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Abstract—There are various libraries that facilitate the 

design and development of recommender systems (RSs) 

research in both the academia and industry. Different 

libraries provide a different set of functionalities based on 

their foundational design principles. When new 

algorithms are proposed, researchers need to compare 

these against prior algorithms considering many 

challenges such as reproducibility of results, evaluation 

metrics, test harnesses, etc. Although many open source 

RS libraries exist to carry out research experiments and 

provide a varying degree of features such as extensibility, 

performance, scalability, flexibility, etc. To that end, this 

paper describes a recently introduced open-source RS 

library, Collaborative Filtering for Java (CF4J), which is 

specially designed for collaborative recommendations. 

Firstly, the brief internals of the CF4J framework are 

explained and it has been compared with other related 

libraries such as LibRec, LensKit, and Apache Mahout 

based on the recommendation approaches and evaluation 

tools. Secondly, we have summarized all the state-of-art 

similarity measures provided by the CF4J library. Finally, 

in order to determine the accuracy of these similarity 

measures, several experiments have been conducted using 

standardized benchmark datasets such as MovieLens-1M, 

MovieLens-10M, and MovieLens-20M. Empirically 

obtained results demonstrate that the Jaccard-Mean 

Squared Difference (JMSD) similarity measure provides 

better recommendation accuracy among all similarity 

measures. 

 

Index Terms—Recommender Systems, Collaborative 

Filtering, Similarity Measures, CF4J Framework. 

 

I.  INTRODUCTION 

The amount of information on the World Wide Web 

(or simply Web) is huge and wide. The explosive growth  

 

of information on the web frequently overwhelmed 

Internet users. Recommender Systems (RSs) help 

individuals who are not able to make decisions from the 

potentially overwhelming number of alternatives 

available on the web [1, 2]. Nowadays, most web users 

interact with RSs in one way or another which provides 

useful suggestions that may be relevant to users. Since 

recommendations are usually personalized, therefore, 

each user receives different suggestions from others. 

Traditionally, RSs are classified into following broad 

categories based on the filtering algorithm. 

 

 Content-based:   The system recommends items 

that are similar to the ones that user liked in the 

past [3, 4]. 

 Collaborative Filtering-based: The system 

recommends items that other users with similar 

tastes linked in the past [5, 6]. 

 Hybrid:  These systems combine content-based 

and collaborative techniques [7, 8]. 

 

Among various recommendation approaches, 

collaborative filtering-based recommender systems 

(CFRS) are the most popular (due to their simplicity & 

efficiency) and are traditional approaches for 

recommendations [9, 10, 11]. CFRSs may further be 

classified into two classes: memory-based and model-

based approaches [12]. Memory-based algorithms use the 

entire collection of rating data for providing 

recommendations in a heuristic manner [13, 14]. Model-

based algorithms [15, 16, 17, 18, 19] learn a model from 

the rating data before providing any recommendations to 

users [20]. The memory-based methods also called as 

neighborhood-based approaches can further be 

categorized into two classes: user-based collaborative 

filtering (UBCF) and item-based collaborative filtering 

(IBCF). Fig. 1 shows a broad classification of 

collaborative filtering-based recommender systems. 



42 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework  

Copyright © 2019 MECS                                                    I.J. Modern Education and Computer Science, 2019, 5, 41-53 

 

Fig.1. A general classification of collaborative filtering-based 

recommendations.  

Researchers have proposed a wide variety of 

algorithms for decades and new approaches are rapidly 

emerging in the RS literature. There is always a concern 

for comparing different approaches along with 

reproducible results. In order to accomplish these goals, 

there exist various libraries which support the 

development and experimentation with recommender 

systems. Different libraries provide a diverse set of 

functionalities based on their design foundations and 

some of them are commercial while others are open 

source. In this research, we have focused on open source 

RS libraries, particularly written in java language. Among 

these RS libraries, few libraries are not under active 

development but are available for use such as Duine[21], 

Cofi[22], Easyrec[23], and PREA[24]. Based on the 

general bibliography, following libraries are widely used 

for RS experimentation and are under active development: 

LibRec[25], Apache Mahout[26], [27], LensKit[28], and 

Cf4J[29]. It is always beneficial to utilize RS libraries 

that facilitate researchers to design and implement new 

recommendation methods. A researcher or developer may 

choose an appropriate library for RS experimentation 

based on various constraints such as performance, 

efficiency, extensibility, etc. 

This paper describes a recently introduced RS library, 

Collaborative Filtering For Java (CF4J)[29], which is 

specifically designed for collaborative filtering-based 

recommendations. The CF4J library facilitates: a) dataset 

loading, b) splitting the dataset into test and training data, 

c) complete and effortless access to intermediate or final 

result values, d) parallel execution framework specially 

designed for collaborative filtering, and e) evaluation of 

quality through various metrics. The CF4J framework 

also provides an implementation of state-of-the-art 

similarity measures proposed by various researchers. The 

contribution of this paper is as follows: 

 

 Provides the internals and design details of the 

CF4J framework. 

 Compares and contrasts the CF4J library with 

other related libraries based on recommendation 

methodologies and evaluation metrics. 

 Summarizes all the similarity measures provided 

by the CF4J framework and explains how to 

introduce a new similarity measure using this 

framework. 

 Evaluation of the similarity measures based on 

predictive accuracy measures (such as 

MAE/RMSE) and classification-based accuracy 

measures (such as precision) using standardized 

benchmark datasets (in movie domain). 

 

II.  PRELIMINARIES 

In order to define the recommendation problem 

formally, we used the following notations as shown in 

Table 1. Primarily, there are two most important ways in 

which the recommendation problem can be specified 

systematically: the best item and top-N recommendation 

problem.  The first formulation is to find a new item, for 

a particular user, which is most relevant to the user. The 

second formulation is to determine the top-N items, for a 

particular user. Basically, in order to provide the 

recommendation for a user, there is no need to find the 

actual rating values of the items which are to be 

recommended. 

Table 1. Notations used in the Paper 

 
 

Collaborative filtering-based (CF) approaches are the 

most significant and traditional algorithms for 

recommendations [30]. These algorithms are easy to 

implement and provide effective recommendations, 

therefore, are the most popular and widely used among 

research communities. The fundamental idea behind these 

approaches is that the information related to the past 

behaviors or interests of users are exploited and then 

utilized for suggesting items to the users. The CF 

techniques consider the basic assumptions that if users 

had shown the same interests in the past then they will 

have similar interests in the future too and user’s 

preferences remain constant and consistent with respect 

to the time. 

Usually, the process of the neighborhood-based 

collaborative recommendation consists of the following 

steps [31], i.e. for an active user(u), for whom we want to 

predict the rating(rui) for a new item(i): 

 

1) Calculate the similarity of all users with the active 

user u. 

2) Select a subset of users most similar to the active 

user (k nearest neighbors). 

Collaborative 
Filtering(CF) 

Memory-based 

(Neoghborhood-based) 

User-based 
CF(UBCF) 

Item-based CF 
(IBCF) 

Model-based  

Symbol 

 

Meaning 

U The set of users in the system 

I The set of items in the system 

R The set of all ratings stored in the system 

S The set of possible values for ratings e.g., S = 

{1,2,3,4,5}  

rui The rating given by a user u ϵ U to a particular item i 

Iu The subset of items that have been rated by a user u 

Ui The subset of users that have rated item i 

Iuv    The subset of items that have been rated by two 

users u and v (Iu ∩ Iv) 

Uij The subset of users that have rated both items i and j 
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3) Compute the prediction, rui, by using the ratings of 

the k nearest neighbors. 

 

Based on the application domain, the above steps may 

overlap or their order may be different [32]. It is 

noteworthy to understand that measuring similarities 

between users or items is the core component of the 

neighborhood-based collaborative recommendations. 

Therefore, this paper examines and evaluates the 

accuracy of the various similarity measures using 

standardized benchmark datasets. 

A.  Uncovering CF4J Framework 

CF4J stands for Collaborative Filtering for Java. It is a 

java library specially designed to perform experiments in 

recommender system research or particularly in 

collaborative filtering-based recommendations. CF4J has 

been designed with a motive “a library developed from 

researchers to researchers” i.e. it is especially suited for 

the experimentation and research trials of new 

recommendation algorithms. The library is available from 

well-known java repositories such as Maven, Gradle, and 

SBT. Furthermore, the proper documentation of the 

library makes its usage smooth. 

A1.  Design of CF4J 

Based on the various steps involved in a collaborative 

recommender system, the CF4J library has been designed 

according to the package structure shown in Fig. 2. It 

provides all the functionalities which are required by CF 

researchers such as data loading, train/test data splitting, 

etc. Table 2 summarizes the core functionalities provided 

by each package/subpackage. 

A2.  Core APIs 

The most fundamental classes are User, Item, Kernel, 

and Processor. Kernel class handles all the data 

associated with the recommendation process i.e. it loads 

the rating data and builds a data model for manipulating 

rating values. Processor class enables to execute an 

intermediate step of the collaborative recommendation 

process to be parallelized. User class provides an 

abstraction to represent a user and accommodates 

information related to the user of the recommender 

system. Similarly, Item class abstracts an item and 

contains the information associated with the item. Fig. 3 

represents the functionalities provided by (a) User class 

(b) Item class. 

 

 

Fig.2. The package structure of the CF4J library. 

Table 2. The core functionalities provided by CF4J library 

Package/sub package Name Core functionalities 

cf4j It consists of the indispensable classes of the library. 

cf4j.knn It contains the implementation of the various components of the k-nearest neighbor 

methods such as similarity measures, aggregation approaches, etc. 

cf4j.model It includes a matrix factorization-based collaborative filtering technique.  

cf4j.qualityMeasures It includes the implementation of various quality measures. 

cf4j.utils It contains various utilities used by the library. 

 

For illustration purpose, the basic steps involved in a 

typical user-based collaborative filtering (UBCF) are 

shown in Fig. 4 where the similarity between users is 

calculated using the traditional Pearson Correlation  

 

Coefficient, neighbors’ratings are aggregated using 

deviation from the mean approach, and the 

recommendation quality is evaluated using the mean 

absolute error (MAE) metric. 

 

cf4j itemToItem

m 

knn 

userToUser 
model 

utils 

qualityMeasures 

similarities 

Aggregation 

approaches 

 

neighbors 
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III.  RELATED FRAMEWORKS 

There are many possible ways in which one can 

compare different programming libraries which are 

developed to accomplish the same or similar tasks. 

Different researchers prioritize different goals based on 

the requirements such as ease of use, popularity, support 

and documentation, performance, extensibility, etc. Here, 

we have discussed only those RS libraries that are 

developed using Java technology and are popularly used 

in the RS literature. Furthermore, there are few libraries 

that are under active development nowadays while others 

are outdated but still available for experimentation and 

usage.  Table 3 lists the RS libraries that are not under 

active development presently but may be utilized for 

various RS research tasks specific to them. 

Based on the general bibliography in the RS research, 

the following libraries are widely used for the RS 

experimentation and are under active development: - 

 

 
 

   (a)       (b) 

Fig.3. The UML diagrams showing the functionalities provided by (a) User class (b) Item class. 

Table 3. The recommendation toolkits that are not under active development currently 

 Duine [33] Cofi [22] Easyrec [34] PREA [24] 

Baseline 

Approaches 

Popularity 

User Average 

Constant 

User/Item Average 

It provides recommendations to 

websites through plugins, REST 

API, and JavaScript. However, no 

details regarding implemented 

algorithms are provided. 

Constant 

User/Item/overall Average 

Random-guess 

Collaborative 

filtering-based 

Approaches 

Memory-based CF 

 User-based CF 

 Item-based CF 

Model-based 

 nil 

Memory-based CF 

 User-based CF 

 Item-based CF 

Model-based 

 SVD 

 

Memory-based CF 

 User-based CF 

 Item-based CF 

Model-based 

 SVD 

 MF and its variations 

Other Methods Case-based reasoning 

Simple content-based - - 
Rank-based CF 

SlopeOne method 

Evaluation 

Metrics 

MAE MAE 

RMSE 

On-line evaluation MAE, RMSE 

Precision/Recall/F1 

HLU/NDCG 

Kendall’s Tau, Spearman 

Other Features Explanation APIs Provides wrappers for 

other languages 

Easy to integrate and easy usage. Provides wrappers for other 

languages 
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 LibRec[25] 

 Apache Mahout[26, 27] 

 LensKit[28] 

 Cf4J[29] 

 

Except for the LibRec framework, the remaining 

frameworks primarily focus only on the collaborative 

filtering-based recommendation approaches while the 

LibRec framework provides support for various different 

RS approaches. Table 4summarizes the various 

recommendation approaches and evaluation metrics 

provided by these libraries. Since this article evaluates the 

accuracy of various similarity measures available in the 

CF4J framework, therefore, we have listed the similarity 

measures provided by each framework in Table 5. 

 

IV.  SIMILARITY MEASURES 

Neighborhood-based collaborative filtering employs 

various measures of similarity for discovering the 

neighborhood of an active user or item. This section 

briefly summarizes all the similarity measures which are 

provided by the CF4J framework. Here, we have used the 

same notations as explained in the earlier section. 

Fig.4. The flow diagram showing basic steps in user-based collaborative 

filtering (UBCF). 

A.  Pearson Correlation Coefficient (PCC) 

 

 

It displays the linear relationship between the rating 

vectors and demonstrates the degree to which two rating 

vectors are linearly related. Its value lies between -1 to +1; 

where the value +1 shows complete +ve linear correlation, 

0 shows no linear correlation and -1 is complete -ve 

linear correlation [37, 38]. 
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B.  Constrained Pearson Correlation Coefficient (CPCC) 

It modifies the traditional PCC by using the median 

value (of the rating scale) in place of average rating. This 

This variant keeps in mind the positivity and negativity of 

the ratings [6]. 
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 (2) 

 

where rmed is the median value of the rating scale. 

C.  Cosine Similarity (COS) 

It measures the cosine of the angle between the rating 

vectors, smaller angle means greater similarity [12]. 

 

2 2

( )( )

( , )
( ) ( )

uv

uv uv

ui vi

i I

ui vi

i I i I

r r

COS u v
r r



 





 
             (3) 

D.  Adjusted Cosine Similarity (ACOS) 

It modifies the traditional PCC measure for computing 

similarities between items so that the differences between 

individual users can be taken into account. This measure 

used to calculate the similarity between items but can be 

analogously used for measuring the similarities between 

users. 

 

 
2 2

( )( )

( , )
( ) ( )

ij

ij ij

ui i uj j

u U

ui i uj j

u U u U

r r r r

PCC i j
r r r r



 

 


 



 
   (4) 

 

Equation (4) measure the traditional PCC between two 

items i and j, where Uij represents the set of users who 

have rated both the items i and j. The Adjusted Cosine 

Similarity (ACOS) [39] modifies (4) to incorporate the 

individual differences between users, therefore, can be 

defined by (5)  as given below: 
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u U
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r r r r

ACOS i j
r r r r



 

 


 



 
 (5) 

E.  Spearman's Rank Correlation Coefficient (SRCC) 

It adopts the traditional PCC over the rank values of 

the two variables, therefore, is a nonparametric measure 

of rank correlation. Spearman's correlation assesses 

monotonic relationships between the two observations. It 

returns value from -1 to 1; where 1 shows a perfect +ve 

correlation between ranks, 0 shows no correlation and -1 

is perfect -ve correlation between the ranks [46]. It is also 

called Spearman’s rho and denoted by the Greek letter ρ 

(rho) or rs. 

Table 4. The most popular and widely used RS libraries which are under active development nowadays 

 CF4J[29] Mahout[26], [27] LensKit[28] LibRec[25] 

Baseline 

Approaches - 

Random recommender 

Item/user average 

Item/user/global average 

Least-squares estimators 

Item/user/global average 

Random/constant guess  

Popular 

Collaborative 

filtering-based  

Memory-based CF 

 User-based CF 

 Item-based CF 

Model-based 

 MF[35] 

 non-negative 

MF[36]  

Memory-based CF 

 User-based CF 

 Item-based CF 

 Clustering-based CF 

Model-based 

 MF 

Memory-based CF 

 User-based CF 

 Item-based CF 

Model-based 

 MF  

 SVD based MF 

 Funk SVD  

Memory-based CF 

 User-based CF 

 Item-based CF 

 Clustering-based CF 

Model-based 

 state-of-art methods 

Other Methods 

            - 

Basic slope one 

recommender 

slope one  

weighted slope one 

Content-based RS 

Hybrid RS 

Context-aware RS  

Weighted slope one 

Evaluation 

Metrics 

Predictive Accuracy  

 MAE/RMSE 

Classification based  

 Precision/Recall 

 F1 

Others 

 Coverage 

Predictive Accuracy  

 MAE/RMSE 

Classification based  

 Precision/Recall 

 F1 

Predictive Accuracy  

 MAE/RMSE 

 NDCG/Entropy 

Classification based  

 Precision/Recall 

 Mean Reciprocal 

Rank 

 Entropy 

 Popularity 

Predictive Accuracy  

 MAE/MSE/RMSE 

Classification based  

 Precision/Recall/F1 

 AUC 

 Hit-rate 

Ranking based  

 IdealDCG 

 NormalizedDCG 

 Reciprocal Rank 

 Average Precision 

Others 

 Diversity 

Table 5. The different similarity measures available in RS libraries 

Similarity Measure Name Ref. CF4J Mahout Lenskit LibRec 

Pearson Correlation Coeff. (PCC) [37], [38]     

Constrained PCC (CPCC) [6]     

Cosine Similarity (COS) [12]     

Adjusted Cosine Similarity (ACOS) [39]     

Spearman’s Rank Correlation (SRCC) [46]     

Jaccard Index (JI) [40]     

Mean Squared Difference (MSD) [6]     

Jaccard-MSD(JMSD) [41]     

Coverage-JMSD (CJMSD) [42]      

Singularity-based similarity (SING) [43]     

Proximity-Impact-Popularity (PIP) [44]     

Euclidean distance      

City Block distance      

Loglikelihood      

Extended Jaccard Similarity      

Binary Cosine Similarity      

Mean Squared Error Similarity      

Dice Coefficient  [45]     

Kendall Rank Correlation Coefficient [46]     

Mutual Information Similarity [47]     
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If all the ranks are distinct, then it can be measured 

using (6) as given below: 

 
2

2

6
1

( 1)

id

n n
  



                              (6) 

 

Where n is the number of observations and di is the 

difference between the two ranks of the ith observation. In 

the RS scenario, (6) may be rewritten as follow: 
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             (7) 

F.  Jaccard Index (J) 

It is the ratio of the size of intersection divided by the 

size of the union. Likewise, the similarity between any 

two users, u and v, may be defined as the proportion of 

the commonly rated items to the total items rated by two 

users [40]. 

 

| |
( , )

| |

u v

u v

I I
J u v

I I
                            (8) 

G.  Mean Squared Difference (MSD) 

It is the arithmetic mean of the squares of differences 

between corresponding values of the two rating vectors. 

For example, consider two vectors, x and y each of size n, 

MSD(x,y) will be equal to 
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 [6]. The 

similarity based on MSD can be defined as {1 – 

MSD(x,y) } since the MSD measures the differences 

between the two vectors. Therefore, the similarity 

between any two users, u and v, may be defined as 

follows: 

 
2( )

( , ) 1
| |

uv

ui vi

i I

uv

r r

MSD u v
I





 


                 (9) 

H.  Jaccard Mean Squared Difference (JMSD) 

This measure combines the Jaccard similarity with 

MSD similarity to define a new hybrid similarity measure 

known as JMSD [41]. 

 

( , ) ( , ) ( , )JMSD u v jaccard u v MSD u v     (10) 

I.   Coverage-Jaccard-Mean Squared Difference (CJMSD) 

This measure modifies the JMSD measure by adding a 

term corresponding to the coverage that a user u can 

provide to another user v, i.e. | |

| |

u v
u v

I I
Coverage

I



 . 

Clearly, this similarity measure is asymmetric as

u v v uCoverage Coverage   and hence the similarity 

between two users, u and v, ( , ) ( , )CJMSD u v CJMSD v u

[42]. 

| |
( , ) ( , )

| |

( , )

u vI I
CJMSD u v Jaccard u v

I

MSD u v


 



         (11) 

J.  Singularity-based similarity (SING)  

To calculate the similarity between two users, the 

commonly rated items are divided into three subgroups: 

 

 Items rated relevant by both the users 

 Items rated non-relevant by both the users 

 Items rated as relevant by one user and non-

relevant by the other user 

 

For each commonly rated item, singularity concerned 

with the relevant and non-relevant vote is calculated 

using all the users in the database. Finally, a traditional 

similarity measure is modulated by the value of the 

singularity over three subsets of the commonly rated 

items. Here, the authors utilize MSD as a traditional 

numerical similarity measure [43]. 

K.  Proximity-Impact-Popularity measure (PIP) 

It considers the three factors of similarity, Proximity, 

Impact, and Popularity for defining the overall similarity 

(SIM) between two users u and v [44]. 

 

( , ) ( , )
uv

ui vi

i I

PIP u v PIP r r


                 (12) 

 

where, PIP (rui , rvi) is the PIP score for the two rating 

values. Further, the PIP score for any two ratings r1 and r2 

is defined as follows: 

 

1 2 1 2 1 2

1 2

PIP( , )  Proximity( , ) Impact( , )

Popularity( , )

r r r r r r

r r

 


   (13) 

 

where Proximity denotes the simple arithmetic difference 

between two ratings, Impact measures the strength by 

which an item is liked or disliked by the users, and 

Popularity denotes the degree to which two users’ ratings 

are common.  

In all the equations from (1) to (13), all the formulae 

are written for calculating the similarity between users 

while analogous formulae can be easily written for 

calculating similarities between items. 

L.  Illustrative Example 

Here, we will demonstrate a representative procedure 

for introducing a new similarity measure using a toy 

example in CF4J framework. CF4J contains several 

abstract classes and interfaces to provide excellent 

extensibility. For implementing new similarity measures, 

researchers may use the abstract classes, 

UsersSimilarities & ItemsSimilarities. Let’s define an 

imaginary similarity between two users as the absolute 

difference of their ratings’ averages, then we will encode 

as shown in Fig. 5. 
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Fig.5. Illustrative example code for implementing a new dummy 

similarity measure between two users. 

V.  EXPERIMENTS 

The offline experiments are the easiest to conduct as 

they require no interaction with real users. Therefore, 

offline experiments are the most popular and accepted 

way to evaluate the candidate recommendation 

approaches in comparison to user studies or online 

experiments [48]. 

 

 

 

Table 6. Brief description MovieLens datasets 

 
 

We have performed offline experiments to evaluate the 

accuracy of various similarity measures available in the 

CF4J library. All the experiments are performed using 

standardized benchmark rating datasets (MovieLens-

1M,10M, and 20M), which is publicly available from 

GroupLens research [49].  Table 6 summarizes these 

datasets briefly, article [50] explains the detailed history 

and context of MovieLens datasets. 

A.  Experimental Design 

To evaluate the performance of various similarity 

measures, we have employed the user-based collaborative 

filtering (UBCF) with the k-nearest-neighbors (kNN) 

technique. The neighbors’ ratings are aggregated using 

deviation from the mean strategy. All the experiments are 

performed using the system/software configurations as 

specified in Table 7. 

Table 7. The details of the software and system used for experiments 

High Performance Computing 

System 

Intel(R) Xeon(R) Gold 

6132(Skylake) 14 cores CPU@ 

2.6GHz with 96GB RAM 

Operating System Windows 10 pro 

Eclipse IDE for Java EE 4.7.2 or higher 

Java Runtime Environment 

(JRE)  

Java 1.8 

CF4J library version 1.1.1 or higher 

B.  Evaluation Metrics 

One of the most crucial measure for evaluating the 

recommender systems is accuracy i.e. their capability to 

predict users' choice accurately [51]. In the RS literature, 

accuracy is the most examined goal for designing a 

recommender system. The fundamental hypothesis is that 

if an RS predicts users’ preferences accurately then it will 

be preferred by users. Furthermore, the accuracy measure 

is not dependent on the user interface of the recommender 

system, therefore offline experiments are well suited for 

measuring the accuracy of an RS approaches with 

datasets from multiple domains. Here, we evaluated the 

following two types of accuracy measures: 

 

 the accuracy of rating predictions 

 the accuracy of usage predictions 

B.1.  Measuring the accuracy of rating predictions 

Let R be the set of all ratings stored in the system i.e. 

rating matrix,  and it is known that a user u has rated an 

item i with the rating value rui , also a recommendation 

algorithm predicts this rating as 
ûir . Therefore, we can 

calculate the error of estimation for this particular rating 

as ˆ
ui ui uie r r   . There are various ways to compute the 

overall error for a system for a given test set T of user-

item pairs (u, i) such as Mean Absolute Error(MAE), 

Root Mean Squared Error(RMSE), Normalized MAE 

(NMAE), Normalized RMSE (NRMSE), Average MAE 

and Average RMSE. Again, the following two metrics 

are the most popular among the research community for 

evaluating the accuracy of the rating prediction: 
 

2

( , )

1
ˆ( )

| |
ui ui

u i T

RMSE r r
T 

               (14) 

Dataset  Brief Detail Sparsity Level 

MovieLens-1M  1000,209 ratings from 6040 users on 3900 movies 

 Each user has rated at least 20 movies. 
1000, 209

1 95.754
6040 3900

 


 

MovieLens-10M  10,000,054 ratings from 71567 users on 10681 movies 

 Each user has rated at least 20 movies.  
10000054

1 98.692
71567 10681

 


 

MovieLens-20M  20,000,263 ratings from 7138493 users on 27278 movies 

 Each user has rated at least 20 movies.  
20000263

1 99.470
138493 27278
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( , )

1
ˆ| ( ) |

| |
ui ui

u i T

MAE r r
T 

               (15) 

B.2.  Measuring the accuracy of usage predictions 

Many recommender systems do not estimate the actual 

ratings of items rather try to suggest a set of items(top-N) 

that may be useful for the users. In order to calculate the 

accuracy of usage predictions in the offline experiments, 

we hide some of the items selected by a test user (i.e. 

purchased or browsed items via implicit feedback) and 

then predict a set of items that the user will select. The 

following four cases arise [52], as shown in Table 8. 

Table 8. All four possible outcomes of the recommendation process. 

 Recommended Not recommended 

Preferred True-Positive(tp) False-Negative(fn) 

Not preferred False-Positive(fp) True-Negative(tn) 

 

Based on the above four cases, the overall quality of a 

recommender system may be estimated using various 

quantities such as precision, recall, false positive rate, etc. 

 

#
Precision = 

# #

tp

tp fp
                    (16) 

 

#
Recall(True Positive Rate) = 

# #

tp

tp fn
    (17) 

 

#
False Positive Rate = 

# #

fp

fp tn
              (18) 

 

In our experiments, we have evaluated Precision at N, 

where N is the number of recommendations i.e. size of 

the recommendation list, and varying it with various 

values of N such as 10, 15,20, etc. Alternatively, the 

precision of an RS may also be simulated as the ratio of 

the relevant recommended items with respect to the 

number of recommended items, along with defining the 

meaning of relevance items, for example with items with 

predicted rating ≥ 4 (on a scale of 1 to 5) may be 

considered as relevant items. 

 

 

VI.  RESULTS AND DISCUSSION 

Table 9 lists all the similarity measures along with the 

corresponding API class name in the CF4J framework. 

For assessing the predictive accuracy, 80% of the rating 

data is used as training data while the remaining 20% is 

used as test data. Furthermore, for each test user, 20% of 

ratings are used for validation purpose. We have 

calculated the values of MAE and RMSE for all 

similarity measures by varying the number of neighbors. 

MAE and RMSE values are compared for all the  

similarity measures in Fig.  6 and Fig. 7 respectively for 

different datasets (a) MovieLens-1M (b) MovieLens-10M 

(c) MovieLens-20M dataset. 

Table 9. The similarity measures provided by CF4J library 

 
 

 
(a) 

 
(b) 

0.73

0.78

0.83

0.88

0.93

0.98

4 0  8 0  1 2 0  1 6 0  2 0 0  2 4 0  2 8 0  3 2 0  3 6 0  4 0 0  

M
A

E 

NUMBER OF NEIGHBORS 

PCC CPCC COS ACOS

SRCC JI MSD JMSD

CJMSD SING PIP

0.67

0.72

0.77

0.82

0.87

0.92

8 0  1 6 0  2 4 0  3 2 0  4 0 0  4 8 0  5 6 0  6 4 0  7 2 0  8 0 0  

M
A

E 

NUMBER OF NEIGHBORS 

Similarity Measure Ref. API Class name 

Pearson Correlation 

Coefficient (PCC) 

[37] MetricCorrelation 

Constrained PCC (CPCC) [6] MetricCorrelationConstraine

d 
Cosine Similarity (COS) [12] MetricCosine 

Adjusted Cosine 

Similarity (ACOS) 

[39] MetricAjustedCosine 

SRCC  MetricSpearmanRank 

Jaccard Index (JI) [40] MetricJaccard 

Mean Squared Difference 

(MSD) 

[6] MetricMSD 

Jaccard Mean Squared 

Difference (JMSD) 

[41] MetricJMSD 

Coverage-JMSD 

(CJMSD) 

[42]  MetricCJMSD 

Singularity-based 

similarity (SING) 

[43] MetricSingularities 

Proximity-Impact-

Popularity (PIP) 

[44] MetricPIP 
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(c) 

Fig.6. The MAE values for (a) MovieLens-1M (b) MovieLens-10M (c) 

MovieLens-20M datasets 

The empirical results of MAE values, as shown in Fig. 

6 (a)-(c), demonstrate that the JMSD measure provides 

better predictive accuracy than other similarity measures. 

It should be noted that both JMSD and PIP provide 

almost comparable results but for small neighborhood 

size, PIP measure results in better values than the JMSD 

measure. 

Similarly, the empirically obtained values of RMSE, 

shown in Fig. 7(a)-(c), demonstrate that the JMSD 

measure provides the best results among all measures. 

Based on the application domain, either MAE or RMSE 

may be selected for evaluating the predictive 

accuracy[53]. One important observation, from the 

empirical values of MAE and RMSE, is that some of the 

similarity measures monotonically decrease MAE/RMSE 

values against the number of neighbors while other 

similarity measures do not display any significant 

changes in MAE/RMSE values after some point of the 

neighborhood size. Based on this observation, all the 

available similarity measures may be divided into two 

clusters, {PCC, CPCC, COS, ACOS, MSD} & {SRCC, 

JI, JMSD, CJMSD, SING, PIP}. 

In order to assess classification-based accuracy, we 

have evaluated precision values by varying the size of the 

recommended list i.e. Precision@N and N= 5, 10, 15…. 

etc. The metrics that are taken from the information 

retrieval domain such as precision, describe users’ 

involvement nicely in comparison to predictive accuracy 

measures such as MAE/RMSE[52]. Table 10 summarizes 

the different parameter values used for measuring 

precision values. Fig. 8 compares the precision values for 

different size of the recommended list for all three 

datasets (a) MovieLens-1M (b) MovieLens-10M (c) 

MovieLens-20M. 

As shown in Fig. 8 (a)-(c), the empirically obtained 

values of precision demonstrate that both JMSD and PIP 

measures provide almost comparable results. Here again, 

for the small size of recommendation list (e.g. top-5 and 

top-10), the PIP measure results in slightly better 

precision values than the JMSD measure. Based on the 

empirical results, we believe that if online e-commerce 

portal demands both types of accuracy (predictive and 

classification-based) simultaneously then JMSD measure 

may result in better recommendations than other 

similarity measures. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig.7. The RMSE values for (a) MovieLens-1M (b) MovieLens-10M (c) 

MovieLens-20M datasets
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Table 10. Different parameters involved in experimenting with 

classification-based accuracy. 

 
ML-1M ML-10M 

ML-

20M 

Test-Users % 20% 

Test-Items % 20% 

Rating Threshold (β) 4 

Recommendation 

size {5, 10,15,20} 

Neighborhood-Size 180 320 400 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig.8. The Precision values for (a) MovieLens-1M (b) MovieLens-10M 

(c) MovieLens-20M datasets 

 

VII.  CONCLUSIONS 

This paper describes a recently introduced open-source 

java library, Collaborative Filtering for Java (CF4J), for 

performing RS research experiments. The brief internals 

of the CF4J framework are explained so that it can be 

utilized to carry out the implementation of new 
recommendation tasks such as similarity measure, 

evaluation metric, etc. Furthermore, the Cf4J framework 

is also compared with the other related libraries such as 

LibRec, LensKit, and Apache Mahout. It also provides 

the implementations of the state-of-art similarity 

measures for collaborative recommendations. In this 

research, several experiments have been conducted for 

evaluating the accuracy of these similarity measures 

using standardized benchmark datasets (MovieLens-1M, 

10M, and 20M). From the empirically obtained results, it 

is concluded that the JMSD measure provides better 

recommendation accuracy among all the available 

similarity measures. 

As a summary, the CF4J framework provides a simple 

way to conduct RS experiments with a unique parallel 

execution framework specially designed for collaborative 

recommendations. It provides excellent flexibility for 

accessing any intermediate value and is expendable for 

new implementations proposed by researchers. For the 

future work, this framework can be expanded into 

multiple dimensions such as implementing new 

recommendation approaches, evaluation methods, new 

similarity measures, etc. 
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