley

Encyclopedia of Computer Science and Engineering, 2008.

[2] Ruchika Malhotra, “An empirical framework for defect

prediction using machine learning techniques with

Android software”, Applied Soft Computing, 2016, pp.

1-17.

[3] M. Jorgensen, “Experience with the accuracy of software

maintenance task effort prediction models”, IEEE Trans.

Softw. Eng., vol. 21, pp. 674-681, 1995.

[4] M. Riaz, E. Mendes, E. Tempero, “A systematic review of

software maintainability prediction and metrics”, in:

Proceedings of the 2009 3rd International Symposium on

Empirical Software Engineering and Measurement, 2009,

pp. 367–377.

[5] Y. Zhou, H. Leung, “Predicting object-oriented software

maintainability using multivariate adaptive regression

splines”, J. Syst. Softw., vol. 80, pp. 1349–1361, 2007.

[6] Y. Ma, G. Luo, X. Zeng, A. Chen, “Transfer learning for

cross-company software defect prediction”, Inform. Softw.

Technol., vol. 54, pp. 248–256, 2012.

[7] A. Tosun, A. Bener, B. Turhan, T. Menzies, “Practical

considerations in deploying statistical methods for defect

prediction: a case study within the Turkish

telecommunications industry”, Inform. Softw. Technol.,

vol. 52, pp. 1242-1257, 2010.

[8] X. Yuan, T.M. Khoshgoftaar, E.B. Allen, K. Ganesan,

“An application of fuzzy clustering to software quality

prediction”, in: Proceedings, 3rd IEEE Symposium on

Application-Specific Systems and Software Engineering

Technology, 2000, pp. 85–90.

[9] N.E. Fenton, M. Neil, “A critique of software defect

prediction models”, IEEE Trans. Softw. Eng., vol. 25, pp.

675-689, 1999.

[10] Parag C. Pendharkar, “Exhaustive and heuristic search

approaches for learning a software defect prediction

model”, Engineering Applications of Artificial

Intelligence, vol. 23, pp. 34–40, 2010.

[11] Annibale Panichella, Carol V. Alexandru, Sebastiano

Panichella, Alberto Bacchelli, Harald C. Gall, “A Search

Based Training Algorithm for Cost-aware Defect

Prediction”, ACM, Colorado, USA, 2016, pp. 1077-1084.

[12] Ohood A. Aljohani, Rizwan J. Qureshi, “Proposal to

Decrease Code Defects to Improve Software Quality”, I. J.

Information Engineering and Electronic Business, vol. 5,

pp. 44-51, 2016.

[13] Gyimothy T, Ference R, Siket I, “Empirical validation of

object-oriented metrics on open source software for fault

prediction”, IEEE Transactions on Software Engineering,

vol. 31, no. 10, pp. 897-910, 2005.

[14] Olague H, Etzkorn L, Ghoston S, Quattlebaum S,

“Empirical validation of three software metrics suites to

predict fault proneness of object-oriented classes

developed using highly iterative or agile software

development process”, IEEE Trans. Software. Eng., vol.

33, no. 8, pp. 402-419, 2007.

[15] Yuming Z, Hareton L, “Empirical analysis of object

oriented design metrics for predicting high severity faults”,

IEEE Transaction Softw. Engineering, vol. 32, no. 10, pp.

771-784, 2006.

[16] Pai G., “Empirical analysis of software fault content and

fault proneness using Bayesian methods”, IEEE

Transaction Software Engineering, vol. 33, no. 10, pp.

675-686, 2007.

[17] Wasiur Rhmann, “UML Models of Research Process in

Empirical Software Engineering”, International Journal

of Computer Sciences and Engineering, vol. 5, no. 10, pp.

176-180, 2017.
[18] Surbhi Maggo, Chetna Gupta, “A Machine Learning

based Efficient Software Reusability Prediction Model for

Java Based Object Oriented Software”, I. J. Information

Technology and Computer Science, vol. 2, pp. 1-13, 2014.

[19] Ruchika Malhotra, ArviderKaur, |Yogesh Sigh,

“Empirical validation of object-oriented metrics for

predicting fault proneness at different severity levels using

support vector machines”, Int J. Syst. Assur. Eng. Manag.,

vol. 1, no. 3, pp. 269-281, 2010.

[20] Sayyad Shirabad, J. and Menzies T. J., The PROMISE

Repository of Software Engineering Databases, School of

Information Technology and Engineering, University of

Ottawa,Canada,http://promise.site.uottoawa.ca/SEReposit

ory

[21] T.J. McCabe, “A Complexity Measure”, IEEE

Transaction on Software Engineering, vol. 2, no. 4, pp.

308-320, 1976.

[22] M.H. Halstead, Elements of Software Science, Elsevier,

1977.

[23] Shatnawi R, Li W., “The effectiveness of software metrics

in identifying error-prone classes in post-release software

evolution process”, J. Syst. Softw., vol. 81, no. 11, pp.

1868–1882, 2008.

[24] Succi G, Pedrycz W, Djokic S, Zuliani P, Russo B. “An

empirical exploration of the distributions of the

Chidamber and Kemerer object-oriented metrics suite”.

Empir. Softw. Eng ., vol. 10, pp. 81–103, 2005.

[25] Maysam Toghraee, Hamid Parvin and Farhad Rad, “The

Impact of Feature Selection on Meta-Heuristic Algorithms

to Data Mining Methods”, I. J. Modern Education and

Computer Science, vol. 10, pp. 33-39, 2016.

[26] Jihoon Yang, Vasant Honavar, “Feature Subset Selection

Using a Genetic Algorithm”, IEEE Intelligent System,

Vol. , pp. 44-49, 1998.

[27] Freund Y, Schapire RE, Short A. “Introduction to

Boosting”. J. Jpn Soc. Artif. Intell, vol. 14, pp. 771–780,

1999.

 Application of Hybrid Search Based Algorithms for Software Defect Prediction 59

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

[28] Jesus MJ, Hoffmann F, Navascués LJ, Sánchez L.

“Induction of fuzzy-rule-based classifiers with

evolutionary boosting algorithms”. IEEE Trans Fuzzy

Syst., vol. 12, pp. 296–308, 2004.

[29] Otero J, Sanchez L. “Induction of descriptive fuzzy

classifiers with the Logitboost algorithm”. Soft. Comput.,

vol. 10, pp. 825–835, 2006.

[30] Sanchez L, Otero J. “Boosting fuzzy rules in classification

problems under single-winner inference”. Int. J. Intell.

Syst., vol. 22, pp. 1021–1034, 2007.

[31] Aguilar-Ruiz JS, Riquelme JC, Toro M. “Evolutionary

learning of hierarchical decision rules”. IEEE Trans. Syst.,

vol. 33, pp. 324–331, 2003.

[32] Lin SW, Chen SC., “PSOLDA: a particle swarm

optimization approach for enhancing classification

accuracy rate of linear discriminant analysis”. Appl. Soft.

Comput., vol. 9, pp. 1008–1015, 2009.

[33] Ruchika Malhotra, Empirical Research in Software

Engineering, CRC Press, Taylor and Francis group, 2016.

Authors’ Profiles

Wasiur Rhmann received the B.Sc.(Hons.)

in Physics and M.C.A. from Aligarh Muslim

University Aligarh India in 2010 and 2013

respectively. He has submitted his Ph.D.

thesis in Babasaheb Bhimrao Ambedkar

University (A Central University) Lucknow,

India. His research interest is Software

engineering, Software testing and UML modeling. He has

published papers in several Internationals and National journals

of repute. Presently he is working as Assistant Professor in

Babasaheb Bhimrao Ambedkar University (A Central

University) Satellite campus Amethi, India.

Table 2. Descriptive statistics about kc1

 Loc v(g) ev(g) iv(g) n v l d i e b

Mean 20.37226 2.838028 1.674443 2.54642 49.82945 258.6967 0.319583 6.771242 21.24007 5242.386 0.086738

Median 9 1 1 1 16 57.06 0.2 3.5 14.4 213.97 0.02

Mode 2 1 1 1 4 8 0.67 1.5 5.33 12 0

Standard

Deviatio

n 29.75444 3.900763 2.200659 3.375859 83.59987 516.3176 0.317029 7.863646 21.50037 17444.98 0.175507

Sample

Variance 885.3268 15.21595 4.8429 11.39643 6988.939 266583.9 0.100507 61.83692 462.2658 3.04E+08 0.030803

Kurtosis 16.38214 19.05927 27.35304 24.35597 22.40961 36.03354 5.613137 5.597749 7.322908 89.19928 34.44

Skewnes

s 3.352322 3.737101 4.632832 4.018701 3.697793 4.581499 1.793769 2.139364 2.131496 7.699113 4.529341

Range 287 44 25 44 1106 7918.82 2 53.75 193.06 324803.5 2.64

Minimu

m 1 1 1 1 0 0 0 0 0 0 0

Maximu

m 288 45 26 45 1106 7918.82 2 53.75 193.06 324803.5 2.64

Table 3. Descriptive statistics about kc1

 lOCode lOComment lOBlank

lOCodeAnd

Comment uniq_Op uniq_Opnd total_Op total_Opnd branchCount

Mean 291.245 14.52537 0.945946 1.759602 0.132764 7.631674 9.537316 31.04372 4.665908

Median 11.89 5 0 0 0 6 5 10 1

Mode 0.67 0 0 0 0 3 1 3 1

Standard

Deviation 969.1652 24.1883 3.085271 3.85685 0.704023 5.730347 12.19573 51.77606 7.792206

Sample

Variance 939281.1 585.074 9.518898 14.87529 0.495648 32.83687 148.7357 2680.76 60.71848

Kurtosis 89.19942 17.84364 60.51908 37.02712 103.079 1.241395 8.187673 22.42278 19.17806

Skewness 7.69912 3.416811 6.56998 4.780011 8.789034 1.140766 2.387301 3.698032 3.755887

Range 18044.64 262 44 58 12 37 120 678 88

Minimum 0 0 0 0 0 0 0 0 1

Maximum 18044.64 262 44 58 12 37 120 678 89

60 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Table 4. Descriptive statistics about kc2

Table 5. Descriptive statistics about kc2

Table 6. Descriptive statistics about cm1

 loc v(g) ev(g) iv(g) n v l d i e b t

Mean 36.89 4.89 2.44 3.65 94.63 555.47 0.27 9.73 28.32 18542.99 0.188 1094.81

Median 13 2 1 2 27 109.20 0.14 6 20.56 613.59 0.04 34.09

Mode 4 1 1 1 4 8 0.67 1.5 5.33 12 0 0.67

Standard

Deviation

77.94 10.97 6.66 8.05 233.23 1817.46 0.27 11.08 32.22 113271.2 0.608 7556.52

Sample

Variance

6075.27 120.48 44.42 64.88 54396.31 3303191 0.075 122.95 1038.48 1.28E+10 0.370 57101018

Kurtosis 130.26 136.64 226.42 180.33 156.65 222.89 2.570 14.43 42.88 253.4991 218.094 321.25

Skewness 9.42 9.97 13.30 11.59 10.54 13.15 1.30 2.80 4.60 14.74497 12.958 16.78

Range 1274 179 124 142 3981 33814.56 2 103.53 415.06 2147484 11.27 153047

Minimum 1 1 1 1 1 0 0 0 0 0 0 0

Maximum 1275 180 125 143 3982 33814.56 2 103.53 415.06 2147484 11.27 153047

 lOCode lOComment lOBlank lOCodeAndComment uniq_Op uniq_Opnd total_Op total_Opnd branchCount

Mean 27.77203 2 4.33908 0.281609 9.197701 14.4659 57.61149 37.02337 8.765134

Median 8 0 1 0 8 7 16.5 11 3

Mode 2 0 0 0 3 1 3 1 1

Standard

Deviation 64.43149 5.582052 9.214753 1.038236 6.36018 22.08666 142.9907 90.39862 21.94278

Sample

Variance 4151.416 31.15931 84.91168 1.077934 40.45189 487.8206 20446.35 8171.91 481.4855

Kurtosis 157.262 27.67945 67.17269 45.08061 1.991855 78.62646 163.3166 145.6426 139.5504

Skewness 10.4646 4.935493 6.684254 6.016919 1.04648 6.635769 10.79764 10.13254 10.0833

Range 1107 44 121 11 46 325 2468 1513 360

Minimum 0 0 0 0 1 0 1 0 1

Maximum 1107 44 121 11 47 325 2469 1513 361

 loc v(g) ev(g) iv(g) n V l d i e b

Mean 29.64478 5.382329 2.490763 3.528916 143.9564 900.1758 0.146325 15.82938 38.45536 34884.93 0.304699

Median 17 3 1 2 67.5 329.82 0.09 11.64 27.4 3677.62 0.11

Mode 6 1 1 1 25 11.61 0.04 2 7.74 17.41 0.01

Standard

Deviation 42.75357 8.347359 3.658847 5.464398 221.0499 1690.814 0.159337 15.33096 36.9963 134164.7 0.565998

Sample

Variance 1827.868 69.6784 13.38716 29.85965 48863.05 2858853 0.025388 235.0383 1368.726 1.8E+10 0.320354

Kurtosis 34.74216 44.04822 20.20538 41.60005 22.73178 33.85464 8.346532 9.430589 10.61536 154.4767 33.16868

Skewness 4.908239 5.463422 3.948111 5.368056 3.91489 4.867111 2.430377 2.476472 2.769378 11.13782 4.802044

Range 422 95 29 62 2074 17124.28 1.3 125.77 293.68 2153691 5.71

Minimum 1 1 1 1 1 0 0 0 0 0 0

Maximum 423 96 30 63 2075 17124.28 1.3 125.77 293.68 2153691 5.71

 Application of Hybrid Search Based Algorithms for Software Defect Prediction 61

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Table 7. Descriptive statistics about cm1

Table 9. Correlation table for Kc1

t lOCode lOComment lOBlank

lOCodeAnd

Comment uniq_Op uniq_Opnd total_Op total_Opnd branchCount

Mean 1938.056 3.787149 12.28313 11.53414 0.006024 15.1992 25.45221 88.38996 55.57068 9.348193

Median 204.31 1 4 5 0 14 15 42 26 5

Mode 0.97 0 0 0 0 9 8 14 2 1

Standard

Deviation 7453.592 8.508658 25.82861 19.98148 0.10012 9.617815 33.92582 134.9175 86.96953 15.07222

Sample

Variance 55556027 72.39726 667.1169 399.2594 0.010024 92.50237 1150.961 18202.74 7563.699 227.1718

Kurtosis 154.4768 27.25425 61.25413 22.31643 337.1594 4.799356 19.03281 22.80975 22.08943 37.16227

Skewness 11.13782 4.64599 6.342694 4.11859 17.93496 1.588675 3.612816 3.919459 3.885485 4.970882

Range 119649.5 80 339 164 2 71 314 1260 814 161

Minimum 0 0 0 0 0 1 0 1 0 1

Maximum 119649.5 80 339 164 2 72 314 1261 814 162

62 Application of Hybrid Search Based Algorithms for Software Defect Prediction

Copyright © 2018 MECS I.J. Modern Education and Computer Science, 2018, 4, 51-62

Table 10. Correlation table for Kc2

Table 11. Correlation table for Cm1

How to cite this paper: Wasiur Rhmann, " Application of Hybrid Search Based Algorithms for Software Defect

Prediction", International Journal of Modern Education and Computer Science(IJMECS), Vol.10, No.4, pp. 51-62,

2018.DOI: 10.5815/ijmecs.2018.04.07

