
I.J. Modern Education and Computer Science, 2019, 5, 41-53
Published Online May 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2019.05.05

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

Accuracy Assessment of Similarity Measures in

Collaborative Recommendations Using CF4J

Framework

Vijay Verma
Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India-136119

Email: vermavijay@nitkkr.ac.in

Rajesh Kumar Aggarwal
Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India-136119

Email: rka15969@gmail.com

Received: 07 March 2019; Accepted: 21 March 2019; Published: 08 May 2019

Abstract—There are various libraries that facilitate the

design and development of recommender systems (RSs)

research in both the academia and industry. Different

libraries provide a different set of functionalities based on

their foundational design principles. When new

algorithms are proposed, researchers need to compare

these against prior algorithms considering many

challenges such as reproducibility of results, evaluation

metrics, test harnesses, etc. Although many open source

RS libraries exist to carry out research experiments and

provide a varying degree of features such as extensibility,

performance, scalability, flexibility, etc. To that end, this

paper describes a recently introduced open-source RS

library, Collaborative Filtering for Java (CF4J), which is

specially designed for collaborative recommendations.

Firstly, the brief internals of the CF4J framework are

explained and it has been compared with other related

libraries such as LibRec, LensKit, and Apache Mahout

based on the recommendation approaches and evaluation

tools. Secondly, we have summarized all the state-of-art

similarity measures provided by the CF4J library. Finally,

in order to determine the accuracy of these similarity

measures, several experiments have been conducted using

standardized benchmark datasets such as MovieLens-1M,

MovieLens-10M, and MovieLens-20M. Empirically

obtained results demonstrate that the Jaccard-Mean

Squared Difference (JMSD) similarity measure provides

better recommendation accuracy among all similarity

measures.

Index Terms—Recommender Systems, Collaborative

Filtering, Similarity Measures, CF4J Framework.

I. INTRODUCTION

The amount of information on the World Wide Web

(or simply Web) is huge and wide. The explosive growth

of information on the web frequently overwhelmed

Internet users. Recommender Systems (RSs) help

individuals who are not able to make decisions from the

potentially overwhelming number of alternatives

available on the web [1, 2]. Nowadays, most web users

interact with RSs in one way or another which provides

useful suggestions that may be relevant to users. Since

recommendations are usually personalized, therefore,

each user receives different suggestions from others.

Traditionally, RSs are classified into following broad

categories based on the filtering algorithm.

 Content-based: The system recommends items

that are similar to the ones that user liked in the

past [3, 4].

 Collaborative Filtering-based: The system

recommends items that other users with similar

tastes linked in the past [5, 6].

 Hybrid: These systems combine content-based

and collaborative techniques [7, 8].

Among various recommendation approaches,

collaborative filtering-based recommender systems

(CFRS) are the most popular (due to their simplicity &

efficiency) and are traditional approaches for

recommendations [9, 10, 11]. CFRSs may further be

classified into two classes: memory-based and model-

based approaches [12]. Memory-based algorithms use the

entire collection of rating data for providing

recommendations in a heuristic manner [13, 14]. Model-

based algorithms [15, 16, 17, 18, 19] learn a model from

the rating data before providing any recommendations to

users [20]. The memory-based methods also called as

neighborhood-based approaches can further be

categorized into two classes: user-based collaborative

filtering (UBCF) and item-based collaborative filtering

(IBCF). Fig. 1 shows a broad classification of

collaborative filtering-based recommender systems.

42 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

Fig.1. A general classification of collaborative filtering-based

recommendations.

Researchers have proposed a wide variety of

algorithms for decades and new approaches are rapidly

emerging in the RS literature. There is always a concern

for comparing different approaches along with

reproducible results. In order to accomplish these goals,

there exist various libraries which support the

development and experimentation with recommender

systems. Different libraries provide a diverse set of

functionalities based on their design foundations and

some of them are commercial while others are open

source. In this research, we have focused on open source

RS libraries, particularly written in java language. Among

these RS libraries, few libraries are not under active

development but are available for use such as Duine[21],

Cofi[22], Easyrec[23], and PREA[24]. Based on the

general bibliography, following libraries are widely used

for RS experimentation and are under active development:

LibRec[25], Apache Mahout[26], [27], LensKit[28], and

Cf4J[29]. It is always beneficial to utilize RS libraries

that facilitate researchers to design and implement new

recommendation methods. A researcher or developer may

choose an appropriate library for RS experimentation

based on various constraints such as performance,

efficiency, extensibility, etc.

This paper describes a recently introduced RS library,

Collaborative Filtering For Java (CF4J)[29], which is

specifically designed for collaborative filtering-based

recommendations. The CF4J library facilitates: a) dataset

loading, b) splitting the dataset into test and training data,

c) complete and effortless access to intermediate or final

result values, d) parallel execution framework specially

designed for collaborative filtering, and e) evaluation of

quality through various metrics. The CF4J framework

also provides an implementation of state-of-the-art

similarity measures proposed by various researchers. The

contribution of this paper is as follows:

 Provides the internals and design details of the

CF4J framework.

 Compares and contrasts the CF4J library with

other related libraries based on recommendation

methodologies and evaluation metrics.

 Summarizes all the similarity measures provided

by the CF4J framework and explains how to

introduce a new similarity measure using this

framework.

 Evaluation of the similarity measures based on

predictive accuracy measures (such as

MAE/RMSE) and classification-based accuracy

measures (such as precision) using standardized

benchmark datasets (in movie domain).

II. PRELIMINARIES

In order to define the recommendation problem

formally, we used the following notations as shown in

Table 1. Primarily, there are two most important ways in

which the recommendation problem can be specified

systematically: the best item and top-N recommendation

problem. The first formulation is to find a new item, for

a particular user, which is most relevant to the user. The

second formulation is to determine the top-N items, for a

particular user. Basically, in order to provide the

recommendation for a user, there is no need to find the

actual rating values of the items which are to be

recommended.

Table 1. Notations used in the Paper

Collaborative filtering-based (CF) approaches are the

most significant and traditional algorithms for

recommendations [30]. These algorithms are easy to

implement and provide effective recommendations,

therefore, are the most popular and widely used among

research communities. The fundamental idea behind these

approaches is that the information related to the past

behaviors or interests of users are exploited and then

utilized for suggesting items to the users. The CF

techniques consider the basic assumptions that if users

had shown the same interests in the past then they will

have similar interests in the future too and user’s

preferences remain constant and consistent with respect

to the time.

Usually, the process of the neighborhood-based

collaborative recommendation consists of the following

steps [31], i.e. for an active user(u), for whom we want to

predict the rating(rui) for a new item(i):

1) Calculate the similarity of all users with the active

user u.

2) Select a subset of users most similar to the active

user (k nearest neighbors).

Collaborative
Filtering(CF)

Memory-based

(Neoghborhood-based)

User-based
CF(UBCF)

Item-based CF
(IBCF)

Model-based

Symbol

Meaning

U The set of users in the system

I The set of items in the system

R The set of all ratings stored in the system

S The set of possible values for ratings e.g., S =

{1,2,3,4,5}

rui The rating given by a user u ϵ U to a particular item i

Iu The subset of items that have been rated by a user u

Ui The subset of users that have rated item i

Iuv The subset of items that have been rated by two

users u and v (Iu ∩ Iv)

Uij The subset of users that have rated both items i and j

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 43

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

3) Compute the prediction, rui, by using the ratings of

the k nearest neighbors.

Based on the application domain, the above steps may

overlap or their order may be different [32]. It is

noteworthy to understand that measuring similarities

between users or items is the core component of the

neighborhood-based collaborative recommendations.

Therefore, this paper examines and evaluates the

accuracy of the various similarity measures using

standardized benchmark datasets.

A. Uncovering CF4J Framework

CF4J stands for Collaborative Filtering for Java. It is a

java library specially designed to perform experiments in

recommender system research or particularly in

collaborative filtering-based recommendations. CF4J has

been designed with a motive “a library developed from

researchers to researchers” i.e. it is especially suited for

the experimentation and research trials of new

recommendation algorithms. The library is available from

well-known java repositories such as Maven, Gradle, and

SBT. Furthermore, the proper documentation of the

library makes its usage smooth.

A1. Design of CF4J

Based on the various steps involved in a collaborative

recommender system, the CF4J library has been designed

according to the package structure shown in Fig. 2. It

provides all the functionalities which are required by CF

researchers such as data loading, train/test data splitting,

etc. Table 2 summarizes the core functionalities provided

by each package/subpackage.

A2. Core APIs

The most fundamental classes are User, Item, Kernel,

and Processor. Kernel class handles all the data

associated with the recommendation process i.e. it loads

the rating data and builds a data model for manipulating

rating values. Processor class enables to execute an

intermediate step of the collaborative recommendation

process to be parallelized. User class provides an

abstraction to represent a user and accommodates

information related to the user of the recommender

system. Similarly, Item class abstracts an item and

contains the information associated with the item. Fig. 3

represents the functionalities provided by (a) User class

(b) Item class.

Fig.2. The package structure of the CF4J library.

Table 2. The core functionalities provided by CF4J library

Package/sub package Name Core functionalities

cf4j It consists of the indispensable classes of the library.

cf4j.knn It contains the implementation of the various components of the k-nearest neighbor

methods such as similarity measures, aggregation approaches, etc.

cf4j.model It includes a matrix factorization-based collaborative filtering technique.

cf4j.qualityMeasures It includes the implementation of various quality measures.

cf4j.utils It contains various utilities used by the library.

For illustration purpose, the basic steps involved in a

typical user-based collaborative filtering (UBCF) are

shown in Fig. 4 where the similarity between users is

calculated using the traditional Pearson Correlation

Coefficient, neighbors’ratings are aggregated using

deviation from the mean approach, and the

recommendation quality is evaluated using the mean

absolute error (MAE) metric.

cf4j itemToItem

m

knn

userToUser
model

utils

qualityMeasures

similarities

Aggregation

approaches

neighbors

44 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

III. RELATED FRAMEWORKS

There are many possible ways in which one can

compare different programming libraries which are

developed to accomplish the same or similar tasks.

Different researchers prioritize different goals based on

the requirements such as ease of use, popularity, support

and documentation, performance, extensibility, etc. Here,

we have discussed only those RS libraries that are

developed using Java technology and are popularly used

in the RS literature. Furthermore, there are few libraries

that are under active development nowadays while others

are outdated but still available for experimentation and

usage. Table 3 lists the RS libraries that are not under

active development presently but may be utilized for

various RS research tasks specific to them.

Based on the general bibliography in the RS research,

the following libraries are widely used for the RS

experimentation and are under active development: -

 (a) (b)

Fig.3. The UML diagrams showing the functionalities provided by (a) User class (b) Item class.

Table 3. The recommendation toolkits that are not under active development currently

 Duine [33] Cofi [22] Easyrec [34] PREA [24]

Baseline

Approaches

Popularity

User Average

Constant

User/Item Average

It provides recommendations to

websites through plugins, REST

API, and JavaScript. However, no

details regarding implemented

algorithms are provided.

Constant

User/Item/overall Average

Random-guess

Collaborative

filtering-based

Approaches

Memory-based CF

 User-based CF

 Item-based CF

Model-based

 nil

Memory-based CF

 User-based CF

 Item-based CF

Model-based

 SVD

Memory-based CF

 User-based CF

 Item-based CF

Model-based

 SVD

 MF and its variations

Other Methods Case-based reasoning

Simple content-based - -
Rank-based CF

SlopeOne method

Evaluation

Metrics

MAE MAE

RMSE

On-line evaluation MAE, RMSE

Precision/Recall/F1

HLU/NDCG

Kendall’s Tau, Spearman

Other Features Explanation APIs Provides wrappers for

other languages

Easy to integrate and easy usage. Provides wrappers for other

languages

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 45

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

 LibRec[25]

 Apache Mahout[26, 27]

 LensKit[28]

 Cf4J[29]

Except for the LibRec framework, the remaining

frameworks primarily focus only on the collaborative

filtering-based recommendation approaches while the

LibRec framework provides support for various different

RS approaches. Table 4summarizes the various

recommendation approaches and evaluation metrics

provided by these libraries. Since this article evaluates the

accuracy of various similarity measures available in the

CF4J framework, therefore, we have listed the similarity

measures provided by each framework in Table 5.

IV. SIMILARITY MEASURES

Neighborhood-based collaborative filtering employs

various measures of similarity for discovering the

neighborhood of an active user or item. This section

briefly summarizes all the similarity measures which are

provided by the CF4J framework. Here, we have used the

same notations as explained in the earlier section.

Fig.4. The flow diagram showing basic steps in user-based collaborative

filtering (UBCF).

A. Pearson Correlation Coefficient (PCC)

It displays the linear relationship between the rating

vectors and demonstrates the degree to which two rating

vectors are linearly related. Its value lies between -1 to +1;

where the value +1 shows complete +ve linear correlation,

0 shows no linear correlation and -1 is complete -ve

linear correlation [37, 38].

2 2

()()

(,)
() ()

uv

uv uv

ui u vi v

i I

ui u vi v

i I i I

r r r r

PCC u v
r r r r

 (1)

B. Constrained Pearson Correlation Coefficient (CPCC)

It modifies the traditional PCC by using the median

value (of the rating scale) in place of average rating. This

This variant keeps in mind the positivity and negativity of

the ratings [6].

2 2

()()

(,)
() ()

uv

uv uv

ui med vi med

i I

ui med vi med

i I i I

r r r r

CPCC u v
r r r r

 (2)

where rmed is the median value of the rating scale.

C. Cosine Similarity (COS)

It measures the cosine of the angle between the rating

vectors, smaller angle means greater similarity [12].

2 2

()()

(,)
() ()

uv

uv uv

ui vi

i I

ui vi

i I i I

r r

COS u v
r r

 (3)

D. Adjusted Cosine Similarity (ACOS)

It modifies the traditional PCC measure for computing

similarities between items so that the differences between

individual users can be taken into account. This measure

used to calculate the similarity between items but can be

analogously used for measuring the similarities between

users.

2 2

()()

(,)
() ()

ij

ij ij

ui i uj j

u U

ui i uj j

u U u U

r r r r

PCC i j
r r r r

 (4)

Equation (4) measure the traditional PCC between two

items i and j, where Uij represents the set of users who

have rated both the items i and j. The Adjusted Cosine

Similarity (ACOS) [39] modifies (4) to incorporate the

individual differences between users, therefore, can be

defined by (5) as given below:

46 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

2 2

()()

(,)
() ()

ij

ij ij

ui u uj u

u U

ui u uj u

u U u U

r r r r

ACOS i j
r r r r

 (5)

E. Spearman's Rank Correlation Coefficient (SRCC)

It adopts the traditional PCC over the rank values of

the two variables, therefore, is a nonparametric measure

of rank correlation. Spearman's correlation assesses

monotonic relationships between the two observations. It

returns value from -1 to 1; where 1 shows a perfect +ve

correlation between ranks, 0 shows no correlation and -1

is perfect -ve correlation between the ranks [46]. It is also

called Spearman’s rho and denoted by the Greek letter ρ

(rho) or rs.

Table 4. The most popular and widely used RS libraries which are under active development nowadays

 CF4J[29] Mahout[26], [27] LensKit[28] LibRec[25]

Baseline

Approaches -

Random recommender

Item/user average

Item/user/global average

Least-squares estimators

Item/user/global average

Random/constant guess

Popular

Collaborative

filtering-based

Memory-based CF

 User-based CF

 Item-based CF

Model-based

 MF[35]

 non-negative

MF[36]

Memory-based CF

 User-based CF

 Item-based CF

 Clustering-based CF

Model-based

 MF

Memory-based CF

 User-based CF

 Item-based CF

Model-based

 MF

 SVD based MF

 Funk SVD

Memory-based CF

 User-based CF

 Item-based CF

 Clustering-based CF

Model-based

 state-of-art methods

Other Methods

 -

Basic slope one

recommender

slope one

weighted slope one

Content-based RS

Hybrid RS

Context-aware RS

Weighted slope one

Evaluation

Metrics

Predictive Accuracy

 MAE/RMSE

Classification based

 Precision/Recall

 F1

Others

 Coverage

Predictive Accuracy

 MAE/RMSE

Classification based

 Precision/Recall

 F1

Predictive Accuracy

 MAE/RMSE

 NDCG/Entropy

Classification based

 Precision/Recall

 Mean Reciprocal

Rank

 Entropy

 Popularity

Predictive Accuracy

 MAE/MSE/RMSE

Classification based

 Precision/Recall/F1

 AUC

 Hit-rate

Ranking based

 IdealDCG

 NormalizedDCG

 Reciprocal Rank

 Average Precision

Others

 Diversity

Table 5. The different similarity measures available in RS libraries

Similarity Measure Name Ref. CF4J Mahout Lenskit LibRec

Pearson Correlation Coeff. (PCC) [37], [38]

Constrained PCC (CPCC) [6]

Cosine Similarity (COS) [12]

Adjusted Cosine Similarity (ACOS) [39]

Spearman’s Rank Correlation (SRCC) [46]

Jaccard Index (JI) [40]

Mean Squared Difference (MSD) [6]

Jaccard-MSD(JMSD) [41]

Coverage-JMSD (CJMSD) [42]

Singularity-based similarity (SING) [43]

Proximity-Impact-Popularity (PIP) [44]

Euclidean distance

City Block distance

Loglikelihood

Extended Jaccard Similarity

Binary Cosine Similarity

Mean Squared Error Similarity

Dice Coefficient [45]

Kendall Rank Correlation Coefficient [46]

Mutual Information Similarity [47]

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 47

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

If all the ranks are distinct, then it can be measured

using (6) as given below:

2

2

6
1

(1)

id

n n

 (6)

Where n is the number of observations and di is the

difference between the two ranks of the ith observation. In

the RS scenario, (6) may be rewritten as follow:

2

2

6 ()

(,) 1
| | (| | 1)

uv

ui vi

i I

uv uv

r r

SRCC u v
I I

 (7)

F. Jaccard Index (J)

It is the ratio of the size of intersection divided by the

size of the union. Likewise, the similarity between any

two users, u and v, may be defined as the proportion of

the commonly rated items to the total items rated by two

users [40].

| |
(,)

| |

u v

u v

I I
J u v

I I
 (8)

G. Mean Squared Difference (MSD)

It is the arithmetic mean of the squares of differences

between corresponding values of the two rating vectors.

For example, consider two vectors, x and y each of size n,

MSD(x,y) will be equal to
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1 [6]. The

similarity based on MSD can be defined as {1 –

MSD(x,y) } since the MSD measures the differences

between the two vectors. Therefore, the similarity

between any two users, u and v, may be defined as

follows:

2()

(,) 1
| |

uv

ui vi

i I

uv

r r

MSD u v
I

 (9)

H. Jaccard Mean Squared Difference (JMSD)

This measure combines the Jaccard similarity with

MSD similarity to define a new hybrid similarity measure

known as JMSD [41].

(,) (,) (,)JMSD u v jaccard u v MSD u v (10)

I. Coverage-Jaccard-Mean Squared Difference (CJMSD)

This measure modifies the JMSD measure by adding a

term corresponding to the coverage that a user u can

provide to another user v, i.e. | |

| |

u v
u v

I I
Coverage

I

 .

Clearly, this similarity measure is asymmetric as

u v v uCoverage Coverage and hence the similarity

between two users, u and v, (,) (,)CJMSD u v CJMSD v u

[42].

| |
(,) (,)

| |

(,)

u vI I
CJMSD u v Jaccard u v

I

MSD u v

 (11)

J. Singularity-based similarity (SING)

To calculate the similarity between two users, the

commonly rated items are divided into three subgroups:

 Items rated relevant by both the users

 Items rated non-relevant by both the users

 Items rated as relevant by one user and non-

relevant by the other user

For each commonly rated item, singularity concerned

with the relevant and non-relevant vote is calculated

using all the users in the database. Finally, a traditional

similarity measure is modulated by the value of the

singularity over three subsets of the commonly rated

items. Here, the authors utilize MSD as a traditional

numerical similarity measure [43].

K. Proximity-Impact-Popularity measure (PIP)

It considers the three factors of similarity, Proximity,

Impact, and Popularity for defining the overall similarity

(SIM) between two users u and v [44].

(,) (,)
uv

ui vi

i I

PIP u v PIP r r

 (12)

where, PIP (rui , rvi) is the PIP score for the two rating

values. Further, the PIP score for any two ratings r1 and r2

is defined as follows:

1 2 1 2 1 2

1 2

PIP(,) Proximity(,) Impact(,)

Popularity(,)

r r r r r r

r r

 (13)

where Proximity denotes the simple arithmetic difference

between two ratings, Impact measures the strength by

which an item is liked or disliked by the users, and

Popularity denotes the degree to which two users’ ratings

are common.

In all the equations from (1) to (13), all the formulae

are written for calculating the similarity between users

while analogous formulae can be easily written for

calculating similarities between items.

L. Illustrative Example

Here, we will demonstrate a representative procedure

for introducing a new similarity measure using a toy

example in CF4J framework. CF4J contains several

abstract classes and interfaces to provide excellent

extensibility. For implementing new similarity measures,

researchers may use the abstract classes,

UsersSimilarities & ItemsSimilarities. Let’s define an

imaginary similarity between two users as the absolute

difference of their ratings’ averages, then we will encode

as shown in Fig. 5.

48 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

Fig.5. Illustrative example code for implementing a new dummy

similarity measure between two users.

V. EXPERIMENTS

The offline experiments are the easiest to conduct as

they require no interaction with real users. Therefore,

offline experiments are the most popular and accepted

way to evaluate the candidate recommendation

approaches in comparison to user studies or online

experiments [48].

Table 6. Brief description MovieLens datasets

We have performed offline experiments to evaluate the

accuracy of various similarity measures available in the

CF4J library. All the experiments are performed using

standardized benchmark rating datasets (MovieLens-

1M,10M, and 20M), which is publicly available from

GroupLens research [49]. Table 6 summarizes these

datasets briefly, article [50] explains the detailed history

and context of MovieLens datasets.

A. Experimental Design

To evaluate the performance of various similarity

measures, we have employed the user-based collaborative

filtering (UBCF) with the k-nearest-neighbors (kNN)

technique. The neighbors’ ratings are aggregated using

deviation from the mean strategy. All the experiments are

performed using the system/software configurations as

specified in Table 7.

Table 7. The details of the software and system used for experiments

High Performance Computing

System

Intel(R) Xeon(R) Gold

6132(Skylake) 14 cores CPU@

2.6GHz with 96GB RAM

Operating System Windows 10 pro

Eclipse IDE for Java EE 4.7.2 or higher

Java Runtime Environment

(JRE)

Java 1.8

CF4J library version 1.1.1 or higher

B. Evaluation Metrics

One of the most crucial measure for evaluating the

recommender systems is accuracy i.e. their capability to

predict users' choice accurately [51]. In the RS literature,

accuracy is the most examined goal for designing a

recommender system. The fundamental hypothesis is that

if an RS predicts users’ preferences accurately then it will

be preferred by users. Furthermore, the accuracy measure

is not dependent on the user interface of the recommender

system, therefore offline experiments are well suited for

measuring the accuracy of an RS approaches with

datasets from multiple domains. Here, we evaluated the

following two types of accuracy measures:

 the accuracy of rating predictions

 the accuracy of usage predictions

B.1. Measuring the accuracy of rating predictions

Let R be the set of all ratings stored in the system i.e.

rating matrix, and it is known that a user u has rated an

item i with the rating value rui , also a recommendation

algorithm predicts this rating as
ûir . Therefore, we can

calculate the error of estimation for this particular rating

as ˆ
ui ui uie r r . There are various ways to compute the

overall error for a system for a given test set T of user-

item pairs (u, i) such as Mean Absolute Error(MAE),

Root Mean Squared Error(RMSE), Normalized MAE

(NMAE), Normalized RMSE (NRMSE), Average MAE

and Average RMSE. Again, the following two metrics

are the most popular among the research community for

evaluating the accuracy of the rating prediction:

2

(,)

1
ˆ()

| |
ui ui

u i T

RMSE r r
T

 (14)

Dataset Brief Detail Sparsity Level

MovieLens-1M 1000,209 ratings from 6040 users on 3900 movies

 Each user has rated at least 20 movies.
1000, 209

1 95.754
6040 3900

MovieLens-10M 10,000,054 ratings from 71567 users on 10681 movies

 Each user has rated at least 20 movies.
10000054

1 98.692
71567 10681

MovieLens-20M 20,000,263 ratings from 7138493 users on 27278 movies

 Each user has rated at least 20 movies.
20000263

1 99.470
138493 27278

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 49

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

(,)

1
ˆ| () |

| |
ui ui

u i T

MAE r r
T

 (15)

B.2. Measuring the accuracy of usage predictions

Many recommender systems do not estimate the actual

ratings of items rather try to suggest a set of items(top-N)

that may be useful for the users. In order to calculate the

accuracy of usage predictions in the offline experiments,

we hide some of the items selected by a test user (i.e.

purchased or browsed items via implicit feedback) and

then predict a set of items that the user will select. The

following four cases arise [52], as shown in Table 8.

Table 8. All four possible outcomes of the recommendation process.

 Recommended Not recommended

Preferred True-Positive(tp) False-Negative(fn)

Not preferred False-Positive(fp) True-Negative(tn)

Based on the above four cases, the overall quality of a

recommender system may be estimated using various

quantities such as precision, recall, false positive rate, etc.

#
Precision =

#

tp

tp fp
 (16)

#
Recall(True Positive Rate) =

#

tp

tp fn
 (17)

#
False Positive Rate =

#

fp

fp tn
 (18)

In our experiments, we have evaluated Precision at N,

where N is the number of recommendations i.e. size of

the recommendation list, and varying it with various

values of N such as 10, 15,20, etc. Alternatively, the

precision of an RS may also be simulated as the ratio of

the relevant recommended items with respect to the

number of recommended items, along with defining the

meaning of relevance items, for example with items with

predicted rating ≥ 4 (on a scale of 1 to 5) may be

considered as relevant items.

VI. RESULTS AND DISCUSSION

Table 9 lists all the similarity measures along with the

corresponding API class name in the CF4J framework.

For assessing the predictive accuracy, 80% of the rating

data is used as training data while the remaining 20% is

used as test data. Furthermore, for each test user, 20% of

ratings are used for validation purpose. We have

calculated the values of MAE and RMSE for all

similarity measures by varying the number of neighbors.

MAE and RMSE values are compared for all the

similarity measures in Fig. 6 and Fig. 7 respectively for

different datasets (a) MovieLens-1M (b) MovieLens-10M

(c) MovieLens-20M dataset.

Table 9. The similarity measures provided by CF4J library

(a)

(b)

0.73

0.78

0.83

0.88

0.93

0.98

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0 3 6 0 4 0 0

M
A

E

NUMBER OF NEIGHBORS

PCC CPCC COS ACOS

SRCC JI MSD JMSD

CJMSD SING PIP

0.67

0.72

0.77

0.82

0.87

0.92

8 0 1 6 0 2 4 0 3 2 0 4 0 0 4 8 0 5 6 0 6 4 0 7 2 0 8 0 0

M
A

E

NUMBER OF NEIGHBORS

Similarity Measure Ref. API Class name

Pearson Correlation

Coefficient (PCC)

[37] MetricCorrelation

Constrained PCC (CPCC) [6] MetricCorrelationConstraine

d
Cosine Similarity (COS) [12] MetricCosine

Adjusted Cosine

Similarity (ACOS)

[39] MetricAjustedCosine

SRCC MetricSpearmanRank

Jaccard Index (JI) [40] MetricJaccard

Mean Squared Difference

(MSD)

[6] MetricMSD

Jaccard Mean Squared

Difference (JMSD)

[41] MetricJMSD

Coverage-JMSD

(CJMSD)

[42] MetricCJMSD

Singularity-based

similarity (SING)

[43] MetricSingularities

Proximity-Impact-

Popularity (PIP)

[44] MetricPIP

50 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

(c)

Fig.6. The MAE values for (a) MovieLens-1M (b) MovieLens-10M (c)

MovieLens-20M datasets

The empirical results of MAE values, as shown in Fig.

6 (a)-(c), demonstrate that the JMSD measure provides

better predictive accuracy than other similarity measures.

It should be noted that both JMSD and PIP provide

almost comparable results but for small neighborhood

size, PIP measure results in better values than the JMSD

measure.

Similarly, the empirically obtained values of RMSE,

shown in Fig. 7(a)-(c), demonstrate that the JMSD

measure provides the best results among all measures.

Based on the application domain, either MAE or RMSE

may be selected for evaluating the predictive

accuracy[53]. One important observation, from the

empirical values of MAE and RMSE, is that some of the

similarity measures monotonically decrease MAE/RMSE

values against the number of neighbors while other

similarity measures do not display any significant

changes in MAE/RMSE values after some point of the

neighborhood size. Based on this observation, all the

available similarity measures may be divided into two

clusters, {PCC, CPCC, COS, ACOS, MSD} & {SRCC,

JI, JMSD, CJMSD, SING, PIP}.

In order to assess classification-based accuracy, we

have evaluated precision values by varying the size of the

recommended list i.e. Precision@N and N= 5, 10, 15….

etc. The metrics that are taken from the information

retrieval domain such as precision, describe users’

involvement nicely in comparison to predictive accuracy

measures such as MAE/RMSE[52]. Table 10 summarizes

the different parameter values used for measuring

precision values. Fig. 8 compares the precision values for

different size of the recommended list for all three

datasets (a) MovieLens-1M (b) MovieLens-10M (c)

MovieLens-20M.

As shown in Fig. 8 (a)-(c), the empirically obtained

values of precision demonstrate that both JMSD and PIP

measures provide almost comparable results. Here again,

for the small size of recommendation list (e.g. top-5 and

top-10), the PIP measure results in slightly better

precision values than the JMSD measure. Based on the

empirical results, we believe that if online e-commerce

portal demands both types of accuracy (predictive and

classification-based) simultaneously then JMSD measure

may result in better recommendations than other

similarity measures.

(a)

(b)

(c)

Fig.7. The RMSE values for (a) MovieLens-1M (b) MovieLens-10M (c)

MovieLens-20M datasets

0.67

0.72

0.77

0.82

0.87

0.92

0.97

8 0 1 6 0 2 4 0 3 2 0 4 0 0 4 8 0 5 6 0 6 4 0 7 2 0 8 0 0

M
A

E

NUMBER OF NEIGHBORS

0.85

0.95

1.05

1.15

1.25

1.35

1.45

4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0 3 6 0 4 0 0

R
M

SE

NUMBER OF NEIGHBORS

0.75

0.85

0.95

1.05

1.15

1.25

1.35

8 0 1 6 0 2 4 0 3 2 0 4 0 0 4 8 0 5 6 0 6 4 0 7 2 0 8 0 0

R
M

SE

NUMBER OF NEIGHBORS

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45

8 0 1 6 0 2 4 0 3 2 0 4 0 0 4 8 0 5 6 0 6 4 0 7 2 0 8 0 0

R
M

SE

NUMBER OF NEIGHBORS

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 51

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

Table 10. Different parameters involved in experimenting with

classification-based accuracy.

ML-1M ML-10M

ML-

20M

Test-Users % 20%

Test-Items % 20%

Rating Threshold (β) 4

Recommendation

size {5, 10,15,20}

Neighborhood-Size 180 320 400

(a)

(b)

(c)

Fig.8. The Precision values for (a) MovieLens-1M (b) MovieLens-10M

(c) MovieLens-20M datasets

VII. CONCLUSIONS

This paper describes a recently introduced open-source

java library, Collaborative Filtering for Java (CF4J), for

performing RS research experiments. The brief internals

of the CF4J framework are explained so that it can be

utilized to carry out the implementation of new
recommendation tasks such as similarity measure,

evaluation metric, etc. Furthermore, the Cf4J framework

is also compared with the other related libraries such as

LibRec, LensKit, and Apache Mahout. It also provides

the implementations of the state-of-art similarity

measures for collaborative recommendations. In this

research, several experiments have been conducted for

evaluating the accuracy of these similarity measures

using standardized benchmark datasets (MovieLens-1M,

10M, and 20M). From the empirically obtained results, it

is concluded that the JMSD measure provides better

recommendation accuracy among all the available

similarity measures.

As a summary, the CF4J framework provides a simple

way to conduct RS experiments with a unique parallel

execution framework specially designed for collaborative

recommendations. It provides excellent flexibility for

accessing any intermediate value and is expendable for

new implementations proposed by researchers. For the

future work, this framework can be expanded into

multiple dimensions such as implementing new

recommendation approaches, evaluation methods, new

similarity measures, etc.

0

0.1

0.2

0.3

0.4

PCC CPCC COS ACOS

SRCC JI MSD JMSD

CJMSD SING PIP

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

52 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, “Toward the next

generation of recommender systems: A survey of the

state-of-the-art and possible extensions,” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, 2005.

[2] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez,

“Recommender systems survey,” Knowledge-Based Syst.,

vol. 46, pp. 109–132, 2013.

[3] K. Lang, “NewsWeeder : Learning to Filter Netnews (To

appear in ML 95),” Proc. 12th Int. Mach. Learn. Conf.,

1995.

[4] C. Science and J. Wnek, “Learning and Revising User

Profiles: The Identification of Interesting Web Sites,”

Mach. Learn., vol. 331, pp. 313–331, 1997.

[5] W. Hill, L. Stead, M. Rosenstein, and G. Furnas,

“Recommending and evaluating choices in a virtual

community of use,” in Proceedings of the SIGCHI

conference on Human factors in computing systems -

CHI ’95, 1995.

[6] U. Shardanand and P. Maes, “Social information filtering:

Algorithms for Automating ‘Word of Mouth,’” Proc.

SIGCHI Conf. Hum. factors Comput. Syst. - CHI ’95, pp.

210–217, 1995.

[7] R. Burke, “Hybrid recommender systems: Survey and

experiments,” User Model. User-Adapted Interact., 2002.

[8] Billsus Daniel and Pazzani Michael J., “User modeling for

adaptative news access,” User Model. User-adapt.

Interact., vol. 10, pp. 147–180, 2002.

[9] X. Su and T. M. Khoshgoftaar, “A Survey of

Collaborative Filtering Techniques,” Adv. Artif. Intell., vol.

2009, no. Section 3, pp. 1–19, 2009.

[10] M. D. Ekstrand, “Collaborative Filtering Recommender

Systems,” Found. Trends® Human–Computer Interact.,

vol. 4, no. 2, pp. 81–173, 2011.

[11] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative

Filtering beyond the User-Item Matrix : A Survey of the

State of the Art and Future Challenges,” ACM Comput.

Surv., vol. 47, no. 1, pp. 1–45, 2014.

[12] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical

analysis of predictive algorithms for collaborative

filtering,” Proc. 14th Conf. Uncertain. Artif. Intell., vol.

461, no. 8, pp. 43–52, 1998.

[13] D. Joaquin and I. Naohiro, “Memory-Based Weighted-

Majority Prediction for Recommender Systems,” Res. Dev.

Inf. Retr., 1999.

[14] A. Nakamura and N. Abe, “Collaborative Filtering Using

Weighted Majority Prediction Algorithms,” in

Proceedings of the Fifteenth International Conference on

Machine Learning, 1998, pp. 395–403.

[15] D. Billsus and M. J. Pazzani, “Learning collaborative

information filters,” Proc. Fifteenth Int. Conf. Mach.

Learn., vol. 54, p. 48, 1998.

[16] T. Hofmann, “Collaborative filtering via Gaussian

probabilistic latent semantic analysis,” Proc. 26th Annu.

Int. ACM SIGIR Conf. Res. Dev. information Retr. -

SIGIR ’03, p. 259, 2003.

[17] L. Getoor and M. Sahami, “Using probabilistic relational

models for collaborative filtering,” Work. Web Usage

Anal. User Profiling, 1999.

[18] B. Marlin, “Modeling User Rating Profiles for

Collaborative Filtering,” in Proceedings of the 16th

International Conference on Neural Information

Processing Systems, 2003, pp. 627–634.

[19] D. Pavlov and D. Pennock, “A maximum entropy

approach to collaborative filtering in dynamic, sparse,

high-dimensional domains,” Proc. Neural Inf. Process.

Syst., pp. 1441–1448, 2002.

[20] K. Laghmari, C. Marsala, and M. Ramdani, “An adapted

incremental graded multi-label classification model for

recommendation systems,” Prog. Artif. Intell., vol. 7, no.

1, pp. 15–29, 2018.

[21] “Duine Framework - Recommender Software Toolkit.”

[Online]. Available: http://www.duineframework.org/.

[Accessed: 23-Feb-2019].

[22] “Cofi: A Java-Based Collaborative Filtering Library.”

[Online]. Available: http://www.nongnu.org/cofi/.

[Accessed: 10-Feb-2019].

[23] “easyrec : open source recommendation engine.” [Online].

Available: http://www.easyrec.org/. [Accessed: 23-Feb-

2019].

[24] J. Lee, M. Sun, and G. Lebanon, “PREA : Personalized

Recommendation Algorithms Toolkit,” J. Mach. Learn.

Res., vol. 13, pp. 2699–2703, 2012.

[25] Z. S. and N. Y.-S. Guibing Guo, Jie Zhang, “LibRec: A

Java Library for Recommender Systems,” Proc. 23rd

Conf. User Model. Adapt. Pers., vol. 2, pp. 2–5, 2015.

[26] S. Schelter and S. Owen, “Collaborative Filtering with

Apache Mahout,” Recomm. Syst. Chall. ACM RecSys, vol.

I, 2012.

[27] C. E. Seminario and D. C. Wilson, “Case study evaluation

of mahout as a recommender platform,” CEUR Workshop

Proc., vol. 910, no. Rue, pp. 45–50, 2012.

[28] M. D. Ekstrand, M. Ludwig, J. A. Konstan, and J. T. Riedl,

“Rethinking the Recommender Research Ecosystem :

Categories and Subject Descriptors,” Proc. 5th ACM Conf.

Recomm. Syst. - RecSys ’11, pp. 133–140, 2011.

[29] F. Ortega, B. Zhu, J. Bobadilla, and A. Hernando, “CF4J:

Collaborative filtering for Java,” Knowledge-Based Syst.,

vol. 152, pp. 94–99, 2018.

[30] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using

collaborative filtering to weave an information tapestry,”

Commun. ACM, vol. 35, no. 12, pp. 61–70, 1992.

[31] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl,

“An algorithmic framework for performing collaborative

filtering,” in Proceedings of the 22nd annual international

ACM SIGIR conference on Research and development in

information retrieval - SIGIR ’99, 1999, pp. 230–237.

[32] J. O. N. Herlocker and J. Riedl, “An Empirical Analysis

of Design Choices in Neighborhood-Based Collaborative

Filtering Algorithms,” Inf. Retr. Boston., pp. 287–310,

2002.

[33] “Duine Framework - Recommender Software Toolkit.”

[Online]. Available: http://www.duineframework.org/.

[Accessed: 10-Feb-2019].

[34] “easyrec :: open source recommendation engine.” [Online].

Available: http://easyrec.org/home. [Accessed: 10-Feb-

2019].

[35] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization

techniques for recommender systems,” Computer (Long.

Beach. Calif)., no. 8, pp. 30–37, 2009.

[36] A. Hernando, J. Bobadilla, and F. Ortega, “A Non-

Negative Matrix Factorization for Collaborative Filtering

Recommender Systems Based on a Bayesian Probabilistic

Model,” Know.-Based Syst., vol. 97, no. C, pp. 188–202,

Apr. 2016.

[37] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J.

Riedl, “GroupLens : An Open Architecture for

Collaborative Filtering of Netnews,” in Proceedings of the

1994 ACM conference on Computer supported

cooperative work, 1994, pp. 175–186.

[38] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L.

R. Gordon, and J. Riedl, “GroupLens: applying

 Accuracy Assessment of Similarity Measures in Collaborative Recommendations Using CF4J Framework 53

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 5, 41-53

collaborative filtering to Usenet news,” Commun. ACM,

vol. 40, no. 3, pp. 77–87, 1997.

[39] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-

based collaborative filtering recommendation algorithms,”

Proc. tenth Int. Conf. World Wide Web - WWW ’01, pp.

285–295, 2001.

[40] P. Jaccard, “Distribution comparée de la flore alpine dans

quelques régions des Alpes occidentales et orientales,”

Bull. la Socit Vaudoise des Sci. Nat., vol. 37, pp. 241–272,

1901.

[41] J. Bobadilla, F. Serradilla, and J. Bernal, “A new

collaborative filtering metric that improves the behavior

of recommender systems,” Knowledge-Based Syst., vol.

23, no. 6, pp. 520–528, 2010.

[42] J. Bobadilla, F. Ortega, A. Hernando, and Á. Arroyo, “A

balanced memory-based collaborative filtering similarity

measure,” Int. J. Intell. Syst., vol. 27, no. 10, pp. 939–946,

Oct. 2012.

[43] J. Bobadilla, F. Ortega, and A. Hernando, “A

collaborative filtering similarity measure based on

singularities,” Inf. Process. Manag., vol. 48, no. 2, pp.

204–217, 2012.

[44] H. J. Ahn, “A new similarity measure for collaborative

filtering to alleviate the new user cold-starting problem,”

Inf. Sci. (Ny)., vol. 178, no. 1, pp. 37–51, 2008.

[45] L. R. Dice, “Measures of the amount of ecologic

association between species,” Ecology, vol. 26, no. 3, pp.

297–302, 1945.

[46] M. G. Kendall, “A new measure of rank correlation,”

Biometrika, vol. 30, no. 1/2, pp. 81–93, 1938.

[47] T. M. Cover and J. A. Thomas, Elements of information

theory, Wiley. Wiley-Interscience, 2006.

[48] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.

Riedl, “Evaluating collaborative filtering recommender

systems,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 5–53,

2004.

[49] “MovieLens | GroupLens.” [Online]. Available:

https://grouplens.org/datasets/movielens/. [Accessed: 22-

Dec-2018].

[50] F. M. Harper and J. A. Konstan, “The MovieLens

Datasets,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4,

pp. 1–19, 2015.

[51] A. Gunawardana and G. Shani, “A survey of accuracy

evaluation metrics of recommendation tasks,” J. Mach.

Learn. Res., vol. 10, pp. 2935–2962, 2009.

[52] G. Carenini and R. Sharma, “Exploring More Realistic

Evaluation Measures for Collaborative Filtering,” in

Proceedings of the 19th National Conference on Artifical

Intelligence, 2004, pp. 749–754.

[53] T. Chai and R. R. Draxler, “Root mean square error

(RMSE) or mean absolute error (MAE)? -Arguments

against avoiding RMSE in the literature,” Geosci. Model

Dev., vol. 7, no. 3, pp. 1247–1250, 2014.

Authors’ Profiles

Vijay Verma is currently working as an

Assistant Professor at Computer

Engineering Department, National

Institute of Technology (NIT),

Kurukshetra, India. He holds M.Tech.

degree from Indian Institute of

Technology (IIT), Roorkee, India. His

research interest includes Data Mining,

Recommender Systems, Personalization, and related areas.

Dr. Rajesh Kumar Aggarwal holds his

Ph.D. degree and M. Tech. degree in

Computer Engineering from the NIT,

Kurukshetra in 2014 and 2004

respectively. Currently, he is working as a

Professor at the Computer Engineering

Department, National Institute of

Technology (NIT), Kurukshetra, India.

His research interest includes Speech Recognition, Information

Retrievals, and Personalization Technologies.

How to cite this paper: Vijay Verma, Rajesh Kumar Aggarwal, "Accuracy Assessment of Similarity Measures in

Collaborative Recommendations Using CF4J Framework", International Journal of Modern Education and Computer

Science(IJMECS), Vol.11, No.5, pp. 41-53, 2019.DOI: 10.5815/ijmecs.2019.05.05

