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Abstract—Self-adaptive systems appeared in order to 

reduce the effort of manual software maintenance. Apart 

from software attributes, for example, different 

alternative software modules, self-adaptation decisions 

depend on environmental attributes, for example, service 

rate, bandwidth etc. Current well-known self-adaptation 

approaches can be further improved by incorporating 

environmental attributes. Moreover, reducing 

maintenance effort includes minimizing both operational 

and development effort. To reduce the effort of 

developing self-adaptive software, the constituent 

components should be reusable. This paper proposes a 

technique to incorporate environmental attributes to 

learning-based self-adaptation and to increase the reuse 

potential of self-adaptive system components. The 

environmental attributes are provided as a constraint to an 

optimization problem which results in an optimal 

software attribute selection. Design patterns for self-

adaptive system components are proposed to improve its 

reusability. The proposed technique was validated on a 

news serving website called Znn.com. According to 

renowned reusability metrics such as Lines of Code 

(LOC), Message Passing Coupling (MPC) and Lack of 

Cohesion of Methods 4 (LCOM4), the proposed 

technique improved reuse potential. The website was 

further tested for adaptation effectiveness under two 

scenarios – adaptation and without adaptation. According 

to our experiments, Adaptation gradually improved the 

main goal response time of the website where it 

performed poorly without adaptation.  

 

Index Terms—Self-Adaptation, linear regression, 

environmental variant, design pattern, reusability, 

software variant, load balancer. 

 

I.  INTRODUCTION 

In this era of intelligent computing, the operating 

environment of software systems has become more 

complex. Due to the ever-dynamic nature of these 

systems, goals may be violated at any time. For example, 

the maximum 3s response time goal of a system may be 

violated if the number of users exceeds a predefined 

threshold. In this situation, manual operations can be 

carried out to increase the system service level [1]. For 

instance, more servers can be added along with a load 

balancer to bring back the system in its goal conforming 

state. However, as there can be large number of goals, 

detecting goal violations and applying fixes manually are 

inefficient. Therefore, self-adaptive systems that 

automatically satisfy goals at runtime are essential.  

 Machine learning techniques are widely used for data-

driven automated decision making. These are applicable 

where static condition-action rules are insufficient. For 

self-adaptive systems, a large number of condition-action 

rules are required to support numerous goals and goal 

violation conditions [2]. Furthermore, these rules need to 

be altered when goals or the dynamics of the environment 

change. Due to this, machine learning can be applied to 

build effective self-adaptive systems. Although this 

reduces the effort of manual construction, the reusability 
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of self-adaptation managers that control self-adaptation 

can further minimize this effort.  

Kim et al. proposed a reinforcement learning based 

approach to self-adaptation. They modeled self-adaptive 

systems as a Markov Decision Process and used Q-

learning for action selection [3]. Ho et al. proposed a self-

adaptive technique where a model of the environment 

was learned using supervised learning [4]. This model 

was used to calculate the value function which helped to 

construct the action selection policy. Nevertheless, 

reinforcement learning techniques are computation-

intensive when the number of state-action pairs is large. 

Hence, supervised learning based approaches emerged. 

The FUSION approach proposed by Esfahani et al. is a 

supervised learning based technique for self-adaptation [5, 

6]. FUSION defined a regression equation to express 

system metrics as a combination of features. Features are 

variation points of the system which are subset of the 

system architecture. In FUSION, feature maps to the 

individual modules of the system which can be swapped 

at runtime [5, 6]. The feature-metric equations are used to 

maximize the total utility of the system which is 

expressed as a function of the system metrics. The 

concept of feature is the core of FUSION. Apart from the 

internal features of the system, the metrics can be 

dependent on external environmental features (e.g., 

request rate, service time etc.) which FUSION did not 

consider. It further did not address reusability. However, 

as reuse reduces effort, it should be enforced to be 

inherently present in a self-adaptive approach.  

This paper proposes a learning-based self-adaptation 

technique with built-in reuse potential. The main 

contributions of this paper are as follows.  

 

 The notion of feature from FUSION model is 

changed to variant. A variant is any variation point 

in a system such as software components and 

environmental factors. A structured learning-based 

self-adaptation technique using these variants is 

presented. The data required for learning is 

generated by random sampling which improves 

the automation of the approach.  

 Design patterns are applied to the structured 

learning-based self-adaptation manager. 

Consequently, the components of this manager 

achieve separation of concern and so, reusability.  

 

The proposed technique is validated using a news-

serving website called Znn.com introduced by Cheng et 

al. [7]. The objective is to serve news contents 

maintaining a maximum response time with minimum 

content quality. Servers can be added to balance load, 

however, cost must be under a specific threshold. The 

proposed adaptation technique is tested for reusability 

and effectiveness of adaptation. Reusability is validated 

using three well-known metrics from the literature 

namely Lines of Code (LOC), Message Passing Coupling 

(MPC) [8] and Lack of Cohesion of Methods 4 (LCOM4)  

 

[9] measuring size, coupling and cohesion respectively. 

The low average LOC and low MPC values indicate that 

less effort is required to customize and reuse the 

components. 86.15% classes have standard LCOM4 of 

either 0 or 1 exhibiting higher reuse potential. To assess 

adaptation effectiveness, the main goal of response time 

is observed under the proposed technique and compared 

with the approach without adaptation. The proposed 

technique improved response time gradually under a pre-

specified threshold of 6.2 milliseconds where the 

approach without adaptation did not conform to goals.   

 

II.  BACKGROUND 

Fig. 1 shows a self-adaptive system. The self-

adaptation manager is responsible for the adaptation of a 

managed system. The business logic components are the 

managed system components. Each component has two 

variants with different configurations. The adaptation 

component analyzes the system for goal violations and 

selects the appropriate variants at runtime. Apart from 

these software variants, there are environmental variants 

that cannot be directly controlled. Nevertheless, these 

influences the choice of software variant selection as 

these are related to the system goals.  

 

Fig.1. A self-adaptive system. 

Self-adaptive systems work in a continuous loop of 

monitoring, analyzing, constructing plans and executing 

these. IBM proposed a model named MAPE-K which 

corresponds to these four processes which are Monitor, 

Analyze, Plan and Execute with a knowledge base [10]. 

Monitor process continuously collects information from 

the system. This information is expressed as metric 

values such as response time, throughput etc. These are 

transferred to the Analyze process which detects goal 

violation. To do this, the Analyze process may compare 

the metric values with pre-specified thresholds. Goal 

violation triggers the Plan process which determines the 

required action sequence for goal conformance. The 

action sequence can be an alteration of configuration 

parameter values, substitution of software components etc. 

In the proposed technique, the action sequence indicates 

the selection of variants. This plan is realized by the 

Execute process. 
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Algorithm 1 Algorithm for Learning-Based Self-Adaptation 

 Input   : 
1 2 3 , ,{ , , }

nm m m m mT T T T T Metric thresholds set 

 { , , }1 2 3, ,DV DV DV DV DVn Variant dependencies set 

 
1 2

{ , ,, , }
ne e e eV V V V Environmental variants set 

 
1 2 3

{ , , , , }
nG G G G GGT GT GT GT GT  Goal types set 

  Tre  Regression error threshold 

 Output : 
1 2 3

{ , , , , }
nV V V V VS S S S S Set of software variant 

selection where 
iVS is 0 or 1  

1: Initialize the set of metric equations mE , utility functions mU , 

utility values vU  and metric values vM  to   

2: Generate training data using Algorithm 2 

3: if mE   OR Regression error reT then 

4:  Generate regression model M using training data 

5:  
mE metric equations from M  

6: end if  

7: for 1i   to n do 

8:  if 
iGGT  maximization then 

9:   
i i im m mU E T   

10:  else  

11:   
i i im m mU T E   

12:  end if  

13: end for   

14: VM  calculate and get current values of metrics 

15: vU  Get utility values by replacing mE with VM in mU  

16: for 1i   to n do 

17:  
VS Generate software variant selection using 

Algorithm 3 

18: end for  

 

As a concrete example of a self-adaptive system, 

consider a news serving website that provides textual and 

multimedia-based news to its users. Its architecture is 

shown in Fig. 2. Multiple servers form a server group 

which is connected to a load balancer. The goal of this 

system is to respond within a maximum response time 

with a minimum content quality. To maintain this 

response time, multiple servers can be added to the server 

group. However, server cost must be under a specific 

threshold. These requirements indicate that a self-

adaptive technique should be adopted for this system. 

 

 

Fig.2. The architecture of a news serving website with load balancer. 

 

 

 

 

Algorithm 2 Algorithm for Knowledge Base Construction 

 Input    : 1 2 3{ , , , , }nM M M M M Metric set 

 
1 2

{ , ,, , }
nS S S SV V V V Software variants set 

 Output : 
1 2 3

{ , , , , }
nt m m m mD D D D D The set of training data 

for each metric  

1: Initialize the training data set tD to  and training data size L to 

any constant c  

2: for 1i   to n do 

3:  while 0L  do  

4:   for 1j   to n do 

5:    Randomly select or deselect 
jSV  

6:   end for  

7:   
iVM  Get current value of metric iM  

8:   
VS = Get current software variant 

selection 
9:   {( , )}

i i im m V VD D S M   

10:   
1L L   

11:  end while  

12: end for  

13: Write tD to file 

 

 

III.  LEARNING-BASED SELF-ADAPTATION WITH 

REUSABILITY 

The main objective of self-adaptation is to handle goal 

violations automatically. Goal violation is calculated by 

observing whether metric values maintain a specific 

threshold. In this work, goal conformation is calculated 

using a utility function which is a function of metric 

values and threshold. Therefore, utility function can be 

expressed as :tu m t  where 
tu is the utility 

function, m is the metric and t is the threshold. The main 

goal is to find the variant selection that maximizes the 

total utility of the system. To do this, utility function must 

be expressed as a function of variant statuses. This is 

achieved by expressing metric as :m v , where v is 

the variant status. A software variant status is 1 if selected 

and 0 otherwise. An environmental variant status is the 

value of the related metric. For example, the status of an 

environmental variant called queue length is the metric 

value measuring the number of requests waiting in the 

queue. The relation between metric and variants are 

constructed by learning from previous data of the 

form :m v , which is generated by observing metric 

values under a random selection of software variants. 

Best variant selection can be obtained by solving an 

optimization problem which maximizes the total utility 

function with respect to the current values of the 

environmental variants. The learning-based self-

adaptation technique is described in details below. 

Algorithm 1 shows the proposed learning-based self-

adaptation technique. It takes metric thresholds, variant  
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dependencies, environmental variants, goal types and 

regression error threshold as inputs and provides the best 

software variant selection. On line 1, the set of metric 

equation, utility functions, utility values and metric 

values are initialized as empty. In this paper, we use the 

variant dependencies mentioned by Esfahani et al. 

because these are simple equations or inequalities and can 

be directly fitted into the optimization problem to be 

constructed [6]. Table 1 shows the variant dependencies 

which are zero-or-one-of-group, exactly-one-of-group, at-

least-one-of-group, zero-or-all-of-group and parent child 

relation. These are defined as follows.  

 

1. zero-or-one-of-group: This resembles that more 

than one feature cannot be enabled. 

2. exactly-one-of-group: This means that exactly one 

feature can be enabled at a time in the feature 

group. 

3. at-least-one-of-group: This dependency indicates a 

mandatory relationship where at least one of the 

features in the group must be enabled. 

4. zero-or-all-of-group: It indicates that either all or 

none of the features will be turned on. 

5. parent child  relation:  This means that enabling a 

specific variant (parent) requires all other variants 

of the group to be enabled. 

 

Line 2 generates the training data by running 

simulations using Algorithm 2. It takes metrics and 

software variants as inputs and provides training data set 

for each of the metrics. For each metric, each of the 

software variants is randomly turned on or off (line 5). 

After all the software variants have been analyzed, the 

current variant selection is extracted (line 8). On line 9, 

the current software variant selection and the metric value 

under that context are added as training data.   

Table 1. Variant Dependencies 

Variant Type Variant Constraint Variant Relation 

Optional 

 zero or one of group

1
n

n

n

f

f
     

  
zero-or-one-of-group 

Mandatory 

 exactly one of group

1
n

n

n

f

f
    

  
exactly-one-of-group 

Mandatory 

 at least one of group

1
n

n

n

f

f
     

  
at-least-one-of-group 

Optional 

 zero-or-all-of-group

    0?
n

n

n

f

f mod n
 

  
zero-or-all-of-group 

Depends on Child Features     0?parent childchild shared features f f     parent child relation 

Table 2. Design Pattern for the Components 

Component Subcomponent Type Design Pattern 

Preprocessing 

Preprocessing Interface 

Decorator 
Preprocessing algorithms (e.g., variant selection, normalization etc.) Class 

Learning 

Learning Interface 

Strategy 
Learning algorithm (e.g., linear regression, regression tree etc.) Class 

Learning Accuracy 

Checking 

Learning Component 

Observer 
Subject Interface 

Different notification schemes (e.g., RMSE threshold based, failure count based etc.) Class 

Optimization 

Linear Optimization Interface 

Strategy 
Linear optimization algorithms (e.g., Simplex algorithm. Karmarkar's algorithm etc.) Class 

Optimization Problem 

Problem Decorator Interface 

Decorator 
Objective Function Decorator Class 

Variant Constraint Decorator Class 

Environmental Variant Constraint Decorator Class 
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After training data generation, on Line 4 and 5 of 

Algorithm 1, machine learning algorithm is used to 

generate metric equations from the training data. In the 

proposed technique, linear regression is used to generate 

these equations. This is because linear regression is 

simple, efficient and produces a linear equation that can 

be used later to apply linear programming to solve an 

optimization problem. Linear regression produces the 

equation similar to (1). 

 

1

n

i i i

i

m k v c


                          (1) 

 

Here, 
im  denotes the metric, 

iv is the variant, and 

ik and c are the slope and intercept respectively. Metric 

equations are reconstructed if the regression error (e.g., 

RMSE) is greater than a specific threshold (line 3).  

 
Algorithm 3 Algorithm for Software Variant Selection 

 Input  : 
ivU Utility value of the thi metric 

 { , , }1 2 3, ,DV DV DV DV DVn Variant dependencies set 

 
1 2

{ , ,, , }
ne e e eV V V V Environmental variants set 

 
1 2 3

{ , , , , }
nm m m m mU U U U U  Utility functions set 

  
1 2 3

{ , , , , }
nm m m m mE E E E E Metric equations set 

 Output: 
1 2 3

{ , , , , }
nV V V V VS S S S S Set of software variant 

selection where 
iVS is 0 or 1  

1: Initialize the maximization objective function maxF to 
imU , the 

set of optimization problem OP and environmental variant 

constraints
veC to   

2: if 0
ivU  then 

3:  
iSV  Get  software variants from 

imE  

4:  for 1j   to n do 

5:   
jSV  Get  software variants from 

jmE  

6:   if 
i jS SV V   then 

7:    
max max jSF F V   

8:   end if  

9:  end for  

10:  for 1j   to n do 

11:   
jeE  Get current value of  

jeV  

12:   (" ")
v v j je e e eC C V E   

13:  end for  

14:  
max veOP OP F DV C  

15:  
VS  Solve OP using Linear Programming 

16: end if  

 

These metric equations are used to generate the utility 

functions (line 7-13). The metric thresholds and goal 

types are further required for this purpose. This work 

defines two goal types based on the type of optimization 

problem namely maximization and minimization. For 

maximization goals, where the metric values need to be 

more than the provided threshold, the generated equation 

has the form similar to (2). 

 

          n n nUtility Metric Threshold   (2) 

 

Here  nUtility is the utility value, 
nMetric is the metric 

value and  nThreshold represents the metric threshold 

value for the nth metric. The utility function for 

minimization goal can be constructed similarly. 

These utility values are continuously monitored for 

goal violation. From (2), goal violation occurs if utility 

value is less than zero. The goal violation and the 

software variant selection procedure are shown in 

Algorithm 3. In case of goal violation (line 2), the 

optimization problem is constructed. The goal is to 

maximize the total utility function value of the violated 

goals. These goals are related because two metric 

equations may have overlapping variants which makes 

these metrics dependent. Hence, the violated utility 

function may have dependencies with other utility 

functions indicated by the shared variants in their 

corresponding metric equations. The summation of all 

these dependent utilities constructs the maximization 

objective function. On line 3 to 9 in Algorithm 3, the 

construction process of this function is shown. 

Furthermore, the current values of the environmental 

variants are extracted and added as constraints from line 

10 to 13. On line 14, the linear optimization problem is 

constructed using the maximization function, variant 

dependencies and environmental variant constraints. This 

linear optimization problem is solved to get a software 

variant selection (line 15). This software variant selection 

is the final output of the algorithm that is used to turn on 

or off software variants. Thus, the most optimal feature 

selection subject to the variant dependencies and current 

environmental status is executed.     

The components of the self-adaptation manager have 

been organized with Gang of Four (GoF) design patterns 

so that these can be reused and customized easily [11]. 

These are selected by matching the intent of the design 

pattern with the intent of the components. Table 1 shows 

the components, subcomponents and the design patterns. 

These design patterns and their applications in the 

proposed approach are discussed below. A detailed 

discussion of the GoF design patterns is out of the scope 

of this paper. Interested readers are referred to [11]. 

 

 Strategy Pattern: Strategy pattern is used when 

algorithms need to be varied independently. 

Adding an algorithm involves only implementing 

the abstraction and passing its reference to the 

invoker of the algorithm. Thus, it promotes 

customizability and reuse. This is why this pattern 

has been used to support reuse and customization 

of the learning algorithm and linear optimization 

algorithm (Table 1). 

 Decorator Pattern: Decorator pattern is used when 

functionalities need to be added dynamically. 

Decorator pattern has been used for the 

preprocessing logic (Table 1). If two 

preprocessing algorithms such as normalization 

and feature selection are used, this pattern helps to 
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pass the normalized data to the variant selection 

component and forward the selected features to the 

learning algorithm. Decorator pattern helps to add 

any object within the flow easily. For example, if 

anyone wants to add missing data handling, he 

needs to create a class and insert it between 

normalization and variant selection which involves 

changing only two references. For the same 

reasons, the decorator pattern has been used to add 

attributes to the optimization problem when 

adaptation is required (Table 1). The variant 

constraints, environmental variant constraints and 

the objective function are added to build a 

complete optimization problem. Then, it is passed 

to an optimization algorithm for receiving an 

optimal variant selection. As the problem is built 

at runtime gradually, Decorator pattern is suitable 

for this purpose.  

 Observer Pattern: This is used when a notification 

scheme is needed. For this, it has been used to 

notify the learning process to start again because a 

new pattern has arrived (Table 1). To achieve this, 

the learning component has to act as an observer 

that registers to a subject that sends notifications. 

For example, RMSE threshold based subject will 

notify the learning component when the RMSE 

will be higher than a specific threshold.  

 

Applying design patterns for self-adaptive system 

design helps to maintain a consistent structure of the 

adaptation manager. For this reason, modifying and 

reusing any part of it becomes easier. The proposed 

methodology incorporates design patterns as a part of the 

adaptation component design mechanism to ensure that 

systematic reuse can be achieved. 

 

IV.  EXPERIMENTAL SETUP 

The proposed technique was tested on Znn.com which 

is a model problem by Cheng et al. in the repository of 

the Software Engineering for Self-Adaptive Systems 

community [12]. The Znn.com system has been used in 

numerous papers for evaluating their adaptation 

approaches [13, 14, 15, 16, 17]. This is why Znn.com has 

been used to assess the proposed methodology.  

Znn.com is a news serving application similar to Fig. 2 

which provides textual and multimedia-based news to its 

users. According to the Znn.com specification, it follows 

an N-tier style where a load balancer is connected to a 

server group. The clients send their request to the load 

balancer and it distributes the requests among the servers 

in the server group. The business goals of Znn.com are 

related to performance, content fidelity or quality and 

server cost. The main goal is to provide service with a 

minimum content fidelity and within the budget while 

maintaining a minimum performance. These goals are 

related to one another. For example, if content fidelity 

gets higher, server performance will decrease because the 

response size is larger due to better content quality (e.g. 

high-resolution images). Hence, a new server needs to be 

added from the server group. However, servers cannot be 

added infinitely because the total cost of all the added 

servers must fall within a specific range. All these 

scenarios make the satisfaction of multiple goals a 

nontrivial task. Therefore, Znn.com requires a self-

adaptive mechanism to optimally work under multiple 

goals.  

Another scenario where Znn.com demands adaptation 

is when the news website is under a high load situation, 

known as the Slashdot Effect. As mentioned by Cheng et 

al. in [13], if a website is featured in slashdot.org [18], it 

gets crowded with visitors within a few hours or days. 

Due to hit from multiple users, the website might be 

temporarily down. To partially solve the scenario, some 

applications such as Gmail request the users to reload 

later when such a high load situation is detected. 

However, this is not expected because it hampers the 

service level of the application. For this reason, a self-

adaptation scheme is required which repairs the system 

and brings it closer to the three goals mentioned in the 

previous paragraphs.     

Znn.com was deployed on five virtual machines which 

were connected to another virtual machine acting as a 

load balancer. Two more virtual machines were used 

where one helped to collect metric information and the 

other one helped to simulate user requests. Each of the 

virtual machines had the following configuration. 

 

 Operating System: Ubuntu 14.04 LTS 

 RAM: 512 MB 

 CPU: 3.30GHz Intel Core i3 Processor 

 Platform: 32 bit 

 Virtual Disk: SATA Controller 8 GB 

 

The implementation of Znn.com was done with PHP 

and MySQL. The effectors were written in Bash scripting 

language. In each of the server machines, apache2 web 

server was used to deploy Znn.com. Apache JMeter was 

used to simulate user requests in the user requests 

simulation environment. In the metric collection 

environment, PHP codes were deployed using apache2 

web server which was used to calculate the metric values 

of performance, cost, content fidelity and the 

environmental variants.  

Before starting the experiment, the variants and variant 

dependencies of Znn.com were specified. As software 

variants are entities that can vary and can be toggled 

(turned on or off), it is evident that every server is a 

software variant. This is because adding a server means 

turning it on and removing means otherwise. Cheng et al. 

mentioned that content fidelity has three types which are 

high, low and text [13]. Each of these is a software 

variant which can be toggled. The server variants belong 

to the at-least-one-of dependency group. This is because 

at least one of the servers must be turned on to serve 

contents. Moreover, exactly one of the content fidelity 

variants can be selected and so, these belong to the 

exactly-one-of variant dependency group.  

After choosing variants and variant dependencies, 

metrics and utilities were chosen. Response time, content 
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size and number of active servers were used to calculate 

performance, content fidelity and cost respectively. The 

thresholds for each of these which are maximum response 

time limit, minimum content fidelity and maximum 

number of active servers respectively, were chosen. As 

the operating environment of software is vastly dynamic, 

these thresholds are likely to vary in different systems. 

For environmental variants, service time and request 

arrival rate were chosen.  

 

 

Fig.3. LOC Distribution of Components. 

In order to access effectiveness, the system was put 

under a situation representing the Slashdot effect. To do 

this, the experiments provided in [7] were repeated. 

However, each of the experiments was tuned down to 

around 15 minutes and load five times higher than the 

mentioned experiment was provided which is mentioned 

below. 

 

 15 seconds of load with 30 visits/min 

 2.5 minutes of ramping up to 3000 visits/min 

 4.5 minutes of fixed load to 3000 visits/min 

 9 minutes of ramping down to 60 visits/min 

 

The situation was simulated using the Throughput 

Shaping Timer plugin of Apache JMeter1. The Gaussian 

Random Timer of JMeter was also used to provide short 

delay within requests to represent real-life behavior.  

Table 3. Descriptive Statistics for LCOM4 and MPC of the Proposed 

Method 

 
 

For assessing reusability of the proposed approach, 

three metrics were used which are Lines of Code (LOC), 

Message Passing Coupling (MPC) [8] and Lack of 

Cohesion of Methods 4 (LCOM4) [9]. LOC was used in 

the Rainbow framework by Cheng et al. for assessing 

                                                           
1 https://jmeter.apache.org/ 

reusability [7]. However, LOC, as a measure of 

reusability has been criticized in some of the literature 

because LOC does not represent the connections between 

and within the classes or modules [13, 19]. This is why 

coupling and cohesion based metrics were used. It has 

been seen that reusability depends on coupling and 

cohesion of classes as low coupling and high cohesion 

increases the chance of reuse [20]. For this reason, MPC 

and LCOM4 were used to measure the reusability of the 

approach. These metrics are described below. 

 

 

Fig.4. LCOM4 Distribution of Components. 

 

Fig.5. MPC Distribution of Components. 

 LOC: LOC counts the number of lines in the code. 

However, issues such as, whether comments, 

blank lines etc. will be considered are a concern. 

David Wheeler developed a code analysis tool 

named SLOCCount 2 , which was also used by 

Rainbow for counting LOC. In this tool, a LOC is 

considered as a line terminated with a newline, 

which contains at least one character excluding 

whitespaces and comments. To validate the 

proposed methodology, SLOCCount was utilized 

to calculate LOC. The lower the LOC, the higher 

the probability of reuse. 

 MPC: According to Fenton et al., MPC is a valid 

measure of coupling and so, a valid measure of 

                                                           
2 https://dwheeler.com/sloccount/sloccount.html 

Metric Minimum 

Value 

Maximum 

Value 

µ σ 

LCOM4 0 3 0.8923 0.75256 

MPC 0 17 3.046 4.40678 
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reusability [19]. MPC indicates the number of 

external invocation of methods from a class. For 

example, if a class calls 5 methods of some other 

classes, the value of MPC for this class is 5. MPC 

was used to measure the coupling between the 

classes of the adaptation manager after it was 

integrated with Znn.com. The higher the MPC, the 

higher the class is dependent on other classes, 

therefore, the lower the reusability 

 LCOM4: LCOM4 is a measure of cohesion. 

Cohesion indicates the strength of internal 

relationships of functionalities within a class. 

LCOM4 is the number of “connected 

components” within a class [21]. A connected 

component consists of a group of methods which 

either call one another or share at least one 

instance variable of the class. The presence of 

multiple connected components for a class means 

that the class performs multiple unrelated 

responsibilities. Hence, cohesion and reusability 

increase as LCOM4 decrease. The ideal values of 

LCOM4 are either 0 or 1 [21]. 

 

To assess the effectiveness of adaptation, the 

experiment was performed five times starting from a 

single server and high fidelity variant selection. This is 

because this feature selection results in the worst 

performance. Every time one of the five servers was 

chosen and the load was increased by any constant factor. 

In the experiments conducted, the load was increased by 

120 visits/min and it was observed that the system 

reaches its maximum capacity after five runs. In each of 

the runs, it was observed whether the proposed 

methodology could gradually improve performance. 

Following the literature, the value of the main objective 

response time was compared in two situations, namely 

adaptation and without adaptation [3, 6, 13].  

 

V.  RESULT ANALYSIS AND DISCUSSION 

Fig. 3 shows the LOC distribution of different 

components. It is evident that the first four components 

have relatively lower LOC. However, the Optimization 

problem component has a higher LOC because it consists 

of a higher number of classes. Upon further investigation, 

we observed that the average LOC of this component is 

35 which is close to the average LOC of the other 

components. Therefore, the classes are short and stable in 

size indicating better modularity and better reuse. Table 3 

shows the minimum value, maximum value, mean and 

standard deviation of LCOM4 and MPC. For LCOM4, 

the highest value is 3 and the lowest value is 0. The mean 

and standard deviation of this metric is 0.8923 and 

0.75256 which indicates that LCOM4 values are close to 

the ideal values (0 and 1). The mean and standard 

deviation for MPC is 3.046 and 4.40678 which shows 

that MPC values are low on average. This indicates low 

coupling between classes.  

These results are more clearly visible from Fig. 4 and 5. 

From Fig. 4, it is seen that 86.15% classes have LCOM4 

values of either 0 or 1, where 13.85% classes have values 

different from these. Therefore, 86.15% classes have 

achieved maximum cohesion. Fig. 5 shows the number of 

classes for each of the MPC values. It is evident from the 

figure that most of the classes have low MPC values. This 

shows that the proposed methodology results in loosely 

coupled classes. Hence, according to the discussion in 

Section II, low coupling and high cohesion show the 

reusability of the proposed technique. 

The five runs of the adaptation logic for Znn.com is 

depicted in Fig. 6. It is visible from all the five figures 

that adaptation gradually improves the performance of the 

system. The threshold chosen for performance was 6.2 

milliseconds (ms). From Fig. 6(a), it is seen that response 

time instantly decreases after approximately 10 requests 

and increases after approximately 18 requests. After this, 

the response time stays constant because of the fixed load 

of 3000 visits/min as mentioned in Section II. Overall, the 

proposed adaptation technique helps to quickly decrease 

the response time down to 6.2 ms and remain there. The 

response time threshold is frequently exceeded for the 

technique without adaptation. 

A similar pattern is seen in Fig. 6(b). The adaptation 

mechanism reduces the response time from the large 

spike after approximately 15 requests down to almost 5 

ms. The system performs worse overall without 

adaptation because the response time is higher than the 

threshold from 12 to 38 requests approximately.  

From Fig. 6(c), the response time line also decreases 

after 15 requests. The response time becomes less than 

the threshold after approximately 15 requests and remains 

unchanged up to approximately 35th request when a 

violation of the response time goal is observed. However, 

under the proposed adaptation technique, the response 

time quickly drops back under the threshold and stays 

there throughout the run.    

Fig. 6(d) shows a similar pattern like Fig. 6(c). 

However, considering the aforementioned four figures, it 

is clear that adaptation quality is gradually improved 

because the average distance between the adaptation and 

without adaptation lines becomes distant. This happens 

due to the continuous update of the knowledge base and 

training which ensures that the prediction model is up-to-

date throughout the time.  

Fig. 6(e) represents the run with maximum load. Here, 

the response time varies unstably. However, the 

adaptation mechanism still shows better performance 

than the system without any adaptation. Throughout the 

run, the mechanism without adaptation goes above the 

threshold where the system with adaptation violates the 

response time goal only five times, however, immediately 

reduces down to the threshold limit. 
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Fig.6. Comparison of Performance: Adaptation vs Without Adaptation in Five Runs 

 

VI.  RELATED WORK  

Architecture-based self-adaptive systems operate on 

architectural models to detect goal violation and perform 

actions on the managed system through the model. 

Rainbow framework is a seminal architecture-based self-

adaptation approach which achieved reusability of the 

overall infrastructure [7, 13]. However, the system 

components were not reusable and the strategies were 

hard-wired static ones. MADAM framework proposed by 

Flock et al. used predefined utility functions to select the 

highest utility reconfiguration of the model [22]. 

Although their model was more dynamic, the reusability 

of the self-adaptation was not addressed and the utility 

functions were required to be predefined. Gui et al. 

proposed the Transformer framework where strategies of 
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a specific goal were composed in a module which they 

termed as Composable Adaptation Planner (CAP) [23]. 

As it was based on static strategies, problems similar to 

the Rainbow framework were present. 

Another dimension towards designing self-adaptive 

systems is based on control theory. One of the earliest 

approaches is the hierarchical model-based autonomic 

control proposed by Litoiu et al. [24]. The managed 

system was attached to three levels of controllers or self-

adaptation managers namely component, application and 

provisioning controller. The component controller 

maintained a model of a component which was tightly 

coupled to the controller. Therefore, the reusability level 

of the controller was low. Müller et al. proposed a high-

level design for a feedback-control driven self-adaptive 

system [25]. As it was mentioned that the controller code 

and core system code could be intermingled, the 

reusability level was low.  

Several techniques based on component models have 

been proposed. Examples of these techniques include the 

K-Component framework by Dowling et al. [26], Fractal 

component model based framework by David et al. [27], 

and Fractal and dynamic Aspect Oriented Programming 

based approach by Wu et al. [28]. Although the 

component model based techniques achieved high 

reusability within the same component model, reuse 

between component models was difficult. Current self-

adaptation techniques are mostly based on machine 

learning due to the aforementioned reasons. 

Reinforcement learning based techniques such as model-

free Q-learning based technique by Kim et al. [3] and 

self-adaptation using model-based reinforcement learning 

by Ho et al. [4] were proposed. Nevertheless, these 

techniques are prone to state space explosion for large-

scale systems. Moreover, the issue of reusability was not 

addressed. Esfahani et al. proposed the FUSION 

framework which determined an application feature 

(variant) selection by solving an optimization problem 

that maximizes total system utility [5, 6]. Similar to our 

proposed approach, they expressed metrics as a function 

of features to derive utility functions. However, they 

ignored the environmental variants which are essential for 

an effective adaptation. Additionally, FUSION did not 

explicitly address the issue of reusability.   

In this paper, two types of variants are used namely 

application and environmental variants. In the 

optimization problem, the current values of the 

environmental variants are used. Hence, all the 

application variant selections are specific to a particular 

environmental instance. This leads to better self-

adaptation. The adaptation approaches in the literature 

lack such a unified approach of application and 

environmental variants. Moreover, although some 

techniques discuss reusability of the whole self-

adaptation manager, none of these address the reusability 

of the components of the manager. The proposed 

technique addresses this issue by designing the self-

adaptation manager components using design patterns.  

 

VII.  CONCLUSION  

Reducing the effort of manual maintenance of software 

is the core objective of self-adaptation. The reusability of 

self-adaptation managers can further reduce the effort of 

building a self-adaptation solution. The proposed 

technique is aimed towards proposing a solution to self-

adaptation that is both effective and reusable at the 

component level. This is achieved by incorporating 

environmental variants with software variants and using 

these to form an optimization problem for maximizing 

the total utility of the system. The total utility is 

constructed using the utility functions of violated goals. 

These utility functions are expressed using metrics and 

their thresholds which are further expressed in a linear 

form applying linear regression learning algorithm. This 

linear form helps to state metric as a function of variants, 

both software and environmental. In the optimization 

problem, the environmental variants and their current 

values are used to generate constraints. The solution to 

this optimization problem is a software variant selection 

under the current values of the environmental variants. 

During the design of the self-adaptation manager, design 

patterns have been used to ensure reusability. In the paper, 

these design patterns are described which have been 

selected by comparing their intents with the intents of 

self-adaptation manager components.  

The approach has been validated using a news serving 

website named Znn.com. Low values of LOC, MPC and 

LCOM4 showed the reuse potential of the self-adaptation 

manager components. The response time of the website 

was observed under with and without adaptation. It was 

seen that the proposed self-adaptation technique stably 

improved response time. Conversely, the response time 

varies rapidly when adaptation is not applied. 
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