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Abstract—In general, the act of teaching in universities 

of the numerical methods of electromagnetic field 

simulation is a rather difficult action. In order to facilitate 

this act, it is necessary to use modern didactic means that 

complement the classical ones, so that the students 

understand in an interactive manner the method, the 

algorithm and its implementation into a programming 

language. This paper proposes a didactic method able to 

facilitate the understanding of numerical methods in 

electromagnetism. It's about of a didactic application with 

graphical interface, programmed using the Guide Matlab 

to simulate the electromagnetic waves propagation 

through various environments and applying the finite-

difference time-domain method (FDTD). 

 

Index Terms—Electromagnetic field, finite-difference 

time-domain method (FDTD), GUI Matlab application, 

didactic activity, Matlab programming environment. 
 

I.  INTRODUCTION 

The computer-assisted training is a modality of 

students’ individual education using computer software 

that guides step-by-step the student’s path to knowledge 

by his or her own effort and pace of understanding [1,2,3]. 

In the modern teaching, it is successfully used the 

illustration of various aspects using computer-aided 

applications with graphical interface that are instructional 

activation methods treated by the general didactics as 

distinct methods [4,5,6,7,8]. When teaching the numerical 

methods for the determination of the electromagnetic 

field, the computer-aided application with graphical 

interface enables the interactive access to the theory of 

the method, the design and implementation of the basic 

algorithm into a programming language accessible to the 

students, the design and implementation of certain 

material propagation environments, implementation of 

some source models and, last but not least, the visual 

simulation in time and space of the propagation 

phenomenon whose evolution is hardly accessible to 

direct observation. 

For example, as numerical method used for the 

electromagnetic field determination, we chose the finite-

difference time-domain method (FDTD) 

[9,10,11,12,13,14,15] used in the analysis of 

electromagnetic field interaction with the matter, and the 

implementation of the computer-aided application with 

graphical interface was made using the GUIDE Matlab 

tool [16,17,18,19,20,21]. The FDTD method is based on 

solving the Maxwell's equations in differential form. 

Basically, the method consists of replacing the 

differential equations with finite difference equations [9], 

[13,14]. The best known implementation of FDTD is the 

Yee algorithm [9], [13,14], in which the space is 

discretised into a cubic grid, in whose nodes the 

environmental properties and the value of the 

electric/magnetic field are memorised. The spatial and 

temporal derivatives are replaced by central differences. 

To update the electromagnetic field at each point in space, 

we use a leap-frog algorithm (interleaving in time of the 

E and H components). The excitation applied at the initial 

time is known, and the time evolution of the 

electromagnetic field is going to be calculated [9], 

[13,14]. 

In an FDTD analysis of the electromagnetic field, the 

following aspects should be considered in particular [9], 

[13,14]: accuracy of results, numerical dispersion and 

algorithm stability. A method is considered to be accurate 

if the numerical solution is very close to the exact 

solution. Generally, there are 3 types of errors that affect 

the accuracy of a result: modelling errors, discretisation 

errors, and rounding errors. The numerical dispersion is 

caused by space discretisation. The discretisation leads to 

the emergence of new spectral components that propagate 

at different speeds. A numerical solution is stable if it 

produces a bounded result for a limited input variance. 

The numerical accuracy, dispersion and stability are 

influenced by spatial and temporal sampling resolutions. 

The spatial resolution must be less than 
min0.1  (

min is 

the minimum wavelength propagating in the analysed 

field). The temporal resolution is selected later, ensuring 

the numerical stability of the algorithm. The memory 
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requirements for FDTD are proportional to the number of 

cells in the computing domain. 

In this article we present a didactic application with 

graphical interface, programmed using the Guide Matlab 

to simulate the electromagnetic waves propagation 

through various environments and applying the finite-

difference time-domain method (FDTD). The FDTD 

method is based on solving the Maxwell's equations in 

differential form.  

 

II.  SOLVING MAXWELL'S EQUATIONS USING THE FINITE-

DIFFERENCE TIME-DOMAIN METHOD (FDTD) 

A.  Maxwell's equations  

We consider a space region in which the material 

environment can absorb electrical or magnetic energy. 

The Maxwell's equations [9], [13,14] in differential form 

are: 
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(the law of magnetic circuit) 
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(the law of electric flow) 
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(the law of magnetic flow)  

In eqs. (1)-(4), E is the electric field intensity [V/m], H 

is the magnetic field intensity [A/m], D is the electric 

induction [C/m2], B is the magnetic induction [Wb/m2], J 

is the electric current density [A/m2] and v is the charge 

density [C/m3].  

Material laws [9], [13,14]:   
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where:  is the electrical conductivity of the environment 

[S/m], P


 is the electrical polarisation of the environment, 

M


is the magnetisation, 0 is the air permittivity (0 = 

8.8510-12 [F/m]) and 0 is the air permeability (0 = 

1.25610-6 [H/m]). 

For linear, isotropic and non-dispersive environments 

[9], [13,14]: 
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The term J


 may contain components that act as 

independent sources for the fields E


and H


 (hereinafter, 

they will be denoted by sourceJ ). Therefore:  
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By replacing (8), (9) and (10) in (1) and (2), we obtain: 
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The equations (11) and (12) are rewritten using the 

projections on the coordinate axes: 
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The equations (13) and (18) are the basis of FDTD 

numerical algorithm for describing the interactions 

between the electromagnetic waves and the environments 

in question. 
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B.  Maxwell's equations with finite differences 

Given a function of the form )t,x(uu  , dependent 

on time, t, and space, x, according to a certain law. In a 

numerical simulation, the solution of an equation can 

only be an approximation of the analytical solution 

because of the discretisation inherent to any calculation 

carried out with a numerical system. Therefore, if u(x,t) is 

the solution of an equation, this one can be determined 

only in discrete points having the form )nt,ix( , where i 

= spatial index, n = temporal index. In case of expansion 

in Taylor series of the function )t,x(u  around the point 

xi, for a given moment, nt , we obtain [9], [13,14]: 
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If the two relations are subtracted, an approximation is 

obtained for 
x

u




. 
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By summing the two equations and dividing by  2x , 

an approximation for 
2

2

x

u




 is obtained as follows:   
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where   2
xO   = 2nd order error, occurred because the 

terms of the Taylor series whose order is higher than 2 

have been neglected. 

The algorithm is not time-dissipative, meaning the 

numeric waves that propagate across the grid are not 

mitigated over time due to the applied numerical method. 

A point in the discretised space, whose coordinates are 

(i, j, k), will be associated with the 

quantity  zk,yj,xi  . A function dependent on time 

and space will be written as follows: 
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where: t  = temporal increment, assumed to be uniform 

within the observation interval; n = integer number; 

z,y,x   = space increments on the three directions of 

the coordinate system; i, j, k = integer numbers. 

Thus, if we consider the derivative of u with respect to 

x, evaluated at the moment tnnt  , it will be written 

as follows, using the equations with finite differences: 
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The increment of ± 1/2 at the index i (on the x-axis) 

denotes a spatial difference of ± ½  x . Yee chose this 

notation to insert the components E


 and H


 into the 

space at intervals of x /2. Similarly, we write the partial 

derivatives of u with respect to y and z. The derivative of 

u with respect to time, evaluated at a given point in space, 

(i, j, k), is: 
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Using the above notations, the Maxwell’s equations 

with finite differences are written as follows [9], [13,14]: 
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By the equation (26), we wanted to evaluate the Ex 

component of the electric field at time n, in the point 

whose coordinates are (i, j+1/2, k+1/2). It can be seen 

that all the values of the field components in the right side 

of the equation are evaluated at time n, including the 

value of the electric field Ex produced due to the 

conductivity  of the material. Since the values of Ex at 

time n are not stored in the memory, but only the values 

of Ex at time n-1/2, it is necessary to estimate these 

values. A method used to estimate Ex at time n is the so-

called semi-implicit approximation (arithmetic mean): 
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It is assumed that the values of xE  are stored in the 

memory at time n-1/2, but not at time n+1/2. After 

substituting (27) into (26) and rearranging the terms, it 

results: 
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Similarly, we can deduce the equations with finite 

differences to determine yE : 
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and zE : 
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Analogously, we can deduce the equations with finite 

differences for yH,xH  and zH . For example, for the 

component xH : 
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(31) 

 

For the component yH : 
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   (32) 

 

For the component zH : 
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   (33) 

 

In the equations (28) - (33), we can see that the value 

of the field at a point in space, at a certain moment in 

time, depends only on its value at the previous moment 

and the adjacent values of the fields. 

To implement FDTD in a region whose material 

parameters vary continuously with the spatial position, 

the following electromagnetic field update coefficients 

are defined and stored at the initial moment (t = 0) 

The update coefficients for the electric field in the 

point (i, j, k): 
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                     (34) 
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                     (36) 

 

The update coefficients for the magnetic field in the 

point (i, j, k): 
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                      (37) 
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


2k,j,i

k,j,i2b

t
|D





                      (38) 

 

where 1  and 2  represent the two spatial increments 

that change when calculating the field in a certain point. 

For example, if only the indices afferent to the axes y and 

z are changing in the equation, it results that y1   

and z2  . For a cubic grid,  zyx  and, 

therefore,  21 , bC2bC1bC   and 

bD2bD1bD  . 

C.  Yee's algorithm 

The numerical method developed by Yee [9], [13,14], 

offers the possibility to determine in time and space both 

the electric field and the magnetic field by solving the 

two rotor equations. The space in which the field analysis 

is carried out is divided into cubic cells. As can be seen in 

Fig. 1, the E


 and H


 components are positioned in the 

three-dimensional space so that each electric field 

component is surrounded by four magnetic field 

components, and each magnetic field component is 

surrounded by four electric field components. In the 

space proposed by Yee (a 3D grid), the continuity of the 

tangential components of E


 and H


 is preserved at the 

interface of two distinct environments, as long as the 

interface is parallel to one of the coordinate axes of the 

grid. Therefore, there is no need to specify the boundary 

conditions at the interface, but the permittivity and 

permeability must be specified at each point where the 

field is calculated. Although the Yee algorithm only uses 

Maxwell's rotor equations, the delivered solutions satisfy 

implicitly the other two equations (the relations (3) and 

(4)) due to the location of the E


 and H


 components in 

the Yee grid and the operations with central differences 

performed [9], [13,14]. 

 

 

Fig.1. Modality of placing the electric and magnetic field vectors in a 

1D, 2D and 3D Yee cell. 

The H


components are located at the middle of each 

side of the cube, and the E


components are located at the 

centre of each face of the cube. The components of the 

E


 and H


 vectors are calculated in time, in the leap-frog 

manner [9], [13,14], as can be seen in Fig. 2. Thus, the E


 

value at a point in space and at a given moment in time is 

calculated and stored in the memory using the E


 value at 

the same point, but at the previous moment, as well as the 

H


 values at the previous moment, in points adjacent to 

the point of interest. The H


 value is then calculated 

based on its value in the same point (but at the previous 

moment) and the E


 values (previously calculated) in the 

adjacent points, and the result is stored in the memory. 

The cycle continues with the recalculation of the E


 

values for the immediately following moment, based on 

the E


 and H


values previously determined, until the 

desired moment of time, and so on. 

 

 

Fig.2. The space-time diagram used to determine E and H in a 1-D 

space. We see the use of central differences for spatial derivatives and 

the leap-frog method for temporal derivatives. 
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D.  Electromagnetic field source modelling  

In FDTD, we can use as field sources a wide variety of 

signals [9], [13,14]. The most commonly used are the 

sinusoidal signal and the Gaussian pulse.  

Example of “hard” 1D sinusoidal source: 

 

                            
tsinE)x(E 0 

                           (39) 

 

In order to reduce the error, it is used the so-called 

“soft” sinusoidal source, if the source signal of interest 

from the source point is added to the previous value of 

the field.  

 

                     
tsinE)x(E)x(E 0 

                    (40) 

 

The integration step is selected in line with the 

frequency of the field source. 

Example of “hard’ 1D Gaussian pulse: 
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              (41) 

 

Example of “soft” 1D Gaussian pulse, if the source 

signal of interest from the source point is added to the 

previous value of the field:  
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         (42) 

 

Example of ‘hard” source 1D modulated Gaussian 

pulse: 
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         (43) 

 

Example of “soft” source 1D modulated Gaussian 

pulse, if the source signal of interest from the source 

point is added to the previous value of the field:  

 

   

tsin
t
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2
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10 
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
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  (44) 

 
 

E.  Boundary conditions, Yee cell size and stability 

criterion  

The boundary conditions refer to what happens to the 

field component values at the boundaries of the 

integration domain. The problem does not exist in the 

limited space, such as a waveguide, a resonator, etc., 

where we need to model a region that includes an inner 

field. 

In some problems, it is simulated the propagation of 

the electromagnetic field in open space. In these cases, 

since our simulation region needs to be limited, we must 

find a way to “simulate” the open space. These open 

space limit conditions are called “Radiation boundary 

conditions” (RBC) [9,10,11,12,13,14,15] or “Absorption 

boundary conditions” (ABC). The ABCs are necessary to 

avoid the field reflections on the walls of the integration 

domain. The most common set of ABC conditions was 

introduced by J. P. Berenger, named PML (Perfectly 

Matched Layer) [9,10,11,12,13,14,15]. In case of PML 

conditions, between the analysed field and the boundary 

(which remains perfectly conductive) it is inserted an 

absorbent layer with variable conductivity (the sigma 

increases linearly – or based on another law – towards the 

edges of the domain). Thus, if the absorbent layer is 

sufficiently thick, the waves reaching the end of the 

domain will be greatly attenuated and the reflections 

negligible. 

Regarding the size of a 3D cell in the Yee FDTD 

algorithm, it must be small enough to enable obtaining 

the solution with good accuracy in the case of maximum 

frequency of interest. The spatial resolution (the distance 

between 2 successive points) must be selected so that the 

electromagnetic field does not change significantly from 

one point to the next one. The spatial resolution or 

sampling step is a fraction of the minimum wavelength 

propagating in the grid. To ensure the numerical stability 

of the algorithm, it is necessary to satisfy a relation 

[9,10,11,12,13,14,15]  between the spatial and temporal 

increments, t . In case of constant   and  , the 

numerical stability is obtained if: 

 

                 
     222

max

z

1

y

1

x

1

1
tv









          (45) 

 

where: 
maxv  = maximum propagation speed in the grid. 

If   and   are varying, it is more difficult to obtain a 

stability criterion. The condition (45) imposes restrictions 

on the temporal increment for the spatial increments. 

Once the spatial increments have been set, the temporal 

increment is selected so as to ensure the numerical 

stability. 

If the propagation occurs only in the x-axis direction, 

we denote with 
c t

S
x





 what we will hereinafter call the 

stability factor (also called Courant number) [2,3]. The 

stability factors for the other directions are similarly 

defined. In general, 
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                    (46) 
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It is demonstrated that if 0 < S < 1, the wave 

propagating in the grid is not attenuated over time (when 

the propagation environment has no losses), and if the 

Courant number becomes greater than one, the amplitude 

of the wave increases exponentially with each temporal 

increment [9,10,11,12,13,14,15]. 

There are some extreme cases: 

 

a. If the spatial and temporal sampling is very fine, 

the numerical solution becomes more and more 

accurate, but the computation volume and time 

increase considerably. It can be shown that either 

the phase speed or the group speed is equal to c 

(the light speed in vacuum), regardless of 

frequency (non-dispersive propagation); therefore, 

the numerical algorithm is non-dispersive 

[9,10,11,12,13,14,15]. 

b. Magic time-step sampling: c t x   . In this case, 

the solution obtained is accurate, regardless of the 

sampling step in time and space. 

c. Dispersive propagation. This is the most common 

situation, and occurs if S <1 and x  is 

comparable to 
min . It has been noted that the 

“numerical” wave propagates in the grid with a 

lower speed than the equivalent “analogue” wave. 

As x  becomes much smaller than 
min , the 

numerical dispersion becomes lower and lower. 

 

III.  FDTD – ONE-DIMENSIONAL CASE STUDY 

We will further analyse the propagation of an 

electromagnetic field into a one-dimensional space. We 

assume that there are no variations in the y-axis direction, 

neither of the field nor of the grid geometry. Therefore, 

the partial derivatives in respect to y and z are null. In this 

case, the propagation occurs along the x-axis. We also 

assume that there are no sources of the field 

(
xsourceJ ,

xsourcemJ , ). The Maxwell’s equations (the 

equations 1 and 2) become: 
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          (47) 
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        (48) 

 

The equations (47) and (48) are rewritten as follows, 

using finite differences: 
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  (50) 

 

The one-dimensional simulation algorithm in case of 

propagation in the x-axis direction involves the following 

steps [2,3]: 

 

1. Establishing the dimension of the spatial 

integration domain.  

2. Defining the spatial integration step x . 

3. Defining the temporal integration step x  in 

accordance with the signal resolution and 

excitation. Currently, x
t

c


  , where c is the 

propagation speed in vacuum or air. 

4. Setting the maximum number of temporal 

integration steps. 

5. Setting the type, position and, eventually, the 

frequency of the source. 

6. Setting the boundary conditions. 

7. Initialisation with field update constants, in 

accordance with the environmental properties. 

8. Implementing the field components update cycles. 

 

IV.  DESCRIPTION OF GUI APPLICATION FOR ONE-

DIMENSIONAL FDTD  

The GUI application for one-dimensional FDTD is 

programmed in Matlab  [16,17,18,19,20,21]  and contains 

19 files. For launching in execution, the path to the 

application folder is set from the Command Window, and 

then the startup file name is typed. The application's 

welcome screen is shown in Fig. 3.  

 

 

Fig.3. Main interface of the application 

When pressing the first 3 buttons - Fig. 3, we open 

word files with information about the FDTD method, 

Maxwell's equations, and algorithm of the method. When 

pressing the button “ONE-DIMENSIONAL STUDY 

CASE”, we open the interface that exemplifies the 

electromagnetic wave propagation through various 

environments in “one-dimensional” case – Fig. 4. 
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Fig.4. Interface for one-dimensional case study 

The first 2 buttons open word files with explanations 

on the case study description and field sources, the third 

button opens the interface where the type of propagation 

environment can be selected, and the fourth button closes 

this interface and opens the start interface. The button 

“PROPAGATION ENVIRONMENT PROPERTIES” 

leads us to the interface that enables the setting of some 

propagation environment properties – Fig. 5.  

 

 

Fig.5. Interface for propagation environment properties 

Thus, in the editing fields of the first panel, the length 

of the propagation domain and the number of spatial steps 

required for the modelling of the propagation domain and 

numerical integration are entered. Then, a radio button 

group is used to select the environment type (conducting, 

dielectric or magnetic), with variants of environmental 

models. When selecting a model, a panel with editing 

fields at the bottom appears to be active, enabling the user 

to enter the properties of the model in question – Fig. 6. 

By pressing the button “DATA AND GRAPHIC 

UPDATES”, we can verify the data integrity, and the 

charts of relative electrical permittivity, relative magnetic 

permeability and electrical conductivity versus distance 

are shown on the right side – Fig. 6.    

In the case of the dielectric environment, the following 

models have been designed [10]: dielectric window, 

dielectric window with smooth transition, dielectric 

discontinuity, sinusoidal dielectric, and dielectric with 

losses. For a conducting environment, the following 

models have been designed: conducting window, 

conducting window with smooth transition, half 

conducting space. 

We exemplify the implementation for the conducting 

environment models – Figs. 6 - 8: 

 

 

Fig.6. Conducting window 

 

Fig.7. Conducting window with smooth transition 

 

Fig.8. Half space conductor 

We can exit from the interface of the one-dimensional 

model, and by pressing the button “SIMULATION” we 

reach the interface for the interactive presentation of 

electromagnetic wave propagation through the 

environment in question. It is shown the interface for 

simulating the one-dimensional FDTD – Fig. 9, for the 

“conducting window” environment model. As you can 

see, the parameters for spatial integration are transmitted 

from the environment interface. The spatial step, 

temporal step and Courant number will be calculated and 

displayed (that’s why at initialisation they appear as 

blocked fields). The required values are entered into the 

editing fields and, by pressing the “SIMULATION” 

button, we can verify the integrity of data, and the Yee's 

algorithm is running. The results are presented 

graphically, in an interactive way – Fig. 9, 10, 11, 12. 
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Fig.9. Propagation of electromagnetic field at the moment 3.166710-9 s 

 

Fig.10. Propagation of electromagnetic field at the moment  

6.333310-9 s 

 

Fig.11. Propagation of electromagnetic field at the moment  

1.216710-8 s 

 

Fig.12. Propagation of electromagnetic field at the moment 2.510-8 s 

Note that (Fig. 13) the student can access the code 

behind the interface at any time by opening the file in the 

“Open in GUIDE” design mode with the “Editor” option. 

 

Fig.13. Source code 

 

V.  CONCLUSIONS 

The paper presents a didactic application with 

graphical interface programmed in Matlab for numerical 

modelling of the interaction between the electromagnetic 

field and the matter using the finite-difference time-

domain method (FDTD), the one-dimensional case. The 

method is based on solving the Maxwell's equations in 

differential form. Basically, the method consists of 

replacing the differential equations with finite difference 

equations. The implementation of the FDTD method is 

based on the Yee algorithm. The application can be used 

as educational software for the disciplines focused on the 

numerical methods used to determine the electromagnetic 

field. It is expected the application to be extended by 

treating the bi-directional and three-dimensional 

electromagnetic field propagation cases. Analogically, 

such teaching interfaces can be made for any course 

subject to which they fit. 

The advantages of using a teaching application with 

graphical user interface focused on a course subject 

consist of: active analogical reasoning based on the 

interactivity of actions, establishing the particular-general 

and concrete-abstract relationship, facilitating the 

understanding of the algorithm through interactive 

viewing of its implementation, real-time visualization of 

the result of implementation - propagation of the 

electromagnetic field through the environment in 

question.  

The use of modern teaching methods increases the 

motivation of students and attractiveness of the courses. 

The role of the teacher in teaching - learning - evaluation 

remains still remarkable, and the limits of computer-

assisted training can be compensated by alternating the 

methods and including compensatory methods in the 

same course. 

The proposed method is used by a university year at 

the Hunedoara Faculty of Engineering and presents a 

didactic success based on attractiveness, ease of use and 

understanding. 
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