
I.J. Modern Education and Computer Science, 2019, 9, 54-64
Published Online September 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2019.09.06

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

A Feature Selection based Ensemble

Classification Framework for Software Defect

Prediction

Ahmed Iqbal, Shabib Aftab, Israr Ullah, Muhammad Salman Bashir, Muhammad Anwaar Saeed
Department of Computer Science, Virtual University of Pakistan

Email: ahmedeqbal@gmail.com, shabib.aftab@gmail.com, israr.ullah@vu.edu.pk, salman.vu@gmail.com,

anwaar@vu.edu.pk

Received: 26 July 2019; Accepted: 23 August 2019; Published: 08 September 2019

Abstract—Software defect prediction is one of the

emerging research areas of software engineering. The

prediction of defects at early stage of development

process can produce high quality software at lower cost.

This research contributes by presenting a feature

selection based ensemble classification framework which

consists of four stages: 1) Dataset selection, 2) Feature

Selection, 3) Classification, and 4) Results. The proposed

framework is implemented from two dimensions, one

with feature selection and second without feature

selection. The performance is evaluated through various

measures including: Precision, Recall, F-measure,

Accuracy, MCC and ROC. 12 Cleaned publically

available NASA datasets are used for experiments. The

results of both the dimensions of proposed framework are

compared with the other widely used classification

techniques such as: “Naïve Bayes (NB), Multi-Layer

Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree

(DT), and Random Forest (RF)”. Results reflect that the

proposed framework outperformed other classification

techniques in some of the used datasets however class

imbalance issue could not be fully resolved.

Index Terms—Ensemble Classifier, Hybrid Classifier,

Random Forest, Software Defect Prediction, Feature

Selection

I. INTRODUCTION

Today, the production of high quality software at

lower cost is challenging due to the large size and high

complexity of required systems [1,2], [23]. However this

issue can be resolved if we can predict about the

particular software modules in advance, where defects

are more likely to occur in future [3], [10]. The process

of predicting a defective module is known as software

defect prediction in which we predict the future defects at

the early stages of software development life cycle

(before the testing). It is considered as one of the

challenging tasks of quality assurance process.

Identification of defective modules at the early stage is

vital as the cost of correction increases at later stages of

development life cycle. Software metrics extracted from

historical software data is used to predict the defective

modules [29,30,31,32]. Machine learning techniques

have been proved as a promising way for effective and

efficient software defect prediction. These techniques are

categories as 1) supervised, 2) un-supervised, and 3)

hybrid. The supervised technique needs a pre-classified

(training data) in order to train the classifier. During

training the rules are developed which are further used to

classify the unseen data (test data). In unsupervised

techniques no training data is needed as these techniques

use particular algorithm to identify the classes and

maintain. The hybrid approach integrates the both

(supervised and un-supervised). This paper proposed a

feature selection based ensemble classification

framework for software defect prediction. The

framework is implemented from two dimensions, one

with the feature selection and second without the feature

selection, so that the difference of results in both

dimensions can be analyzed and discussed. Each

dimension further used two techniques Bagging and

Boosting with Random Forest. Performance evaluation is

performed from various measures such as: Precision,

Recall, F-measure, Accuracy, MCC and ROC. Clean

version of 12 publically available NASA datasets are

used in this research including: “CM1, JM1, KC1, KC3,

MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5”. The

results of the proposed framework are also compared

with other widely used supervised classification

techniques such as: “Naïve Bayes (NB), Multi-Layer

Perceptron (MLP). Radial Basis Function (RBF), Support

Vector Machine (SVM), K Nearest Neighbor (KNN),

kStar (K*), One Rule (OneR), PART, Decision Tree

(DT), and Random Forest (RF)”. According to results the

proposed framework showed higher performance in some

of the used datasets but the class imbalance problem is

not fully resolved. The class imbalance issue in software

defect datasets is one of the main reason of lower and

biased performance of classifiers [22,23].

mailto:shabib.aftab@gmail.com
mailto:israr.ullah@vu.edu.pk

 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction 55

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

II. RELATED WORK

Many researchers have used machine learning

techniques to resolve the classification problems in

various areas including: sentiment analysis

[11,12,13,14,15,16], network intrusion detection [17] “in

press”[18],[19], rainfall prediction [20,21], and software

defect prediction [10], [29] etc.. Some selected studies

regarding the software defect predictions are discussed

here briefly. In [10] the researchers compared the

performance of various supervised machine learning

techniques on software defect prediction and used 12

NASA datasets for experiments. The authors have

highlighted that Accuracy and ROC did not show any

reaction on class imbalance issue however Precision,

Recall, F-Measure and MCC reacted on this issue with a

symbol of “?” in results. In [24], the researchers used six

classification techniques for software defect prediction

and used the data of 27 academic projects for experiment.

The used techniques are: Discriminant Analysis,

Principal Component Analysis (PCA), Logistic

Regression (LR), Logical Classification, Holographic

Networks, and Layered Neural Networks model. Back-

propagation learning technique was used to train ANN.

Performance evaluation was performed by using

following measures: Verification Cost, Predictive

Validity, Achieved Quality and Misclassification Rate.

The results reflected that, no classification technique

performed better on software defect prediction in the

experiment. In [25] the researchers predicted the software

defects by using SVM and compared the performance

with other widely used prediction techniques including:

Logistic Regression (LR), K-Nearest Neighbors (KNN),

Decision Trees, Multilayer Perceptron (MLP), Bayesian

Belief Networks (BBN), Radial Basis Function (RBF),

Random Forest (RF), and Naïve Bayes, (NB). For

experiments, NASA datasets are used including: PC1,

CM1, KC1 and KC3. According to results SVM

outperformed some of the other classification techniques.

In [26] the researchers explored and discussed the

significance of particular software metrics for the

prediction of software defects. They identified the

significant software metrics with the help of ANN after

training with historical data. After that the extracted and

shortlisted metrics were used to predict the software

defects through another ANN model. The performance of

the proposed technique was compared with Gaussian

kernel SVM. JM1 dataset from NASA MDP repository

was used for experiment. According to results the SVM

performed better than ANN in binary defect classification.

Researchers in [27] proposed a technique for software

defect prediction which includes a novel Artificial Bee

Colony (ABC) algorithm with Artificial Neural Network

in order to find the optimal weights. For experiment, five

publically available datasets were used from NASA MDP

repository and the results reflected the higher results of

proposed technique as compared to other classification

techniques. In [28], the researchers introduced an

approach which consists of Hybrid Genetic algorithm and

Deep Neural Network. Hybrid Genetic algorithm is used

for the selection and optimization of features whereas

Deep Neural Network is used for classification by

focusing on the selected features. The experiments were

carried out on the PROMISE datasets and the results

showed the higher performance of proposed approach as

compared to other defect prediction techniques.

III. MATERIALS AND METHODS

This research proposes a feature selection based

ensemble classification framework to predict the software

defects.

Fig.1. Proposed Classification Framework.

The proposed framework (Fig. 1) consists of four

stages: 1) Dataset selection, 2) Feature Selection, 3)

Classification, and 4) Results. The framework is

implemented in two dimensions, in first, the feature

selection stage is skipped and datasets are directly given

to the ensemble classifiers however in second dimension

the datasets gone through the feature selection stage. The

performance of both the dimensions of proposed

framework is compared with other widely used classifiers

such as: “Naïve Bayes (NB), Multi-Layer Perceptron

(MLP), Radial Basis Function (RBF), Support Vector

Machine (SVM), K Nearest Neighbor (kNN), kStar (K*),

One Rule (OneR), PART, Decision Tree (DT), and

Random Forest (RF)”. All the experiments are performed

in WEKA [5], which is the widely used data mining tools.

It is developed in Java language at the University of

Waikato, New Zealand. It is widely accepted due to its

portability, General Public License and ease of use.

Dataset selection is the first stage of proposed

framework. Twelve publically available cleaned NASA

datasets are used in this research for experiment. The

datasets include: “CM1, JM1, KC1, KC3, MC1, MC2,

MW1, PC1, PC2, PC3, PC4 and PC5 (Table 2)”. Each

56 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

dataset belongs to a particular NASA’s software system,

and consists of various quality metrics in the form of

attributes along with known output class. The output

class is also known as target class and is predicted on the

basis of other available attributes. The target/output class

is known as dependent attribute whereas other attributes

which are used to predict the dependent attribute are

known as independent attributes. The datasets used in

this research included dependent attribute having values

either “Y” or “N”. “Y” reflects that the particular

instance (module) is defective and “N” means it is non-

defective. The researchers in [4] provided two versions of

clean datasets: DS’ (“which included duplicate and

inconsistent instances”) and D’’ (“which do not include

duplicate and inconsistent instances”). Table 1 reflects

the cleaning criteria implemented by [4]. We have used

D’’ (Table 2) version in this research which is taken from

[6]. These cleaned datasets are already used and

discussed by [7,8,9,10].

Table 1. Cleaning Criteria [4]

Criterion
Data Quality

Category
Explanation

1. Identical cases
“Instances that have identical values

for all metrics including class label”.

2.
Inconsistent

cases

“Instances that satisfy all conditions

of Case 1, but where class labels

differ‘.

3.
Cases with

missing values

“Instances that contain one or more

missing observations”.

4.

Cases with

conflicting

feature values

“Instances that have 2 or more

metric values that violate some

referential integrity constraint. For

example,

LOC TOTAL is less than

Commented LOC. However,

Commented LOC is a subset of LOC

TOTAL”.

5.

Cases with

implausible

values

“Instances that violate some integrity

constraint. For example, value of

LOC=1.1”.

Table 2. NASA Cleaned Datasets D’’ [4], [7]

Dataset Attributes Modules Defective Non-

Defective

Defective

(%)

CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC3 40 194 36 158 18.5

MC1 39 1952 36 1916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1,053 130 923 12.3

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

Feature selection is the second and the most significant

stage of proposed classification framework. This stage

selects the optimum set of features for effective

classification results. Many researchers have reported

that most of the datasets only have few of the

independent features which can predict the target class

effectively whereas remaining features do not participate

well and even can reduce the performance of classifier if

not removed. We have used Chi-Square as attribute

evaluator along with Ranker search method as feature

selection technique.

Third stage deals with the classification with ensemble

classifiers. Besides the feature selection, ensemble

learning techniques have also been reported as an

efficient way to improve the classification results.

Bagging and Boosting are the two widely used ensemble

techniques provided by Weka, which are also known as

meta-learners. These techniques work by taking the base

learner as argument and create a new learning algorithm

by manipulating the training data. We have used Bagging

and Boosting along with Random Forest as base

classifier in the proposed framework.

Finally the fourth (result) stage reflects the classified

modules along with the accuracy of proposed framework.

The results are analyzed and discussed in detail in the

next section.

IV. RESULTS AND DISCUSSION

This section reflects the performance of proposed

framework. The performance evaluation is performed in

terms of various measures generated from confusion

matrix (Fig. 2).

Fig.2. Confusion Matrix.

A confusion matrix consists of the following

parameters:

True Positive (TP): “Instances which are actually

positive and also classified as positive”.

False Positive (FP): “Instances which are actually

negative but classified as positive”.

False Negative (FN): “Instances which are actually

positive but classified as negative”.

True Negative (TN): “Instances which are actually

negative and also classified as negative”.

The performance of both the dimensions of proposed

framework is evaluated through following measures:

Precision, Recall, F-measure, Accuracy, MCC and ROC

[22]. These measures are calculated from the parameters

of confusion matrix as shown below.

 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction 57

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

Precision
()

TP

TP FP



 (1)

Re
()

TP
call

TP FN



 (2)

Precision * Recall * 2
F-measure

(Precision + Recall)
 (3)

TP TN
Accuracy

TP TN FP FN




  
 (4)

1

2

r rTP FP
AUC

 
 (5)

()()()()

TN TP FN FP
MCC

FP TP FN TP TN FP TN FN

  


   
 (6)

The proposed framework classified the datasets in two

dimensions 1) with feature selection and 2) without

feature selection. In each dimension the Random Forest

classifier is used with Bagging and Boosting techniques

so there are total of four techniques in the proposed

framework 1) Bagging-RF, 2) Boosting-RF, Feature

Selection-Bagging-RF, 4) Feature-Selection-Boosting-RF.

Each of the table which reflects the results also shows the

score of other classification techniques such as: “Naïve

Bayes (NB), Multi-Layer Perceptron (MLP). Radial

Basis Function (RBF), Support Vector Machine (SVM),

K Nearest Neighbor (KNN), kStar (K*), One Rule

(OneR), PART, Decision Tree (DT), and Random Forest

(RF)”. These results are taken from a published paper [10]

in order to compare the performance of proposed

framework. The paper [10] have used the same datasets

(D’’) for experiments.

The results of Precision, Recall and F-Measure of each

dataset for each class (Y and N) are reflected in the tables

from Table 3 to Table 14. Highest scores in each class are

highlighted in bold for easy identification.

Table 3. CM1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.1670 0.2220 0.1900

N 0.9190 0.8880 0.9030

MLP Y 0.0000 0.0000 0.0000

N 0.9040 0.9550 0.9290

RBF Y ? 0.0000 ?

N 0.9080 1.0000 0.9520

SVM Y ? 0.0000 ?

N 0.9080 1.0000 0.9520

kNN Y 0.0670 0.1110 0.0830

N 0.9040 0.8430 0.8720

kStar Y 0.0670 0.1110 0.0830

N 0.9040 0.8430 0.8720

OneR Y 0.0000 0.0000 0.0000

N 0.9030 0.9440 0.9230

PART Y ? 0.0000 ?

N 0.9080 1.0000 0.9520

DT Y 0.1180 0.2220 0.1540

N 0.9140 0.8310 0.8710

RF Y 0.0000 0.0000 0.0000

N 0.9070 0.9890 0.9460

Boost-RF Y 0.0000 0.0000 0.0000

N 0.9070 0.9890 0.9460

Bag-RF Y 0.0000 0.0000 0.0000

N 0.9070 0.9890 0.9460

Boost-RF-

FS

Y 0.0000 0.0000 0.0000

N 0.9070 0.9890 0.9460

Bag-RF-

FS

Y 0.0000 0.0000 0.0000

N 0.9070 0.9890 0.9460

Results of CM1 datasets are given in Table 3. The

table reflects that, in Precision, NB performed better in

both the classes (Y and N). In Recall, NB and DT both

performed better in Y class whereas RBF, SVM and

PART showed better performance in N class, and finally

in F-measure, NB showed better performance in Y class

whereas RBF, SVM and PART performed better in N

class.

Table 4. JM1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.5370 0.2260 0.3180

N 0.8230 0.9490 0.8820

MLP Y 0.7650 0.0810 0.1460

N 0.8040 0.9930 0.8890

RBF Y 0.6940 0.1040 0.1810

N 0.8070 0.9880 0.8890

SVM Y ? 0.0000 ?

N 0.7920 1.0000 0.8840

kNN Y 0.3630 0.3340 0.3480

N 0.8290 0.8460 0.8370

kStar Y 0.4030 0.3170 0.3550

N 0.8300 0.8760 0.8530

OneR Y 0.3780 0.1510 0.2160

N 0.8070 0.9350 0.8660

PART Y 0.8180 0.0190 0.0370

N 0.7950 0.9990 0.8850

DT Y 0.4960 0.2680 0.3480

N 0.8280 0.9290 0.8760

RF Y 0.5720 0.1890 0.2840

N 0.8190 0.9630 0.8850

Boost-RF Y 0.6010 0.1970 0.2970

N 0.8210 0.9660 0.8870

Bag-RF Y 0.6190 0.1780 0.2770

N 0.8180 0.9710 0.8880

Boost-RF-

FS

Y 0.6010 0.1970 0.2970

N 0.8210 0.9660 0.8870

Bag-RF-

FS

Y 0.6190 0.1780 0.2770

N 0.8180 0.9710 0.8880

Results of JM1 datasets are reflected in Table 4. In

precision, PART performed better in Y class whereas

kStar performed better in N class. In Recall, kNN

performed better in Y class and SVM performed better in

N class. In F-measure, kStar outperformed in Y class

whereas MLP and RBF outperformed in N class.

Table 5. KC1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.4920 0.3370 0.4000

N 0.7950 0.8810 0.8360

MLP Y 0.6470 0.2470 0.3580

N 0.7870 0.9540 0.8630

RBF Y 0.7780 0.2360 0.3620

N 0.7890 0.9770 0.8730

58 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

SVM Y 0.8000 0.0450 0.0850

 N 0.7530 0.9960 0.8580

kNN Y 0.3980 0.3930 0.3950

N 0.7930 0.7960 0.7950

kStar Y 0.4490 0.3930 0.4190

N 0.8010 0.8350 0.8170

OneR Y 0.4440 0.1800 0.2560

N 0.7670 0.9230 0.8380

PART Y 0.6670 0.1570 0.2550

N 0.7710 0.9730 0.8610

DT Y 0.5330 0.3600 0.4300

N 0.8030 0.8920 0.8450

RF Y 0.6150 0.3600 0.4540

N 0.8080 0.9230 0.8620

Boost-RF Y 0.5770 0.3370 0.4260

N 0.8010 0.9150 0.8550

Bag-RF Y 0.6440 0.3260 0.4330

N 0.8030 0.9380 0.8650

Boost-RF-

FS

Y 0.6350 0.3710 0.4680

N 0.8110 0.9270 0.8650

Bag-RF-FS Y 0.6520 0.3370 0.4440

N 0.8050 0.9380 0.8670

Results of KC1 datasets are given in Table 5. It can be

seen that in Precision, SVM outperformed in Y Class

whereas RF showed better results in N Class. In Recall,

kNN and kStar performed better in Y class whereas SVM

showed better performance in N class, and finally, in F-

measure, Boost-RF-FS performed better in Y and RBF

outperform in N class.

Table 6. KC3 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.4440 0.4000 0.4210

N 0.8780 0.8960 0.8870

MLP Y 0.5000 0.3000 0.3750

N 0.8650 0.9380 0.9000

RBF Y 0.0000 0.0000 0.0000

N 0.8180 0.9380 0.8740

SVM Y ? 0.0000 ?

N 0.8280 1.0000 0.9060

kNN Y 0.3330 0.4000 0.3640

N 0.8700 0.8330 0.8510

kStar Y 0.3000 0.3000 0.3000

N 0.8540 0.8540 0.8540

OneR Y 0.5000 0.3000 0.3750

N 0.8650 0.9380 0.9000

PART Y 0.2500 0.1000 0.1430

N 0.8330 0.9380 0.8820

DT Y 0.3000 0.3000 0.3000

N 0.8540 0.8540 0.8540

RF Y 0.2860 0.2000 0.2350

N 0.8430 0.8960 0.8690

Boost-RF Y 0.3330 0.2000 0.2500

N 0.8460 0.9170 0.8800

Bag-RF Y 0.4000 0.2000 0.2670

N 0.8490 0.9380 0.8910

Boost-RF-

FS

Y 0.4170 0.5000 0.4550

N 0.8910 0.8540 0.8720

Bag-RF-

FS

Y 0.2000 0.1000 0.1330

N 0.8300 0.9170 0.8710

Results of KC3 dataset is reflected in Table 6. It is

reflected that in Precision, MLP and OneR showed

highest performance in Y class whereas Boost-RF-FS. In

Recall, Boost-RF-FS performed better in Y class and in

N class, SVM outperformed the others. In F-measure,

Boost-RF-FS performed better in Y class whereas SVM

performed better in N class.

Table 7. MC1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.1560 0.3570 0.2170

N 0.9840 0.9530 0.9680

MLP Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

RBF Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

SVM Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

kNN Y 0.4000 0.2860 0.3330

N 0.9830 0.9900 0.9860

kStar Y 0.2500 0.1430 0.1820

N 0.9790 0.9900 0.9840

OneR Y 0.3330 0.1430 0.2000

N 0.9790 0.9930 0.9860

PART Y 0.4000 0.2860 0.3330

N 0.9830 0.9900 0.9860

DT Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

RF Y 0.0000 0.0000 0.0000

N 0.9760 0.9980 0.9870

Boost-RF Y 0.3330 0.0710 0.1180

N 0.9780 0.9970 0.9870

Bag-RF Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

Boost-RF-

FS

Y 0.5000 0.0710 0.1250

N 0.9780 0.9980 0.9880

Bag-RF-

FS

Y ? 0.0000 ?

N 0.9760 1.0000 0.9880

Results of MC1 dataset are reflected in Table 7. In

Precision, Boost-RF-FS showed better performance in Y

class whereas NB performed better in N class. In Recall,

NB performed better in Y class whereas MLP, RBF,

SVM, DT, Bag-RF and Bag-RF-FS performed better in

N class. In F-Measure, kNN and PART performed better

in Y class whereas MLP, RBF, SVM, DT, Bag-RF,

Boost-RF-FS, and Bag-RF-FS performed better in N

class.

Table 8. MC2 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.8330 0.3850 0.5260

N 0.7420 0.9580 0.8360

MLP Y 0.5000 0.5380 0.5190

N 0.7390 0.7080 0.7230

RBF Y 0.8000 0.3080 0.4400

N 0.7190 0.9580 0.8210

SVM Y 0.4000 0.1540 0.2220

N 0.6560 0.8750 0.7500

kNN Y 0.6670 0.4620 0.5450

N 0.7500 0.8750 0.8080

kStar Y 0.4000 0.3080 0.3480

N 0.6670 0.7500 0.7060

OneR Y 0.5000 0.2310 0.3160

N 0.6770 0.8750 0.7640

PART Y 0.7270 0.6150 0.6670

N 0.8080 0.8750 0.8400

DT Y 0.5000 0.3850 0.4350

N 0.7040 0.7920 0.7450

RF Y 0.5000 0.4620 0.4800

N 0.7200 0.7500 0.7350

 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction 59

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

Boost-RF Y 0.4550 0.3850 0.4170

 N 0.6920 0.7500 0.7200

Bag-RF Y 0.5000 0.4620 0.4800

N 0.7200 0.7500 0.7350

Boost-RF-

FS

Y 0.5000 0.4620 0.4800

N 0.7200 0.7500 0.7350

Bag-RF-FS Y 0.5380 0.5380 0.5380

N 0.7500 0.7500 0.7500

Table 8 reflects the results of MC2 dataset. It can be

observed that in precision, NB performed better in Y

class whereas PART performed better in N class. In

Recall, PART performed better in Y class and NB and

RBF performed better in N class. and finally, in F-

Measure, PART showed highest results in both classes.

Table 9. MW1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.3330 0.6250 0.4350

N 0.9500 0.8510 0.8980

MLP Y 0.5450 0.7500 0.6320

N 0.9690 0.9250 0.9470

RBF Y ? 0.0000 ?

N 0.8930 1.0000 0.9440

SVM Y ? 0.0000 ?

N 0.8930 1.0000 0.9440

kNN Y 0.4000 0.5000 0.4440

N 0.9380 0.9100 0.9240

kStar Y 0.1430 0.1250 0.1330

N 0.8970 0.9100 0.9040

OneR Y 0.5000 0.1250 0.2000

N 0.9040 0.9850 0.9430

PART Y 0.2500 0.1250 0.1670

N 0.9010 0.9550 0.9280

DT Y 0.2500 0.1250 0.1670

N 0.9010 0.9550 0.9280

RF Y 0.3330 0.1250 0.1820

N 0.9030 0.9700 0.9350

Boost-RF Y 0.5000 0.2500 0.3330

N 0.9150 0.9700 0.9420

Bag-RF Y 0.5000 0.1250 0.2000

N 0.9040 0.9850 0.9430

Boost-RF-

FS

Y 0.5000 0.2500 0.3330

N 0.9150 0.9700 0.9420

Bag-RF-

FS

Y 0.5000 0.1250 0.2000

N 0.9040 0.9850 0.9430

Table 9 reflects the result of MW1 dataset. It can be

seen that in Precision, MLP performed better in both the

classes. In Recall, MLP performed better in Y class

whereas RBF and SVM performed better in in N class. In

F-measure, MLP performed better in both the classes.

Table 10. PC1 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.2800 0.7000 0.4000

N 0.9830 0.9070 0.9440

MLP Y 1.0000 0.3000 0.4620

N 0.9650 1.0000 0.9820

RBF Y 0.3330 0.1000 0.1540

N 0.9550 0.9900 0.9720

SVM Y ? 0.0000 ?

N 0.9510 1.0000 0.9750

kNN Y 0.2730 0.3000 0.2860

N 0.9640 0.9590 0.9610

kStar Y 0.1250 0.3000 0.1760

N 0.9610 0.8920 0.9250

OneR Y 0.3330 0.1000 0.1540

N 0.9550 0.9900 0.9720

PART Y 0.3750 0.6000 0.4620

N 0.9790 0.9480 0.9630

DT Y 0.3890 0.7000 0.5000

N 0.9840 0.9430 0.9630

RF Y 0.7500 0.3000 0.4290

N 0.9650 0.9950 0.9800

Boost-RF Y 0.6000 0.3000 0.4000

N 0.9650 0.9900 0.9770

Bag-RF Y 1.0000 0.2000 0.3330

N 0.9600 1.0000 0.9800

Boost-RF-

FS

Y 0.6000 0.3000 0.4000

N 0.9650 0.9900 0.9770

Bag-RF-

FS

Y 1.0000 0.2000 0.3330

N 0.9600 1.0000 0.9800

Results of PC1 datasets are shown in Table 10. It can

be seen that in Precision, MLP, Bag-RF, Boost-RF-FS,

and Bag-RF-FS performed better in Y class whereas DT

performed better in N class. In Recall, NB and DT

performed better in Y class whereas MLP, SVM, Bag-RF,

Boost-RF-FS, and Bag-RF-FS both performed better in N

class. In F-measure, DT performed better in Y class

whereas MLP performed better in N class.

Table 11. PC2 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.0000 0.0000 0.0000

N 0.9760 0.9670 0.9720

MLP Y 0.0000 0.0000 0.0000

N 0.9770 0.9910 0.9840

RBF Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

SVM Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

kNN Y 0.0000 0.0000 0.0000

N 0.9770 0.9910 0.9840

kStar Y 0.1430 0.2000 0.1670

N 0.9810 0.9720 0.9760

OneR Y 0.0000 0.0000 0.0000

N 0.9770 0.9950 0.9860

PART Y 0.0000 0.0000 0.0000

N 0.9770 0.9910 0.9840

DT Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

RF Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

Boost-RF Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

Bag-RF Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

Boost-RF-

FS

Y 0.0000 0.0000 0.0000

N 0.9770 0.9950 0.9860

Bag-RF-

FS

Y ? 0.0000 ?

N 0.9770 1.0000 0.9880

Results of PC2 datasets are shown in Table 11.

According to results in Precision, kStar performed well in

both the classes. In Recall, kStar performed well in Y

class whereas RBF, SVM, DT, RF, Boost-RF, Bag-RF,

and Bag-RF-FS performed well in N class. In F-measure,

kStar performed well in Y class however RBF, SVM, DT,

RF, Boost-RF, Bag-RF, and Bag-RF-FS performed well

in N class.

60 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

Table 12. PC3 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.1500 0.9070 0.2570

N 0.9290 0.1900 0.3160

MLP Y 0.3460 0.2090 0.2610

N 0.8830 0.9380 0.9090

RBF Y ? 0.0000 ?

N 0.8640 1.0000 0.9270

SVM Y ? 0.0000 ?

N 0.8640 1.0000 0.9270

kNN Y 0.4800 0.2790 0.3530

N 0.8930 0.9520 0.9220

kStar Y 0.3130 0.2330 0.2670

N 0.8840 0.9190 0.9010

OneR Y 0.6000 0.1400 0.2260

N 0.8790 0.9850 0.9290

PART Y ? 0.0000 ?

N 0.8640 1.0000 0.9270

DT Y 0.5000 0.2790 0.3580

N 0.8940 0.9560 0.9240

RF Y 0.6000 0.1400 0.2260

N 0.8790 0.9850 0.9290

Boost-RF Y 0.4440 0.0930 0.1540

N 0.8730 0.9820 0.9240

Bag-RF Y 0.5710 0.0930 0.1600

N 0.8740 0.9890 0.9280

Boost-RF-

FS

Y 0.6670 0.1400 0.2310

N 0.8790 0.9890 0.9310

Bag-RF-

FS

Y 0.8000 0.0930 0.1670

N 0.8750 0.9960 0.9320

Results of PC3 dataset is reflected in Table 12. It can

be seen that in Precision, Bag-RF-FS performed better in

Y class however NB performed better in N class. In

Recall, NB performed better in Y class whereas RBF,

SVM and PART performed better in N class. In F-

measure, DT performed better in Y class whereas Bag-

RF-FS performed better in N class.

Table 13. PC4 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.4860 0.3460 0.4040

N 0.9010 0.9420 0.9210

MLP Y 0.6760 0.4810 0.5620

N 0.9220 0.9640 0.9420

RBF Y 0.6670 0.1540 0.2500

N 0.8810 0.9880 0.9310

SVM Y 0.8180 0.1730 0.2860

N 0.8840 0.9940 0.9360

kNN Y 0.4770 0.4040 0.4380

N 0.9080 0.9300 0.9190

kStar Y 0.3330 0.3270 0.3300

N 0.8940 0.8970 0.8950

OneR Y 0.6500 0.2500 0.3610

N 0.8920 0.9790 0.9330

PART Y 0.4640 0.5000 0.4810

N 0.9200 0.9090 0.9140

DT Y 0.5150 0.6730 0.5830

N 0.9460 0.9000 0.9220

RF Y 0.7780 0.4040 0.5320

N 0.9120 0.9820 0.9460

Boost-RF Y 0.7880 0.5000 0.6120

N 0.9250 0.9790 0.9510

Bag-RF Y 0.8570 0.3460 0.4930

N 0.9060 0.9910 0.9460

Boost-RF-

FS

Y 0.8330 0.4810 0.6100

N 0.9230 0.9850 0.9530

Bag-RF-FS Y 0.9050 0.3650 0.5210

N 0.9080 0.9940 0.9490

Results of PC4 datasets are shown in Table 13. It can

be seen that in Precision, Bag-RF-FS performed better in

Y class whereas DT performed better in N class. In

Recall, DT performed better in Y class whereas SVM and

Bag-RF-FS performed better in N class, and finally, In F-

measure, Boosting-RF performed better in Y class

whereas Boosting-RF-FS performed better in N class.

Table 14. PC5 Data Results

Classifier Class Precision Recall F-Measure

NB Y 0.6760 0.1680 0.2690

N 0.7590 0.9700 0.8520

MLP Y 0.5600 0.2040 0.2990

N 0.7620 0.9410 0.8420

RBF Y 0.7600 0.1390 0.2350

N 0.7560 0.9840 0.8550

SVM Y 0.8750 0.0510 0.0970

N 0.7400 0.9970 0.8500

kNN Y 0.5000 0.4960 0.4980

N 0.8150 0.8170 0.8160

kStar Y 0.4390 0.4230 0.4310

N 0.7900 0.8010 0.7950

OneR Y 0.4550 0.3360 0.3870

N 0.7760 0.8520 0.8120

PART Y 0.6460 0.2260 0.3350

N 0.7700 0.9540 0.8520

DT Y 0.5370 0.5260 0.5310

N 0.8260 0.8330 0.8300

RF Y 0.5880 0.3650 0.4500

N 0.7940 0.9060 0.8460

Boost-RF Y 0.5880 0.3430 0.4330

N 0.7900 0.9110 0.8460

Bag-RF Y 0.6430 0.3280 0.4350

N 0.7900 0.9330 0.8550

Boost-RF-

FS

Y 0.5880 0.3430 0.4330

N 0.7900 0.9110 0.8460

Bag-RF-FS Y 0.6430 0.3280 0.4350

N 0.7900 0.9330 0.8550

Results of PC5 dataset are presented in Table 14. It can

be seen that in Precision, SVM performed better in Y

class whereas DT performed better in N class. In Recall,

DT performed better in Y class whereas SVM performed

better in N Class, and finally, in F-Measure, DT

performed better in Y class whereas RBF, Bagging-RF

and Bagging-RF-FS outperform in N class.

 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction 61

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

Table 15. Accuracy Results

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF
Boost-

RF

Bag-

RF

Boost-

RF-FS

Bag-

RF-FS

CM1 82.6531 86.7347 90.8163 90.8163 77.5510 77.5510 85.7143 90.8163 77.5510 89.7959 89.7959 89.7959 89.7959 89.7959

JM1 79.8359 80.3541 80.3972 79.1883 73.9637 75.9931 77.1589 79.4905 79.1019 80.1813 80.5699 80.6131 80.5699 80.6131

KC1 74.2120 77.3639 78.7966 75.3582 69.3410 72.2063 73.3524 76.5043 75.6447 77.9370 76.7900 78.2235 78.5100 78.5100

KC3 81.0345 82.7586 77.5862 82.7586 75.8621 75.8621 82.7586 79.3103 75.8621 77.5862 79.3103 81.0345 79.3103 77.5862

MC1 93.8567 97.6109 97.6109 97.6109 97.2696 96.9283 97.2696 97.2696 97.6109 97.4403 97.4403 97.6109 97.6109 97.6109

MC2 75.6757 64.8649 72.9730 62.1622 72.9730 59.4595 64.8649 78.3784 64.8649 64.8649 62.1622 64.8649 64.8649 67.5676

MW1 82.6667 90.6667 89.3333 89.3333 86.6667 82.6667 89.3333 86.6667 86.6667 88.0000 89.3333 89.3333 89.3333 89.3333

PC1 89.7059 96.5686 94.6078 95.0980 92.6471 86.2745 94.6078 93.1373 93.1373 96.0784 95.5882 96.0784 96.0784 96.0784

PC2 94.4700 96.7742 97.6959 97.6959 96.7742 95.3917 97.2350 96.7742 97.6959 97.6959 97.6959 97.6959 97.2350 97.6959

PC3 28.7975 83.8608 86.3924 86.3924 86.0759 82.5949 87.0253 86.3924 86.3924 87.0253 86.0759 86.7089 87.3418 87.3418

PC4 86.0892 89.7638 87.4016 88.189 85.8268 81.8898 87.9265 85.3018 86.8766 90.2887 91.3386 90.2887 91.6010 90.8136

PC5 75.3937 74.2126 75.5906 74.2126 73.0315 69.8819 71.2598 75.7874 75.0000 75.9843 75.7874 76.9685 75.7874 76.9685

Table 16. ROC Area Results

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF Boost-

RF

Bag-

RF

Boost-

RF-FS

Bag-

RF-FS

CM1 0.7030 0.6340 0.7020 0.5000 0.4770 0.5380 0.4720 0.6100 0.3780 0.7610 0.7650 0.7370 0.6600 0.6830

JM1 0.6630 0.7020 0.7130 0.5000 0.5910 0.5720 0.5430 0.7140 0.6710 0.7380 0.7360 0.7460 0.7360 0.7460

KC1 0.6940 0.7360 0.7130 0.5210 0.5950 0.6510 0.5510 0.6360 0.6060 0.7510 0.7510 0.7570 0.7510 0.7500

KC3 0.7690 0.7330 0.7350 0.5000 0.617 0.5280 0.6190 0.7880 0.5700 0.8070 0.7850 0.8150 0.8340 0.8670

MC1 0.8260 0.8050 0.7810 0.5000 0.6380 0.6310 0.5680 0.6840 0.5000 0.8640 0.8350 0.8470 0.8270 0.8830

MC2 0.7950 0.7530 0.7660 0.5140 0.6680 0.5100 0.5530 0.7240 0.6150 0.6460 0.6650 0.6700 0.6460 0.6570

MW1 0.7910 0.8430 0.8080 0.5000 0.7050 0.5430 0.5550 0.3140 0.3140 0.7660 0.7260 0.7420 0.7260 0.7610

PC1 0.8790 0.7790 0.8750 0.5000 0.6290 0.6730 0.5450 0.8890 0.7180 0.8580 0.8960 0.9210 0.9240 0.9100

PC2 0.7510 0.7460 0.7240 0.5000 0.4950 0.7910 0.4980 0.6230 0.5790 0.7310 0.6560 0.7740 0.4890 0.5630

PC3 0.7730 0.7960 0.7950 0.5000 0.6160 0.7490 0.5620 0.7900 0.6640 0.8550 0.8360 0.8390 0.8500 0.8410

PC4 0.8070 0.8980 0.8620 0.5830 0.6670 0.7340 0.6140 0.7760 0.8340 0.9450 0.9450 0.9530 0.9520 0.9550

PC5 0.7250 0.7510 0.7320 0.5240 0.6570 0.6290 0.5940 0.7390 0.7030 0.8050 0.7990 0.8050 0.7990 0.8050

Table 17. MCC Results

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF
Boost-

RF
Bag-RF

Boost-

RF-FS

Bag-

RF-FS

CM1 0.0970 -0.0660 ? ? -0.0370 -0.037 -0.074 ? 0.0410 -0.032 -0.032 -0.032 -0.032 -0.032

JM1 0.2510 0.2060 0.2150 ? 0.1860 0.2120 0.1260 0.1040 0.2520 0.2440 0.2620 0.2560 0.2620 0.2560

KC1 0.2500 0.2960 0.3470 0.1510 0.1900 0.2380 0.1470 0.2390 0.2910 0.3460 0.3090 0.3440 0.3640 0.3550

KC3 0.3090 0.2950 -0.1070 ? 0.2180 0.1540 0.2950 0.0560 0.1540 0.1110 0.1450 0.1850 0.3300 0.0220

MC1 0.2080 ? ? ? 0.3250 0.1740 0.2060 0.3250 ? -0.006 0.1450 ? 0.1820 ?

MC2 0.4440 0.2430 0.3710 0.0400 0.3740 0.0620 0.1370 0.5120 0.1890 0.2160 0.1410 0.2160 0.2160 0.2880

MW1 0.3670 0.5890 ? ? 0.3730 0.0380 0.2110 0.1100 0.1100 0.1500 0.3020 0.2110 0.3020 0.2110

PC1 0.4000 0.5380 0.1610 ? 0.2470 0.1280 0.1610 0.4400 0.4900 0.4590 0.4050 0.4380 0.4380 0.4380

PC2 -0.0280 -0.0150 ? ? -0.0150 0.1460 -0.010
-

0.0150
? ? ? ? -0.010 ?

PC3 0.0880 0.1830 ? ? 0.2940 0.1730 0.2450 ? 0.3040 0.2450 0.1540 0.1910 0.2650 0.2460

PC4 0.3340 0.5150 0.2790 0.3420 0.3590 0.2250 0.3520 0.3960 0.5140 0.5160 0.5840 0.5070 0.5930 0.5410

PC5 0.2450 0.2160 0.2510 0.1730 0.3140 0.2270 0.2090 0.2740 0.3610 0.3220 0.3100 0.3360 0.3100 0.3360

62 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

We have considered F-measure for analysis from

Table 3 to Table 14 with ‘Yes’ class. F measure is

selected as it provides the average of Precision and

Recall and ‘Yes’ class predicts the probability of

defective modules. It has been observed from the results

of F-measure that the proposed framework outperformed

only in three datasets KC1, KC3 and PC4. In Accuracy

(Table 15), the proposed framework performed better in

four datasets including JM1, PC3, PC4, and PC5. In

remaining datasets either the result is lower or equal to

one or more of the other classification techniques. It has

also been noted that NB, kNN, and kStar could not be

able to perform better in any of the dataset. In ROC Area,

the higher performance is reflected in the following

datasets: CM1, JM1, KC1, KC3, MC1, PC1, and PC4

however the results in remaining datasets shows either

lower or equal performance when compared to other

classification techniques. It has also been observed that

RBF, SVM, kNN, OneR, PART, and DT could not be

able to perform better in any of the dataset. In MCC, the

proposed framework showed the higher performance in

following datasets: JM1, KC1, KC3 and PC4. In

remaining datasets the scores are either lower or equal, as

compared to other classification techniques. It has also

been noted that RBF, SVM, OneR, RF, Bag-RF, and

Bag-RF-FS could not be able to perform better in any of

the dataset.

As discussed by [10], F- measure and MCC reacts to

the issue of class imbalance however it has been

observed in this study that our proposed framework could

not be able to fully solve that issue either.

V. CONCLUSION

This research proposed and implemented a feature

selection based ensemble classification framework. The

proposed framework consisted of four stages including: 1)

Dataset, 2) Feature Selection, 3) Classification, and 4)

Results. Two different dimensions are used in the

framework, one with feature selection and second

without feature selection. Each dimension further used

two ensemble techniques with Random Forest classifier:

Bagging and Boosting. Performance of proposed

framework is evaluated through Precision, Recall, F-

measure, Accuracy, MCC and ROC. For experiments, 12

Cleaned publically available NASA datasets are used and

the results of both the dimensions are compared with the

other widely used classification techniques such as:

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP).

Radial Basis Function (RBF), Support Vector Machine

(SVM), K Nearest Neighbor (KNN), kStar (K*), One

Rule (OneR), PART, Decision Tree (DT), and Random

Forest (RF)”. Results showed that the proposed

classification framework outperformed other

classification techniques in some of the datasets however

class imbalance issue could not be resolved, which is the

main reason of lower and biased performance of

classification techniques. It is suggested for future work

that the resampling techniques should be included in

proposed framework to resolve the class imbalance issue

in datasets as well as to achieve higher performance.

REFERENCES

[1] S. Huda, S. Alyahya, M. M. Ali, S. Ahmad, J. Abawajy, J.

Al-Dossari, and J. Yearwood, “A Framework for

Software Defect Prediction and Metric Selection,” IEEE

Access, vol. 6, pp. 2844–2858, 2018.

[2] E. Erturk and E. Akcapinar, “A comparison of some soft

computing methods for software fault prediction,” Expert

Syst. Appl., vol. 42, no. 4, pp. 1872–1879, 2015.

[3] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning

for crosscompany software defect prediction,” Inf. Softw.

Technol., vol. 54, no. 3, Mar. 2012.

[4] M. Shepperd, Q. Song, Z. Sun and C. Mair, “Data Quality:

Some Comments on the NASA Software Defect Datasets,”

IEEE Trans. Softw. Eng., vol. 39, pp. 1208–1215, 2013.

[5] I.H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques, second ed. Morgan

Kaufmann, 2005.

[6] “NASA Defect Dataset.” [Online]. Available:

https://github.com/klainfo/NASADefectDataset.

[Accessed: 01-July-2019].

[7] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the

impact of classification techniques on the performance of

defect prediction models,” Proc. - Int. Conf. Softw. Eng.,

vol. 1, pp. 789–800, 2015.

[8] G. Czibula, Z. Marian, and I. G. Czibula, “Software

defect prediction using relational association rule mining,”

Inf. Sci. (Ny)., vol. 264, pp. 260–278, 2014.

[9] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.

Riquelme, “Preliminary comparison of techniques for

dealing with imbalance in software defect prediction,” in

Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering.

ACM, p. 43, 2014.

[10] A. Iqbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M. Ahmad,

and A. Husen “Performance Analysis of Machine

Learning Techniques on Software Defect Prediction using

NASA Datasets,” Int. J. Adv. Comput. Sci. Appl., vol. 10,

no. 5, 2019.

[11] M. Ahmad, S. Aftab, I. Ali, and N. Hameed, “Hybrid

Tools and Techniques for Sentiment Analysis: A Review,”

Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

[12] M. Ahmad, S. Aftab, and S. S. Muhammad, “Machine

Learning Techniques for Sentiment Analysis: A Review,”

Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, p. 27, 2017.

[13] M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of

Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no.

5, pp. 25–29, 2017.

[14] M. Ahmad and S. Aftab, “Analyzing the Performance of

SVM for Polarity Detection with Different Datasets,” Int.

J. Mod. Educ. Comput. Sci., vol. 9, no. 10, pp. 29–36,

2017.

[15] M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and

Z. Nawaz, “SVM Optimization for Sentiment Analysis,”

Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, 2018.

[16] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed,

“Sentiment Analysis using SVM: A Systematic Literature

Review,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 2,

2018.

[17] A. Iqbal and S. Aftab, “A Feed-Forward and Pattern

Recognition ANN Model for Network Intrusion

Detection,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no.

4, pp. 19–25, 2019.

 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction 63

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

[18] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen,

“A Classification Framework to Detect DoS Attacks,” Int.

J. Comput. Netw. Inf. Secur., vol. 11, no. 9, pp. 40-47,

2019.

[19] S. Behal, K. Kumar, and M. Sachdeva, “D-FAC: A novel

ϕ-Divergence based distributed DDoS defense system,” J.

King Saud Univ. - Comput. Inf. Sci., 2018.

[20] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction in Lahore City using Data

Mining Techniques,” Int. J. Adv. Comput. Sci. Appl., vol.

9, no. 4, 2018.

[21] S. Aftab, M. Ahmad, N. Hameed, M. S. Bashir, I. Ali, and

Z. Nawaz, “Rainfall Prediction using Data Mining

Techniques: A Systematic Literature Review,” Int. J. Adv.

Comput. Sci. Appl., vol. 9, no. 5, 2018.

[22] S. Wang and X. Yao, “Using class imbalance learning for

software defect prediction,” IEEE Transactions on

Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[23] J. C. Riquelme, R. Ruiz, D. Rodr´ıguez, and J. Moreno,

“Finding defective modules from highly unbalanced

datasets,” Actas de los Talleres de las Jornadas de

Ingenier´ıa del Software y Bases de Datos, vol. 2, no. 1,

pp. 67–74, 2008

[24] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing

Models for Identifying Fault-Prone Software

Components,” Proc. Seventh Int’l Conf. Software Eng.

and Knowledge Eng., pp. 312–319, June 1995.

[25] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,” J. Syst.

Softw., vol. 81, no. 5, pp. 649–660, 2008.

[26] I. Gondra, “Applying machine learning to software fault-

proneness prediction,” J. Syst. Softw., vol. 81, no. 2, pp.

186–195, 2008.

[27] O. F. Arar and K. Ayan, “Software defect prediction

using cost-sensitive ¨ neural network,” Applied Soft

Computing, vol. 33, pp. 263–277, 2015.

[28] C. Manjula and L. Florence, “Deep neural network based

hybrid approach for software defect prediction using

software metrics,” Cluster Comput., pp. 1–17, 2018.

[29] R. Moser, W. Pedrycz, and G. Succi, “A Comparative

Analysis of the Efficiency of Change Metrics and Static

Code Attributes for Defect Prediction”, In Robby, editor,

ICSE, pp. 181–190. ACM, 2008.

[30] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall,

“Method-level bug prediction,” in ESEM ’12, pp. 171–

180, 2012.

[31] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M.

Nagappan, “Predicting bugs using antipatterns,” in Proc.

of the 29th Int’l Conference on Software Maintenance, pp.

270–279, 2013.

[32] K. Herzig, S. Just, A. Rau, and A. Zeller, “Predicting

defects using change genealogies,” in Software Reliability

Engineering (ISSRE), 2013 IEEE 24th International

Symposium on, pp. 118–127, 2013.

Authors’ Profiles

Ahmed Iqbal is student of MS Computer

Science with the specialization of Software

Engineering in Virtual University of

Pakistan. He received the degree of ‘Master

of Information Technology ‘(MIT) from

Virtual University of Pakistan in 2016. His

research interest includes Software

Engineering and Data Mining.

Shabib Aftab received MS Degree in

Computer Science from COMSATS

Institute of Information Technology Lahore,

Pakistan, and M.Sc degree in Information

Technology from Punjab University College

of Information Technology (PUCIT) Lahore,

Pakistan. Currently he is serving as Lecturer

Computer Sciences at Virtual University of Pakistan. His

research areas include Data Mining and Software Process

Improvement.

Israr Ullah has completed PhD in Computer

Engineering from Jeju National University,

South Korea in February 2019. He

completed his M.S. in Computer Science

from National University of Computer and

Emerging Sciences (NUCES), Islamabad,

Pakistan in 2009. He is serving as Assistant

Professor of Computer Science at Virtual University of Pakistan.

His research is mainly focused on development of AI based IoT

solutions for smart cities. He has experience in the field of

Network Simulation and Modeling. His research interests also

include Designing and Analysis of Optimization Algorithms

using AI techniques.

Muhammad Salman Bashir completed his

M.Sc. degree in Computer Science from

PUCIT, Lahore, and the M.S. degree in

Computer Science from COMSATS

University, Lahore, Pakistan. He is currently

pursuing the Ph.D. degree with the

Department of Computer Science and

Engineering, University of Engineering and Technology (UET),

Lahore. Currently he is working as Assistant Professor with the

Department of Computer Science and Information Technology,

Virtual University of Pakistan. His research interests include

HCI, usability evaluation, software processes, and software

requirements engineering.

Muhammad Anwaar Saeed joined Virtual

University (VU) of Pakistan in April 2006

and is currently working as an Assistant

Professor and Head of Computer Science

Department. He has obtained his PhD

Degree in Computer Science from National

College of Business Administration &

Economics (NCBA&E), Lahore, Pakistan. His area of research

is key generation for data encryption and information security.

He is also interested in Quantum Computing especially

encryption mechanisms used in this field. He is also the author

of book “Framework for Self Organizing Encryption in

Ubiquitous Environment”, published by VDM Verlag in 2010.

He has published many research papers on his area of interest.

Before joining VU, he has ample experience of both software

development and network management.

64 A Feature Selection based Ensemble Classification Framework for Software Defect Prediction

Copyright © 2019 MECS I.J. Modern Education and Computer Science, 2019, 9, 54-64

How to cite this paper: Ahmed Iqbal, Shabib Aftab, Israr Ullah, Muhammad Salman Bashir, Muhammad Anwaar

Saeed, "A Feature Selection based Ensemble Classification Framework for Software Defect Prediction", International

Journal of Modern Education and Computer Science(IJMECS), Vol.11, No.9, pp. 54-64, 2019.DOI:

10.5815/ijmecs.2019.09.06

