
I.J. Modern Education and Computer Science, 2019, 9, 54-64 
Published Online September 2019 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijmecs.2019.09.06 

Copyright © 2019 MECS                                                    I.J. Modern Education and Computer Science, 2019, 9, 54-64 

A Feature Selection based Ensemble 

Classification Framework for Software Defect 

Prediction 
 

Ahmed Iqbal, Shabib Aftab, Israr Ullah, Muhammad Salman Bashir, Muhammad Anwaar Saeed 
Department of Computer Science, Virtual University of Pakistan 

Email: ahmedeqbal@gmail.com, shabib.aftab@gmail.com, israr.ullah@vu.edu.pk, salman.vu@gmail.com, 

anwaar@vu.edu.pk 

 

Received: 26 July 2019; Accepted: 23 August 2019; Published: 08 September 2019 

 

 

Abstract—Software defect prediction is one of the 

emerging research areas of software engineering. The 

prediction of defects at early stage of development 

process can produce high quality software at lower cost. 

This research contributes by presenting a feature 

selection based ensemble classification framework which 

consists of four stages: 1) Dataset selection, 2) Feature 

Selection, 3) Classification, and 4) Results. The proposed 

framework is implemented from two dimensions, one 

with feature selection and second without feature 

selection. The performance is evaluated through various 

measures including: Precision, Recall, F-measure, 

Accuracy, MCC and ROC. 12 Cleaned publically 

available NASA datasets are used for experiments. The 

results of both the dimensions of proposed framework are 

compared with the other widely used classification 

techniques such as: “Naïve Bayes (NB), Multi-Layer 

Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree 

(DT), and Random Forest (RF)”. Results reflect that the 

proposed framework outperformed other classification 

techniques in some of the used datasets however class 

imbalance issue could not be fully resolved.  

 

Index Terms—Ensemble Classifier, Hybrid Classifier, 

Random Forest, Software Defect Prediction, Feature 

Selection 

 

I. INTRODUCTION 

Today, the production of high quality software at 

lower cost is challenging due to the large size and high 

complexity of required systems [1,2], [23]. However this 

issue can be resolved if we can predict about the 

particular software modules in advance, where defects 

are more likely to occur in future [3], [10]. The process 

of predicting a defective module is known as software 

defect prediction in which we predict the future defects at 

the early stages of software development life cycle 

(before the testing). It is considered as one of the  

challenging tasks of quality assurance process. 

Identification of defective modules at the early stage is 

vital as the cost of correction increases at later stages of 

development life cycle. Software metrics extracted from 

historical software data is used to predict the defective 

modules [29,30,31,32]. Machine learning techniques 

have been proved as a promising way for effective and 

efficient software defect prediction. These techniques are 

categories as 1) supervised, 2) un-supervised, and 3) 

hybrid. The supervised technique needs a pre-classified 

(training data) in order to train the classifier. During 

training the rules are developed which are further used to 

classify the unseen data (test data). In unsupervised 

techniques no training data is needed as these techniques 

use particular algorithm to identify the classes and 

maintain. The hybrid approach integrates the both 

(supervised and un-supervised). This paper proposed a 

feature selection based ensemble classification 

framework for software defect prediction. The 

framework is implemented from two dimensions, one 

with the feature selection and second without the feature 

selection, so that the difference of results in both 

dimensions can be analyzed and discussed. Each 

dimension further used two techniques Bagging and 

Boosting with Random Forest. Performance evaluation is 

performed from various measures such as: Precision, 

Recall, F-measure, Accuracy, MCC and ROC. Clean 

version of 12 publically available NASA datasets are 

used in this research including: “CM1, JM1, KC1, KC3, 

MC1, MC2, MW1, PC1, PC2, PC3, PC4 and PC5”. The 

results of the proposed framework are also compared 

with other widely used supervised classification 

techniques such as: “Naïve Bayes (NB), Multi-Layer 

Perceptron (MLP). Radial Basis Function (RBF), Support 

Vector Machine (SVM), K Nearest Neighbor (KNN), 

kStar (K*), One Rule (OneR), PART, Decision Tree 

(DT), and Random Forest (RF)”. According to results the 

proposed framework showed higher performance in some 

of the used datasets but the class imbalance problem is 

not fully resolved. The class imbalance issue in software 

defect datasets is one of the main reason of lower and 

biased performance of classifiers [22,23].   
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II. RELATED WORK 

Many researchers have used machine learning 

techniques to resolve the classification problems in 

various areas including: sentiment analysis 

[11,12,13,14,15,16], network intrusion detection [17] “in 

press”[18],[19], rainfall prediction [20,21], and software 

defect prediction [10], [29] etc.. Some selected studies 

regarding the software defect predictions are discussed 

here briefly. In [10] the researchers compared the 

performance of various supervised machine learning 

techniques on software defect prediction and used 12 

NASA datasets for experiments. The authors have 

highlighted that Accuracy and ROC did not show any 

reaction on class imbalance issue however Precision, 

Recall, F-Measure and MCC reacted on this issue with a 

symbol of “?” in results. In [24], the researchers used six 

classification techniques for software defect prediction 

and used the data of 27 academic projects for experiment. 

The used techniques are: Discriminant Analysis, 

Principal Component Analysis (PCA), Logistic 

Regression (LR), Logical Classification, Holographic 

Networks, and Layered Neural Networks model. Back-

propagation learning technique was used to train ANN. 

Performance evaluation was performed by using 

following measures: Verification Cost, Predictive 

Validity, Achieved Quality and Misclassification Rate. 

The results reflected that, no classification technique 

performed better on software defect prediction in the 

experiment. In [25] the researchers predicted the software 

defects by using SVM and compared the performance 

with other widely used prediction techniques including: 

Logistic Regression (LR), K-Nearest Neighbors (KNN), 

Decision Trees, Multilayer Perceptron (MLP), Bayesian 

Belief Networks (BBN), Radial Basis Function (RBF), 

Random Forest (RF), and Naïve Bayes, (NB). For 

experiments, NASA datasets are used including: PC1, 

CM1, KC1 and KC3. According to results SVM 

outperformed some of the other classification techniques. 

In [26] the researchers explored and discussed the 

significance of particular software metrics for the 

prediction of software defects. They identified the 

significant software metrics with the help of ANN after 

training with historical data. After that the extracted and 

shortlisted metrics were used to predict the software 

defects through another ANN model. The performance of 

the proposed technique was compared with Gaussian 

kernel SVM. JM1 dataset from NASA MDP repository 

was used for experiment. According to results the SVM 

performed better than ANN in binary defect classification. 

Researchers in [27] proposed a technique for software 

defect prediction which includes a novel Artificial Bee 

Colony (ABC) algorithm with Artificial Neural Network 

in order to find the optimal weights. For experiment, five 

publically available datasets were used from NASA MDP 

repository and the results reflected the higher results of 

proposed technique as compared to other classification 

techniques. In [28], the researchers introduced an 

approach which consists of Hybrid Genetic algorithm and 

Deep Neural Network. Hybrid Genetic algorithm is used 

for the selection and optimization of features whereas 

Deep Neural Network is used for classification by 

focusing on the selected features. The experiments were 

carried out on the PROMISE datasets and the results 

showed the higher performance of proposed approach as 

compared to other defect prediction techniques.  

 

III. MATERIALS AND METHODS 

This research proposes a feature selection based 

ensemble classification framework to predict the software 

defects.  

 

 
Fig.1. Proposed Classification Framework. 

The proposed framework (Fig. 1) consists of four 

stages: 1) Dataset selection, 2) Feature Selection, 3) 

Classification, and 4) Results. The framework is 

implemented in two dimensions, in first, the feature 

selection stage is skipped and datasets are directly given 

to the ensemble classifiers however in second dimension 

the datasets gone through the feature selection stage. The 

performance of both the dimensions of proposed 

framework is compared with other widely used classifiers 

such as: “Naïve Bayes (NB), Multi-Layer Perceptron 

(MLP), Radial Basis Function (RBF), Support Vector 

Machine (SVM), K Nearest Neighbor (kNN), kStar (K*), 

One Rule (OneR), PART, Decision Tree (DT), and 

Random Forest (RF)”. All the experiments are performed 

in WEKA [5], which is the widely used data mining tools. 

It is developed in Java language at the University of 

Waikato, New Zealand. It is widely accepted due to its 

portability, General Public License and ease of use.   

Dataset selection is the first stage of proposed 

framework. Twelve publically available cleaned NASA 

datasets are used in this research for experiment. The 

datasets include: “CM1, JM1, KC1, KC3, MC1, MC2, 

MW1, PC1, PC2, PC3, PC4 and PC5 (Table 2)”. Each 
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dataset belongs to a particular NASA’s software system, 

and consists of various quality metrics in the form of 

attributes along with known output class. The output 

class is also known as target class and is predicted on the 

basis of other available attributes. The target/output class 

is known as dependent attribute whereas other attributes 

which are used to predict the dependent attribute are 

known as independent attributes. The datasets used in 

this research included dependent attribute having values 

either “Y” or “N”. “Y” reflects that the particular 

instance (module) is defective and “N” means it is non-

defective. The researchers in [4] provided two versions of 

clean datasets: DS’ (“which included duplicate and 

inconsistent instances”) and D’’ (“which do not include 

duplicate and inconsistent instances”). Table 1 reflects 

the cleaning criteria implemented by [4]. We have used 

D’’ (Table 2) version in this research which is taken from 

[6]. These cleaned datasets are already used and 

discussed by [7,8,9,10].  

Table 1.  Cleaning Criteria [4] 

Criterion  
Data Quality 

Category  
Explanation  

1.  Identical cases  
“Instances that have identical values 

for all metrics including class label”.  

2.  
Inconsistent 

cases  

“Instances that satisfy all conditions 

of Case 1, but where class labels 

differ‘.  

3.  
Cases with 

missing values  

“Instances that contain one or more 

missing observations”. 

4.  

Cases with 

conflicting 

feature values  

“Instances that have 2 or more 

metric values that violate some 

referential integrity constraint. For 

example,  

LOC TOTAL is less than  

Commented LOC. However, 

Commented LOC is a subset of LOC 

TOTAL”.  

5.  

Cases with 

implausible 

values  

“Instances that violate some integrity 

constraint. For example, value of 

LOC=1.1”. 

Table 2.  NASA Cleaned Datasets D’’ [4], [7] 

Dataset Attributes Modules Defective Non- 

Defective 

Defective 

(%) 

CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC1 39 1952 36 1916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 

 

Feature selection is the second and the most significant 

stage of proposed classification framework. This stage  

selects the optimum set of features for effective 

classification results. Many researchers have reported 

that most of the datasets only have few of the 

independent features which can predict the target class 

effectively whereas remaining features do not participate 

well and even can reduce the performance of classifier if 

not removed. We have used Chi-Square as attribute 

evaluator along with Ranker search method as feature 

selection technique.  

Third stage deals with the classification with ensemble 

classifiers. Besides the feature selection, ensemble 

learning techniques have also been reported as an 

efficient way to improve the classification results. 

Bagging and Boosting are the two widely used ensemble 

techniques provided by Weka, which are also known as 

meta-learners. These techniques work by taking the base 

learner as argument and create a new learning algorithm 

by manipulating the training data. We have used Bagging 

and Boosting along with Random Forest as base 

classifier in the proposed framework. 

Finally the fourth (result) stage reflects the classified 

modules along with the accuracy of proposed framework. 

The results are analyzed and discussed in detail in the 

next section.  

 

IV. RESULTS AND DISCUSSION 

This section reflects the performance of proposed 

framework. The performance evaluation is performed in 

terms of various measures generated from confusion 

matrix (Fig. 2). 

 

 
Fig.2. Confusion Matrix. 

A confusion matrix consists of the following 

parameters: 

 

True Positive (TP): “Instances which are actually 

positive and also classified as positive”. 

False Positive (FP): “Instances which are actually 

negative but classified as positive”. 

False Negative (FN): “Instances which are actually 

positive but classified as negative”. 

True Negative (TN): “Instances which are actually 

negative and also classified as negative”. 

The performance of both the dimensions of proposed 

framework is evaluated through following measures: 

Precision, Recall, F-measure, Accuracy, MCC and ROC 

[22]. These measures are calculated from the parameters 

of confusion matrix as shown below.  
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The proposed framework classified the datasets in two 

dimensions 1) with feature selection and 2) without 

feature selection. In each dimension the Random Forest 

classifier is used with Bagging and Boosting techniques 

so there are total of four techniques in the proposed 

framework 1) Bagging-RF, 2) Boosting-RF, Feature 

Selection-Bagging-RF, 4) Feature-Selection-Boosting-RF. 

Each of the table which reflects the results also shows the 

score of other classification techniques such as:  “Naïve 

Bayes (NB), Multi-Layer Perceptron (MLP). Radial 

Basis Function (RBF), Support Vector Machine (SVM), 

K Nearest Neighbor (KNN), kStar (K*), One Rule 

(OneR), PART, Decision Tree (DT), and Random Forest 

(RF)”. These results are taken from a published paper [10] 

in order to compare the performance of proposed 

framework. The paper [10] have used the same datasets 

(D’’) for experiments.  

The results of Precision, Recall and F-Measure of each 

dataset for each class (Y and N) are reflected in the tables 

from Table 3 to Table 14. Highest scores in each class are 

highlighted in bold for easy identification. 

Table 3.  CM1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.1670 0.2220 0.1900 

N 0.9190 0.8880 0.9030 

MLP Y 0.0000 0.0000 0.0000 

N 0.9040 0.9550 0.9290 

RBF Y ? 0.0000 ? 

N 0.9080 1.0000 0.9520 

SVM Y ? 0.0000 ? 

N 0.9080 1.0000 0.9520 

kNN Y 0.0670 0.1110 0.0830 

N 0.9040 0.8430 0.8720 

kStar Y 0.0670 0.1110 0.0830 

N 0.9040 0.8430 0.8720 

OneR Y 0.0000 0.0000 0.0000 

N 0.9030 0.9440 0.9230 

PART Y ? 0.0000 ? 

N 0.9080 1.0000 0.9520 

DT Y 0.1180 0.2220 0.1540 

N 0.9140 0.8310 0.8710 

RF Y 0.0000 0.0000 0.0000 

N 0.9070 0.9890 0.9460 

Boost-RF Y 0.0000 0.0000 0.0000 

N 0.9070 0.9890 0.9460 

Bag-RF Y 0.0000 0.0000 0.0000 

N 0.9070 0.9890 0.9460 

Boost-RF-

FS 

Y 0.0000 0.0000 0.0000 

N 0.9070 0.9890 0.9460 

Bag-RF-

FS 

Y 0.0000 0.0000 0.0000 

N 0.9070 0.9890 0.9460 

 

Results of CM1 datasets are given in Table 3. The 

table reflects that, in Precision, NB performed better in 

both the classes (Y and N). In Recall, NB and DT both 

performed better in Y class whereas RBF, SVM and 

PART showed better performance in N class, and finally 

in F-measure, NB showed better performance in Y class 

whereas RBF, SVM and PART performed better in N 

class. 

Table 4.  JM1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.5370 0.2260 0.3180 

N 0.8230 0.9490 0.8820 

MLP Y 0.7650 0.0810 0.1460 

N 0.8040 0.9930 0.8890 

RBF Y 0.6940 0.1040 0.1810 

N 0.8070 0.9880 0.8890 

SVM Y ? 0.0000 ? 

N 0.7920 1.0000 0.8840 

kNN Y 0.3630 0.3340 0.3480 

N 0.8290 0.8460 0.8370 

kStar Y 0.4030 0.3170 0.3550 

N 0.8300 0.8760 0.8530 

OneR Y 0.3780 0.1510 0.2160 

N 0.8070 0.9350 0.8660 

PART Y 0.8180 0.0190 0.0370 

N 0.7950 0.9990 0.8850 

DT Y 0.4960 0.2680 0.3480 

N 0.8280 0.9290 0.8760 

RF Y 0.5720 0.1890 0.2840 

N 0.8190 0.9630 0.8850 

Boost-RF Y 0.6010 0.1970 0.2970 

N 0.8210 0.9660 0.8870 

Bag-RF Y 0.6190 0.1780 0.2770 

N 0.8180 0.9710 0.8880 

Boost-RF-

FS 

Y 0.6010 0.1970 0.2970 

N 0.8210 0.9660 0.8870 

Bag-RF-

FS 

Y 0.6190 0.1780 0.2770 

N 0.8180 0.9710 0.8880 

 

Results of JM1 datasets are reflected in Table 4. In 

precision, PART performed better in Y class whereas 

kStar performed better in N class. In Recall, kNN 

performed better in Y class and SVM performed better in 

N class. In F-measure, kStar outperformed in Y class 

whereas MLP and RBF outperformed in N class. 

Table 5.  KC1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.4920 0.3370 0.4000 

N 0.7950 0.8810 0.8360 

MLP Y 0.6470 0.2470 0.3580 

N 0.7870 0.9540 0.8630 

RBF Y 0.7780 0.2360 0.3620 

N 0.7890 0.9770 0.8730 
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SVM Y 0.8000 0.0450 0.0850 

 N 0.7530 0.9960 0.8580 

kNN Y 0.3980 0.3930 0.3950 

N 0.7930 0.7960 0.7950 

kStar Y 0.4490 0.3930 0.4190 

N 0.8010 0.8350 0.8170 

OneR Y 0.4440 0.1800 0.2560 

N 0.7670 0.9230 0.8380 

PART Y 0.6670 0.1570 0.2550 

N 0.7710 0.9730 0.8610 

DT Y 0.5330 0.3600 0.4300 

N 0.8030 0.8920 0.8450 

RF Y 0.6150 0.3600 0.4540 

N 0.8080 0.9230 0.8620 

Boost-RF Y 0.5770 0.3370 0.4260 

N 0.8010 0.9150 0.8550 

Bag-RF Y 0.6440 0.3260 0.4330 

N 0.8030 0.9380 0.8650 

Boost-RF-

FS 

Y 0.6350 0.3710 0.4680 

N 0.8110 0.9270 0.8650 

Bag-RF-FS Y 0.6520 0.3370 0.4440 

N 0.8050 0.9380 0.8670 

 

Results of KC1 datasets are given in Table 5. It can be 

seen that in Precision, SVM outperformed in Y Class 

whereas RF showed better results in N Class. In Recall, 

kNN and kStar performed better in Y class whereas SVM 

showed better performance in N class, and finally, in F-

measure, Boost-RF-FS performed better in Y and RBF 

outperform in N class. 

Table 6.  KC3 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.4440 0.4000 0.4210 

N 0.8780 0.8960 0.8870 

MLP Y 0.5000 0.3000 0.3750 

N 0.8650 0.9380 0.9000 

RBF Y 0.0000 0.0000 0.0000 

N 0.8180 0.9380 0.8740 

SVM Y ? 0.0000 ? 

N 0.8280 1.0000 0.9060 

kNN Y 0.3330 0.4000 0.3640 

N 0.8700 0.8330 0.8510 

kStar Y 0.3000 0.3000 0.3000 

N 0.8540 0.8540 0.8540 

OneR Y 0.5000 0.3000 0.3750 

N 0.8650 0.9380 0.9000 

PART Y 0.2500 0.1000 0.1430 

N 0.8330 0.9380 0.8820 

DT Y 0.3000 0.3000 0.3000 

N 0.8540 0.8540 0.8540 

RF Y 0.2860 0.2000 0.2350 

N 0.8430 0.8960 0.8690 

Boost-RF Y 0.3330 0.2000 0.2500 

N 0.8460 0.9170 0.8800 

Bag-RF Y 0.4000 0.2000 0.2670 

N 0.8490 0.9380 0.8910 

Boost-RF-

FS 

Y 0.4170 0.5000 0.4550 

N 0.8910 0.8540 0.8720 

Bag-RF-

FS 

Y 0.2000 0.1000 0.1330 

N 0.8300 0.9170 0.8710 

 

Results of KC3 dataset is reflected in Table 6. It is 

reflected that in Precision, MLP and OneR showed 

highest performance in Y class whereas Boost-RF-FS. In 

Recall, Boost-RF-FS performed better in Y class and in 

N class, SVM outperformed the others. In F-measure, 

Boost-RF-FS performed better in Y class whereas SVM 

performed better in N class. 

Table 7.  MC1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.1560 0.3570 0.2170 

N 0.9840 0.9530 0.9680 

MLP Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

RBF Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

SVM Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

kNN Y 0.4000 0.2860 0.3330 

N 0.9830 0.9900 0.9860 

kStar Y 0.2500 0.1430 0.1820 

N 0.9790 0.9900 0.9840 

OneR Y 0.3330 0.1430 0.2000 

N 0.9790 0.9930 0.9860 

PART Y 0.4000 0.2860 0.3330 

N 0.9830 0.9900 0.9860 

DT Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

RF Y 0.0000 0.0000 0.0000 

N 0.9760 0.9980 0.9870 

Boost-RF Y 0.3330 0.0710 0.1180 

N 0.9780 0.9970 0.9870 

Bag-RF Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

Boost-RF-

FS 

Y 0.5000 0.0710 0.1250 

N 0.9780 0.9980 0.9880 

Bag-RF-

FS 

Y ? 0.0000 ? 

N 0.9760 1.0000 0.9880 

 

Results of MC1 dataset are reflected in Table 7. In 

Precision, Boost-RF-FS showed better performance in Y 

class whereas NB performed better in N class. In Recall, 

NB performed better in Y class whereas MLP, RBF, 

SVM, DT, Bag-RF and Bag-RF-FS performed better in 

N class. In F-Measure, kNN and PART performed better 

in Y class whereas MLP, RBF, SVM, DT, Bag-RF, 

Boost-RF-FS, and Bag-RF-FS performed better in N 

class.  

Table 8.  MC2 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.8330 0.3850 0.5260 

N 0.7420 0.9580 0.8360 

MLP Y 0.5000 0.5380 0.5190 

N 0.7390 0.7080 0.7230 

RBF Y 0.8000 0.3080 0.4400 

N 0.7190 0.9580 0.8210 

SVM Y 0.4000 0.1540 0.2220 

N 0.6560 0.8750 0.7500 

kNN Y 0.6670 0.4620 0.5450 

N 0.7500 0.8750 0.8080 

kStar Y 0.4000 0.3080 0.3480 

N 0.6670 0.7500 0.7060 

OneR Y 0.5000 0.2310 0.3160 

N 0.6770 0.8750 0.7640 

PART Y 0.7270 0.6150 0.6670 

N 0.8080 0.8750 0.8400 

DT Y 0.5000 0.3850 0.4350 

N 0.7040 0.7920 0.7450 

RF Y 0.5000 0.4620 0.4800 

N 0.7200 0.7500 0.7350 
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Boost-RF Y 0.4550 0.3850 0.4170 

 N 0.6920 0.7500 0.7200 

Bag-RF Y 0.5000 0.4620 0.4800 

N 0.7200 0.7500 0.7350 

Boost-RF-

FS 

Y 0.5000 0.4620 0.4800 

N 0.7200 0.7500 0.7350 

Bag-RF-FS Y 0.5380 0.5380 0.5380 

N 0.7500 0.7500 0.7500 

 

Table 8 reflects the results of MC2 dataset. It can be 

observed that in precision, NB performed better in Y 

class whereas PART performed better in N class. In 

Recall, PART performed better in Y class and NB and 

RBF performed better in N class. and finally, in F-

Measure, PART showed highest results in both classes. 

Table 9.  MW1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.3330 0.6250 0.4350 

N 0.9500 0.8510 0.8980 

MLP Y 0.5450 0.7500 0.6320 

N 0.9690 0.9250 0.9470 

RBF Y ? 0.0000 ? 

N 0.8930 1.0000 0.9440 

SVM Y ? 0.0000 ? 

N 0.8930 1.0000 0.9440 

kNN Y 0.4000 0.5000 0.4440 

N 0.9380 0.9100 0.9240 

kStar Y 0.1430 0.1250 0.1330 

N 0.8970 0.9100 0.9040 

OneR Y 0.5000 0.1250 0.2000 

N 0.9040 0.9850 0.9430 

PART Y 0.2500 0.1250 0.1670 

N 0.9010 0.9550 0.9280 

DT Y 0.2500 0.1250 0.1670 

N 0.9010 0.9550 0.9280 

RF Y 0.3330 0.1250 0.1820 

N 0.9030 0.9700 0.9350 

Boost-RF Y 0.5000 0.2500 0.3330 

N 0.9150 0.9700 0.9420 

Bag-RF Y 0.5000 0.1250 0.2000 

N 0.9040 0.9850 0.9430 

Boost-RF-

FS 

Y 0.5000 0.2500 0.3330 

N 0.9150 0.9700 0.9420 

Bag-RF-

FS 

Y 0.5000 0.1250 0.2000 

N 0.9040 0.9850 0.9430 

 

Table 9 reflects the result of MW1 dataset. It can be 

seen that in Precision, MLP performed better in both the 

classes. In Recall, MLP performed better in Y class 

whereas RBF and SVM performed better in in N class. In 

F-measure, MLP performed better in both the classes. 

Table 10.  PC1 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.2800 0.7000 0.4000 

N 0.9830 0.9070 0.9440 

MLP Y 1.0000 0.3000 0.4620 

N 0.9650 1.0000 0.9820 

RBF Y 0.3330 0.1000 0.1540 

N 0.9550 0.9900 0.9720 

SVM Y ? 0.0000 ? 

N 0.9510 1.0000 0.9750 

kNN Y 0.2730 0.3000 0.2860 

N 0.9640 0.9590 0.9610 

kStar Y 0.1250 0.3000 0.1760 

N 0.9610 0.8920 0.9250 

OneR Y 0.3330 0.1000 0.1540 

N 0.9550 0.9900 0.9720 

PART Y 0.3750 0.6000 0.4620 

N 0.9790 0.9480 0.9630 

DT Y 0.3890 0.7000 0.5000 

N 0.9840 0.9430 0.9630 

RF Y 0.7500 0.3000 0.4290 

N 0.9650 0.9950 0.9800 

Boost-RF Y 0.6000 0.3000 0.4000 

N 0.9650 0.9900 0.9770 

Bag-RF Y 1.0000 0.2000 0.3330 

N 0.9600 1.0000 0.9800 

Boost-RF-

FS 

Y 0.6000 0.3000 0.4000 

N 0.9650 0.9900 0.9770 

Bag-RF-

FS 

Y 1.0000 0.2000 0.3330 

N 0.9600 1.0000 0.9800 

 

Results of PC1 datasets are shown in Table 10. It can 

be seen that in Precision, MLP, Bag-RF, Boost-RF-FS, 

and Bag-RF-FS performed better in Y class whereas DT 

performed better in N class. In Recall, NB and DT 

performed better in Y class whereas MLP, SVM, Bag-RF, 

Boost-RF-FS, and Bag-RF-FS both performed better in N 

class. In F-measure, DT performed better in Y class 

whereas MLP performed better in N class. 

Table 11.  PC2 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.0000 0.0000 0.0000 

N 0.9760 0.9670 0.9720 

MLP Y 0.0000 0.0000 0.0000 

N 0.9770 0.9910 0.9840 

RBF Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

SVM Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

kNN Y 0.0000 0.0000 0.0000 

N 0.9770 0.9910 0.9840 

kStar Y 0.1430 0.2000 0.1670 

N 0.9810 0.9720 0.9760 

OneR Y 0.0000 0.0000 0.0000 

N 0.9770 0.9950 0.9860 

PART Y 0.0000 0.0000 0.0000 

N 0.9770 0.9910 0.9840 

DT Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

RF Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

Boost-RF Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

Bag-RF Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

Boost-RF-

FS 

Y 0.0000 0.0000 0.0000 

N 0.9770 0.9950 0.9860 

Bag-RF-

FS 

Y ? 0.0000 ? 

N 0.9770 1.0000 0.9880 

 

Results of PC2 datasets are shown in Table 11. 

According to results in Precision, kStar performed well in 

both the classes. In Recall, kStar performed well in Y 

class whereas RBF, SVM, DT, RF, Boost-RF, Bag-RF, 

and Bag-RF-FS performed well in N class. In F-measure, 

kStar performed well in Y class however RBF, SVM, DT, 

RF, Boost-RF, Bag-RF, and Bag-RF-FS performed well 

in N class. 
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Table 12.  PC3 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.1500 0.9070 0.2570 

N 0.9290 0.1900 0.3160 

MLP Y 0.3460 0.2090 0.2610 

N 0.8830 0.9380 0.9090 

RBF Y ? 0.0000 ? 

N 0.8640 1.0000 0.9270 

SVM Y ? 0.0000 ? 

N 0.8640 1.0000 0.9270 

kNN Y 0.4800 0.2790 0.3530 

N 0.8930 0.9520 0.9220 

kStar Y 0.3130 0.2330 0.2670 

N 0.8840 0.9190 0.9010 

OneR Y 0.6000 0.1400 0.2260 

N 0.8790 0.9850 0.9290 

PART Y ? 0.0000 ? 

N 0.8640 1.0000 0.9270 

DT Y 0.5000 0.2790 0.3580 

N 0.8940 0.9560 0.9240 

RF Y 0.6000 0.1400 0.2260 

N 0.8790 0.9850 0.9290 

Boost-RF Y 0.4440 0.0930 0.1540 

N 0.8730 0.9820 0.9240 

Bag-RF Y 0.5710 0.0930 0.1600 

N 0.8740 0.9890 0.9280 

Boost-RF-

FS 

Y 0.6670 0.1400 0.2310 

N 0.8790 0.9890 0.9310 

Bag-RF-

FS 

Y 0.8000 0.0930 0.1670 

N 0.8750 0.9960 0.9320 

 

Results of PC3 dataset is reflected in Table 12. It can 

be seen that in Precision, Bag-RF-FS performed better in 

Y class however NB performed better in N class. In 

Recall, NB performed better in Y class whereas RBF, 

SVM and PART performed better in N class. In F-

measure, DT performed better in Y class whereas Bag-

RF-FS performed better in N class. 

Table 13.  PC4 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.4860 0.3460 0.4040 

N 0.9010 0.9420 0.9210 

MLP Y 0.6760 0.4810 0.5620 

N 0.9220 0.9640 0.9420 

RBF Y 0.6670 0.1540 0.2500 

N 0.8810 0.9880 0.9310 

SVM Y 0.8180 0.1730 0.2860 

N 0.8840 0.9940 0.9360 

kNN Y 0.4770 0.4040 0.4380 

N 0.9080 0.9300 0.9190 

kStar Y 0.3330 0.3270 0.3300 

N 0.8940 0.8970 0.8950 

OneR Y 0.6500 0.2500 0.3610 

N 0.8920 0.9790 0.9330 

PART Y 0.4640 0.5000 0.4810 

N 0.9200 0.9090 0.9140 

DT Y 0.5150 0.6730 0.5830 

N 0.9460 0.9000 0.9220 

RF Y 0.7780 0.4040 0.5320 

N 0.9120 0.9820 0.9460 

Boost-RF Y 0.7880 0.5000 0.6120 

N 0.9250 0.9790 0.9510 

Bag-RF Y 0.8570 0.3460 0.4930 

N 0.9060 0.9910 0.9460 

Boost-RF-

FS 

Y 0.8330 0.4810 0.6100 

N 0.9230 0.9850 0.9530 

Bag-RF-FS Y 0.9050 0.3650 0.5210 

N 0.9080 0.9940 0.9490 

 

Results of PC4 datasets are shown in Table 13. It can 

be seen that in Precision, Bag-RF-FS performed better in 

Y class whereas DT performed better in N class. In 

Recall, DT performed better in Y class whereas SVM and 

Bag-RF-FS performed better in N class, and finally, In F-

measure, Boosting-RF performed better in Y class 

whereas Boosting-RF-FS performed better in N class. 

Table 14.  PC5 Data Results 

Classifier Class Precision Recall F-Measure 

NB Y 0.6760 0.1680 0.2690 

N 0.7590 0.9700 0.8520 

MLP Y 0.5600 0.2040 0.2990 

N 0.7620 0.9410 0.8420 

RBF Y 0.7600 0.1390 0.2350 

N 0.7560 0.9840 0.8550 

SVM Y 0.8750 0.0510 0.0970 

N 0.7400 0.9970 0.8500 

kNN Y 0.5000 0.4960 0.4980 

N 0.8150 0.8170 0.8160 

kStar Y 0.4390 0.4230 0.4310 

N 0.7900 0.8010 0.7950 

OneR Y 0.4550 0.3360 0.3870 

N 0.7760 0.8520 0.8120 

PART Y 0.6460 0.2260 0.3350 

N 0.7700 0.9540 0.8520 

DT Y 0.5370 0.5260 0.5310 

N 0.8260 0.8330 0.8300 

RF Y 0.5880 0.3650 0.4500 

N 0.7940 0.9060 0.8460 

Boost-RF Y 0.5880 0.3430 0.4330 

N 0.7900 0.9110 0.8460 

Bag-RF Y 0.6430 0.3280 0.4350 

N 0.7900 0.9330 0.8550 

Boost-RF-

FS 

Y 0.5880 0.3430 0.4330 

N 0.7900 0.9110 0.8460 

Bag-RF-FS Y 0.6430 0.3280 0.4350 

N 0.7900 0.9330 0.8550 

 

Results of PC5 dataset are presented in Table 14. It can 

be seen that in Precision, SVM performed better in Y 

class whereas DT performed better in N class. In Recall, 

DT performed better in Y class whereas SVM performed 

better in N Class, and finally, in F-Measure, DT 

performed better in Y class whereas RBF, Bagging-RF 

and Bagging-RF-FS outperform in N class. 
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Table 15.  Accuracy Results 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF 
Boost-

RF 

Bag-

RF 

Boost-

RF-FS 

Bag-

RF-FS 

CM1 82.6531 86.7347 90.8163 90.8163 77.5510 77.5510 85.7143 90.8163 77.5510 89.7959 89.7959 89.7959 89.7959 89.7959 

JM1 79.8359 80.3541 80.3972 79.1883 73.9637 75.9931 77.1589 79.4905 79.1019 80.1813 80.5699 80.6131 80.5699 80.6131 

KC1 74.2120 77.3639 78.7966 75.3582 69.3410 72.2063 73.3524 76.5043 75.6447 77.9370 76.7900 78.2235 78.5100 78.5100 

KC3 81.0345 82.7586 77.5862 82.7586 75.8621 75.8621 82.7586 79.3103 75.8621 77.5862 79.3103 81.0345 79.3103 77.5862 

MC1 93.8567 97.6109 97.6109 97.6109 97.2696 96.9283 97.2696 97.2696 97.6109 97.4403 97.4403 97.6109 97.6109 97.6109 

MC2 75.6757 64.8649 72.9730 62.1622 72.9730 59.4595 64.8649 78.3784 64.8649 64.8649 62.1622 64.8649 64.8649 67.5676 

MW1 82.6667 90.6667 89.3333 89.3333 86.6667 82.6667 89.3333 86.6667 86.6667 88.0000 89.3333 89.3333 89.3333 89.3333 

PC1 89.7059 96.5686 94.6078 95.0980 92.6471 86.2745 94.6078 93.1373 93.1373 96.0784 95.5882 96.0784 96.0784 96.0784 

PC2 94.4700 96.7742 97.6959 97.6959 96.7742 95.3917 97.2350 96.7742 97.6959 97.6959 97.6959 97.6959 97.2350 97.6959 

PC3 28.7975 83.8608 86.3924 86.3924 86.0759 82.5949 87.0253 86.3924 86.3924 87.0253 86.0759 86.7089 87.3418 87.3418 

PC4 86.0892 89.7638 87.4016 88.189 85.8268 81.8898 87.9265 85.3018 86.8766 90.2887 91.3386 90.2887 91.6010 90.8136 

PC5 75.3937 74.2126 75.5906 74.2126 73.0315 69.8819 71.2598 75.7874 75.0000 75.9843 75.7874 76.9685 75.7874 76.9685 

Table 16.  ROC Area Results 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF Boost-

RF 

Bag-

RF 

Boost-

RF-FS 

Bag-

RF-FS 

CM1 0.7030 0.6340 0.7020 0.5000 0.4770 0.5380 0.4720 0.6100 0.3780 0.7610 0.7650 0.7370 0.6600 0.6830 

JM1 0.6630 0.7020 0.7130 0.5000 0.5910 0.5720 0.5430 0.7140 0.6710 0.7380 0.7360 0.7460 0.7360 0.7460 

KC1 0.6940 0.7360 0.7130 0.5210 0.5950 0.6510 0.5510 0.6360 0.6060 0.7510 0.7510 0.7570 0.7510 0.7500 

KC3 0.7690 0.7330 0.7350 0.5000 0.617 0.5280 0.6190 0.7880 0.5700 0.8070 0.7850 0.8150 0.8340 0.8670 

MC1 0.8260 0.8050 0.7810 0.5000 0.6380 0.6310 0.5680 0.6840 0.5000 0.8640 0.8350 0.8470 0.8270 0.8830 

MC2 0.7950 0.7530 0.7660 0.5140 0.6680 0.5100 0.5530 0.7240 0.6150 0.6460 0.6650 0.6700 0.6460 0.6570 

MW1 0.7910 0.8430 0.8080 0.5000 0.7050 0.5430 0.5550 0.3140 0.3140 0.7660 0.7260 0.7420 0.7260 0.7610 

PC1 0.8790 0.7790 0.8750 0.5000 0.6290 0.6730 0.5450 0.8890 0.7180 0.8580 0.8960 0.9210 0.9240 0.9100 

PC2 0.7510 0.7460 0.7240 0.5000 0.4950 0.7910 0.4980 0.6230 0.5790 0.7310 0.6560 0.7740 0.4890 0.5630 

PC3 0.7730 0.7960 0.7950 0.5000 0.6160 0.7490 0.5620 0.7900 0.6640 0.8550 0.8360 0.8390 0.8500 0.8410 

PC4 0.8070 0.8980 0.8620 0.5830 0.6670 0.7340 0.6140 0.7760 0.8340 0.9450 0.9450 0.9530 0.9520 0.9550 

PC5 0.7250 0.7510 0.7320 0.5240 0.6570 0.6290 0.5940 0.7390 0.7030 0.8050 0.7990 0.8050 0.7990 0.8050 

Table 17.  MCC Results 

Dataset NB MLP RBF SVM kNN kStar OneR PART DT RF 
Boost-

RF 
Bag-RF 

Boost-

RF-FS 

Bag-

RF-FS 

CM1 0.0970 -0.0660 ? ? -0.0370 -0.037 -0.074 ? 0.0410 -0.032 -0.032 -0.032 -0.032 -0.032 

JM1 0.2510 0.2060 0.2150 ? 0.1860 0.2120 0.1260 0.1040 0.2520 0.2440 0.2620 0.2560 0.2620 0.2560 

KC1 0.2500 0.2960 0.3470 0.1510 0.1900 0.2380 0.1470 0.2390 0.2910 0.3460 0.3090 0.3440 0.3640 0.3550 

KC3 0.3090 0.2950 -0.1070 ? 0.2180 0.1540 0.2950 0.0560 0.1540 0.1110 0.1450 0.1850 0.3300 0.0220 

MC1 0.2080 ? ? ? 0.3250 0.1740 0.2060 0.3250 ? -0.006 0.1450 ? 0.1820 ? 

MC2 0.4440 0.2430 0.3710 0.0400 0.3740 0.0620 0.1370 0.5120 0.1890 0.2160 0.1410 0.2160 0.2160 0.2880 

MW1 0.3670 0.5890 ? ? 0.3730 0.0380 0.2110 0.1100 0.1100 0.1500 0.3020 0.2110 0.3020 0.2110 

PC1 0.4000 0.5380 0.1610 ? 0.2470 0.1280 0.1610 0.4400 0.4900 0.4590 0.4050 0.4380 0.4380 0.4380 

PC2 -0.0280 -0.0150 ? ? -0.0150 0.1460 -0.010 
-

0.0150 
? ? ? ? -0.010 ? 

PC3 0.0880 0.1830 ? ? 0.2940 0.1730 0.2450 ? 0.3040 0.2450 0.1540 0.1910 0.2650 0.2460 

PC4 0.3340 0.5150 0.2790 0.3420 0.3590 0.2250 0.3520 0.3960 0.5140 0.5160 0.5840 0.5070 0.5930 0.5410 

PC5 0.2450 0.2160 0.2510 0.1730 0.3140 0.2270 0.2090 0.2740 0.3610 0.3220 0.3100 0.3360 0.3100 0.3360 
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We have considered F-measure for analysis from 

Table 3 to Table 14 with ‘Yes’ class. F measure is 

selected as it provides the average of Precision and 

Recall and ‘Yes’ class predicts the probability of 

defective modules. It has been observed from the results 

of F-measure that the proposed framework outperformed 

only in three datasets KC1, KC3 and PC4. In Accuracy 

(Table 15), the proposed framework performed better in 

four datasets including JM1, PC3, PC4, and PC5. In 

remaining datasets either the result is lower or equal to 

one or more of the other classification techniques. It has 

also been noted that NB, kNN, and kStar could not be 

able to perform better in any of the dataset. In ROC Area, 

the higher performance is reflected in the following 

datasets: CM1, JM1, KC1, KC3, MC1, PC1, and PC4 

however the results in remaining datasets shows either 

lower or equal performance when compared to other 

classification techniques. It has also been observed that 

RBF, SVM, kNN, OneR, PART, and DT could not be 

able to perform better in any of the dataset. In MCC, the 

proposed framework showed the higher performance in 

following datasets: JM1, KC1, KC3 and PC4. In 

remaining datasets the scores are either lower or equal, as 

compared to other classification techniques. It has also 

been noted that RBF, SVM, OneR, RF, Bag-RF, and 

Bag-RF-FS could not be able to perform better in any of 

the dataset.  

As discussed by [10], F- measure and MCC reacts to 

the issue of class imbalance however it has been 

observed in this study that our proposed framework could 

not be able to fully solve that issue either.   

 

V. CONCLUSION 

This research proposed and implemented a feature 

selection based ensemble classification framework. The 

proposed framework consisted of four stages including: 1) 

Dataset, 2) Feature Selection, 3) Classification, and 4) 

Results. Two different dimensions are used in the 

framework, one with feature selection and second 

without feature selection. Each dimension further used 

two ensemble techniques with Random Forest classifier: 

Bagging and Boosting. Performance of proposed 

framework is evaluated through Precision, Recall, F-

measure, Accuracy, MCC and ROC. For experiments, 12 

Cleaned publically available NASA datasets are used and 

the results of both the dimensions are compared with the 

other widely used classification techniques such as: 

“Naïve Bayes (NB), Multi-Layer Perceptron (MLP). 

Radial Basis Function (RBF), Support Vector Machine 

(SVM), K Nearest Neighbor (KNN), kStar (K*), One 

Rule (OneR), PART, Decision Tree (DT), and Random 

Forest (RF)”. Results showed that the proposed 

classification framework outperformed other 

classification techniques in some of the datasets however 

class imbalance issue could not be resolved, which is the 

main reason of lower and biased performance of 

classification techniques. It is suggested for future work 

that the resampling techniques should be included in 

proposed framework to resolve the class imbalance issue 

in datasets as well as to achieve higher performance.  
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