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Abstract—The reliability of software depends on its 

ability to function without error. Unfortunately, errors 

can be generated during any phase of software 

development. In the field of software engineering, the 

prediction of software defects during the initial stages of 

development has therefore become a top priority. 

Scientific data are used to predict the software's future 

release. Study shows that machine learning and hybrid 

algorithms are change benchmarks in the prediction of 

defects. During the past two decades, various approaches 

to software defect prediction that rely on software metrics 

have been proposed. This paper explores and compares 

well-known supervised machine learning and hybrid 

ensemble classifiers in eight PROMISE datasets. The 

experimental results showed that AdaBoost support 

vector machines and bagging support vector machines 

were the best performing classifiers in Accuracy, AUC, 

recall and F-measure.  

 

Index Terms—Ensemble Learning, RF, AdaBoost, 

Bagging, Software, Defects, MLT, HELT. 

 

I.  INTRODUCTION 

Technology is continuously developing, leading to the 

improvement of application products. The use of 

software is a profitable business, and high-quality 

software and software testing is in high demand [1]. 

Module testing evaluates the quality of software using 

manual testing, but this is very complex and requires a 

large amount of human effort. Automatic software testing 

that can be used for software defect prediction before the 

complete development of the software module is 

therefore needed.  

Defect detection saves the developer and testing team 

time and money, and different techniques are being 

introduced to minimize software defects. Effective 

software application analysis requires more time, money, 

and resources, but it can help analyze the causes of the 

defect and improve software performance. The 

performance of the software is also known as the 

reliability of the software. Software applications are 

tested in an inconsistent environment and their ability to 

operate in the environment for a given amount of time is 

measured [9]. This technique depends on estimating the 

probability of the reliability of the software [10]. Several 

software defect prediction models that use computer 

metrics have been proposed during the past few decades. 

For example, various software matrices like software 

change matrices (SCMs) and code-based matrices 

(CBMs) are currently used by researchers to identify 

defects in software [2,3,4,5]. Experts have used different 

CBMs to predict defective modules. SCMs matrices are 

used to calculate the difference between two software 

versions, while CBMs are used to measure code size and 

complexity the development cycle of software due to 

bugs arising, inserting or modifying functionality in the 

software technology during its lifespan. Indeed, some 

studies have concluded that CBMs are better than SCMs 

for application defect prediction [6,7]. Application 

improvement request starts after its production and is 

managed and monitored by calculating various services, 

processes, and resource software metrics [8]. Over time, 

the products and assets used for software project creation 

can change. A software module can be changed if a better 

software module is available, and advanced tools are 

used to add additional features to the existing software. 

Organizations use Pareto analysis [11] for software 

quality assessment in real-time environments where 

software metrics are used together with the highest metric 

value of specific software applications. This approach 

provides better performance, but it is still not capable of 

capturing multiple faults resulting in software testing 

performance degradation.  

To identify the defects in software modules, the study 

that concludes the human evaluation is poor. A statistical 

model is formulated in another software defect prediction 

scenario using software metrics to predict software 

defects. Such models are based on the problem analysis 

of regression or function approximation [12]. These 

techniques fail to deliver effective results, however. This 

is because each piece of software's architecture is unique 

with different combinations of functions, development 

teams, and components from third parties. This causes 

software defect prediction to be unacceptable. Also, a 

“critical value” cannot be set for any of the software 

metrics due to the variability in different terms and 

cannot be agreed upon for defect prediction and data 

analysis due to parametric models such as linear models, 

Poisson regression, quadratic models, etc. Different 
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techniques have been suggested for recognizing defects 

accurately, and the most recent methods use machine 

learning techniques to automate defect detection [13].  

Machine learning can predict software defects by 

decreasing and categorizing the dataset according to the 

clusters found within it. In this paper, a hybrid ensemble 

learning technique is proposed for software defect 

prediction based on feature selection, k-means clustering, 

and ensemble learning (AdaBoost and bagging). The 

main objective of this study was to measure the 

performance of the hybrid ensemble learning technique 

(HELT). 

Q1. How well does the HELT predict software defects 

using the change of metrics?  

Q2. Study and analysis of the HELT and existing 

machine learning techniques (MLTs) for software defect 

prediction? 

Q3. Are the available techniques in discussion  

hypothetically equal??  

The main contributions of this work are as follows: 

 

a. Exploring the use of the HELT for software defect 

prediction using a modification of metrics. 

b. Comparing the HELT with existing MLTs based 

on these datasets.  

 

The work is organized as follows in section 1 includes 

an introduction to the study, while the related research is 

discussed in section 2. Section 3 then describes the 

datasets, and the proposed model is outlined in section 4. 

The results and performance analysis are given in section 

5, and Section 6 provides a conclusion. 

 

II.  RELATED RESEARCH 

Aleem et al. [23] “used 15 NASA datasets from the 

PROMISE repository to compare the performance of 11 

machine learning methods”. The study included NB, 

multi-layer perception (MLP), support vector machines 

(SVMs), AdaBoost, bagging, DS, RF, J48, KNN, RBF, 

and k-means. The results showed that in most datasets, 

bagging and SVMs performed well in accuracy, recall. 

Similarly, Aleem et al.[24] applied “15 NASA datasets 

from the PROMISE repository to compare the 

performance of 11 machine learning methods” to observe 

accuracy of algorithm. The study included NB, In five 

NASA datasets, Perreault et al. [19] used five NASA 

datasets and compared NB, SVMs, ANN, logistic 

regression (LR), and KNN to calculate Accuracy, F-

measure. 

Manjula and Florence [19] introduced a hybrid 

approach for software defect prediction based on 

machine learning and a genetic algorithm (GA). They 

used a GA to pick better dataset features and a decision 

tree (DT) template to predict software defects and 

observe accuracy and recall. The results showed better 

accuracy in the classification. Venkata et al. [22] 

explored different machine learning algorithms and their 

ability to recognize system defects in real time. 

Researchers studied the effect of the reduction of 

attributes on the routine of software defect prediction 

models and attempted to combine PCA with different 

classification models. This showed no improvements, in 

accuracy.  

Alsaeedi and Khan [13] proposed a new model using 

10 Promise datasets and various ensemble learning and 

MLT. The performance of  Random forest (RF) was a 

good with accuracy 91. Elish et al. [14] developed an 

SVM for a software defect prediction scheme. This 

approach helped solve the regression and classification 

problems. Gray et al. [15] also introduced a “software 

defect prediction” based on the SVM classification 

technique in which data is preprocessed to reduce 

randomness before classification input. Similarly, Rong 

et al. [16] have recently proposed a new “software defect 

prediction technique” that uses SVM classification for 

improvised bat algorithms with centroid strategy (CBA) 

performance optimization capability. 

Byoung et al. [17] “developed a polynomial neural 

function-based network (pf-NN) classifiers (predictors) 

and used to predict software faults. This method is a 

hybrid of fuzzy C-means and techniques of genetic 

clustering that helps achieve nonlinear functional 

parameters also observe accuracy, recall. For learning 

methods, a weighted cost function (objective function) is 

used and a generic receiver operating characteristics 

(ROC) analysis is used to evaluate device clustering 

output (fuzzy C-means, FCM) is used to establish the 

rules ' premise layer while the corresponding 

consequences of the rules are developed by using some 

local polynomials. For pf-NNs, the learning algorithm is 

presented with provisions for handling imbalanced 

classes”. Clustering techniques do not achieve better 

classification performance and to solve this, the 

technique of machine learning is also used to predict 

computer defects. These MLTs use SVMs, Naïve Bayes 

classifiers, decision trees, neural networks, and deep 

learning techniques. 

Choudhary et al. [3] used an MLT for SCM-based 

software fault prediction. They contrasted their models 

for fault prediction with existing CBM-based models, 

and RF, J48, and KNN were used for fault prediction. 

The results of RF have 0.73 highest accuracy, while J48 

and KNN have accuracies 0.375, 0.415, respectively, and 

highest recall. In the present work, the implementation of 

hybrid MLT built for defects prediction models from 

existing SCM.  

Malhotra [4] used MLTs based on object-oriented 

software metrics (OOSM) for software defect prediction. 

“They conducted android software experiments obtained 

from the Git repository”, and MLP, logistic regression 

(LR), and SVMs were deployed. Compared to other 

techniques, MLP and LR showed superior performance, 

while SVMs showed the worst performance in terms of 

accuracy.  

Yang et al. [18] “developed a system of learning-to-

rank to predict software defects and other algorithms”, 

while Bishnu et al. [20] developed a k-means clustering 

design for a software prediction scheme. “Using the 

QuadTree k-means algorithm, further performance was 
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investigated to help find the optimal clusters using an 

initial threshold value. The main advantage of this 

technique is that it is capable of achieving maximum gain 

and can be used for software fault prediction”. Threshold 

selection needs to be further optimized or fully automated 

according to the various application scenarios for 

software applications, however.  

Alsawalqah et al. [25] tested the effect of SMOTE as a 

base classifier on the Adaboost ensemble system with 

J48. Our findings showed that SMOTE could help boost 

the ensemble method's output on four NASA datasets. 

Kalai Magal et al. [21] “combined a selection of features 

with RF to improve software prediction accuracy. The 

selection of features was based on correlation 

calculations and aimed to select the ideal subset of 

features. The selected features were then used with RF to 

predict software defects” using correlation-based feature 

selection. The PROMISE server performed various 

experiments on free NASA datasets. The tests showed 

clear changes to conventional RF using the new RF. 

Rhmann et al. [26] proposed a hybrid model for 

software defect prediction. For experimental purposes, 

Android software was used, and the Git repository was 

used to retrieve Android's v4–v5 and v2–v5 for the 

prediction of defects. Reports have shown that GFS-

logit-boost-c is best able to predict defects.  

 

III.  PROPOSED MODEL 

The proposed methodology is divided into two parts. 

The first refers to the preprocessing, which includes 

transforming the data, selecting the features of the dataset, 

and applying clustering by dividing and labeling the 

corresponding group in all datasets. A clustering strategy  

 

 

Fig.1. Hybrid ensemble learning approach. 

using k-means divided and marked the data for the 

respective groups before applying the classifiers. The 

second part of the methodology refers to the 

classification using ensemble learning, i.e. AdaBoost and 

bagging using Naïve Bayes, SVMs, and RF as a base 

learner.  

3.1 Transformation 

EDGE_COUNT, ESSENTIAL_COMPLEXITY, and 

ESSENTIAL_DENSITY were symbolic attributes that 

contained marginal values. As some outer data was 

filtered and updated during this stage, these nominal 

values needed to be converted into numerical values in 

advance and made suitable for classification phase inputs 

using ENSEMBLE learning. 

3.2 Discretization 

Discretization is a function  

 

F: 𝐴 𝐵                      (1) 

 

“assigning a class a A to each value v B in the 

domain of the attribute being discretized. A desirable 

feature for a practical discretization is: 

 

𝐵  𝐴        (2) 

 

i.e. a discretized attribute has fewer possible values. 

Unsupervised methods 

Equal width discretization is the simplest approach to 

discretization. For each attribute a, calculate min(Va) and 

max(Va). A variable k determines the number of intervals 

preferred. Letting”: 

 

𝑑 =  
max(𝑉𝑎)−min (𝑉𝑎)

𝑘
                (3) 

 

yields the following cuts in the intervals: 

 

min(𝑉𝑎) + 𝑑, … … . , min(𝑉𝑎) + (𝑘 − 1)𝑑       (4) 

 

“The equal width method assumes that the underlying 

data fits somewhat well into a uniform distribution. It is 

very sensitive to outliers and can perform extremely 

poorly under some conditions”. 

3.3 Feature Selection 

The selection of features is the most critical stage in 

the construction of hybrid models for software defect 

prediction and for improving the efficiency of data 

mining algorithms. Ultimately, classifier input data is in a 

high-dimensional feature space, but not all features apply 

to the classes to be categorized, and some of the data 

includes features that are irrelevant, redundant, or noisy. 

In this case, noisy data can be introduced by irrelevant 

and redundant features that distract the learning 

algorithm. Feature Selection reduces the number of 

attributes; eliminates irrelevant, noisy, or redundant 

features; and effects applications by speeding up 

algorithms for data mining. Feature selection increases 
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the rate of identification and reduces the false alarm rate 

in software defect prediction.  

A machine learning tool called WEKA 3.7. was used 

to measure the ensemble classifier selection features to 

check the classification quality of each of the feature sets. 

The ClassifierAttributeEval and Ranker algorithms were 

used to pick specific features from the dataset and to 

eliminate the features that were irrelevant before the 

clustering and classification. For this function, the whole 

training dataset and 10-fold cross-validation was used. 

The dataset was classified into 10 sub-datasets and the 

above algorithms were applied to them all.  

3.4 K-mean 

K-mean clustering is an unsupervised solution and 

used for hybrid ensemble learning methodology of 

training datasets. The cluster centers are determined after 

the initial random assignment of a sample to the clusters 

with the nearest centers. The process is repeated until 

there is no significant change in the cluster centers. The 

mean distance of the component to the cluster centers is 

used as the score when the cluster assignment is set. A 

set of Xj vectors in which j =  (1, . . . , n) was divided into 

Gi groups in C, where I =  (1, . . . , c). In the following 

formula, the function centered on the Euclidean distance 

between the Xj vector in group J and the corresponding 

Ci cluster center 

 

𝐽 =  ∑ 𝐽𝑖
𝑐
𝑖=0 ∑ [ ∑ 𝑥||𝑋𝑘 − 𝐶𝑖||

2]𝑐
𝑘,𝑥€𝐺𝑖

𝑐
𝑖=1       (5) 

 

IV.  PERFORMANCE PREDICTION MATRICES 

Various software defect prediction measurements were 

addressed, such as true positive (TP), true negative (TN), 

false positive (FP), and false-negative (FN): “TP 

represents the number of defective instances of software 

that are correctly classified as defective, while TN is the 

number of instances of clean software that are accurately 

classified as correct. FP denotes the number of instances 

of clean software that are wrongly classified as defective 

and FN denotes the number of instances of defective 

software that are wrongly classified as clean [13]". The 

matrices used for the software defect prediction are 

shown in Table 1. Classification accuracy is one of the 

primary simple metrics for assessing the performance of 

predictive models and is often called the right 

classification rate. 

Table 1. Threshold metrics for classification evaluations [27]. 

Metrics Formula Evaluation Focus 

Accuracy 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

 
“In general, the accuracy metric measures the ration 

of correct predictions over the total number of 
instances evaluated.” 

Error Rate 𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

 
“Misclassification error measures the ratio of 

incorrect predictions over the total number of 

instances evaluated.” 

Sensitivity 𝑡𝑝

𝑡𝑝 + 𝑓𝑛

 
“This metrics is used for the fraction of positive 

patterns that are correctly classified.” 

Specificity 𝑡𝑛

𝑡𝑝 + 𝑓𝑝

 
“This metric is used to measure the fraction of 

negative patterns that are correctly classified.” 

Recall 𝑡𝑝

𝑡𝑝 + 𝑓𝑝

 
“Recall is used to measure the fraction of positive 
patterns that are correctly classified.” 

F-measure 2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟
 

“This metric is Hormonic mean of Precision and 
recall.” 

Geometric 
mean 

√𝑡𝑛 ∗ 𝑡𝑝 “This metric is maximizing the 𝑡𝑝 𝑎𝑛𝑑 𝑡𝑛  rates.” 

Average 

Accuracy ∑
𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

 

“The average Effectiveness of all classes.” 

Average Error 

Rate ∑
𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

 

“The average error rate of all classes.” 

Average 
Precision ∑

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝐿

𝑖=1

 

“The average of per class precision.” 

Average Recall 

∑
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

 

“The average of per class recall.” 

Average  

F-measure 

2 ∗ 𝑃𝑀 ∗ 𝑃𝑁

𝑃𝑀 + 𝑃𝑁

 
“Average of per class f-measure.” 

Note: Where 𝑡𝑝𝑖 is true positive rate for class 𝐶𝑖 , 𝑡𝑛𝑖 is true negative rate for class 𝐶𝑖 , 𝑓𝑛𝑖 is false negative rate for class 

𝐶𝑖 , 𝑎𝑛𝑑 𝑓𝑝𝑖 is false positive rate for class 𝐶𝑖. 
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V.  EXPERIMENTAL STUDY 

“Table 2 provides a brief description of the PROMISE 

datasets used in this analysis [29]. The attributes of 

these datasets are presented in Table 3”.  

 

 

Table 2. Datasets from PROMISE repository. 

No Dataset Module Defective 

module 

Non-defective 

module 

Defective 
Class 

imbalance 

rate 

Non-defective 

1. CM1 327 45 282 0.159 11.9 

2. JM1 7782 1672 6110 0.274 21.5 

3. KC3 194 36 158 0.228 18.6 

4. MC1 1988 46 1942 0.024 2.3 

5. MC2 125 44 81 0.543 35.2 

6. PC1 705 61 644 0.095 8.7 

7. PC2 745 16 729 0.022 2.1 

8, PC3 1077 134 943 0.142 12.4 

Table 3. PROMISE software defect prediction attribute details. 

Attribute Information: 

   

      1. loc:                                                numeric McCabe's line count of code 

      2. v(g):                                              numeric  McCabe "cyclomatic complexity" 

      3. ev(g)                                             numeric  McCabe "essential complexity" 

      4. iv(g):                                            numeric  McCabe "design complexity" 

      5. n                                                   numeric  Halstead total operators + operands 

      6. v                                                   numeric  Halstead "volume" 

      7. l                                                    numeric  Halstead "program length" 

      8. d                                                   numeric  Halstead "difficulty" 

      9. i                                                    numeric  Halstead "intelligence" 

     10. e                                                  numeric  Halstead "effort" 

     11. b                                                  numeric  Halstead  

     12. t                                                 numeric  Halstead's time estimator 

     13. lOCode                                     numeric  Halstead's line count 

     14. lOComment                              numeric  Halstead's count of lines of comments 

     15. lOBlank                                     numeric  Halstead's count of blank lines 

     16. lOCodeAndComment:             numeric 

     17. uniq_Op                                    numeric  unique operators 

     18. uniq_Opnd                                numeric  unique operands 

     19. total_Op                                    numeric  total operators 

     20. total_Opnd                                numeric  total operands 

     21: branchCount                             numeric  of the flow graph 

     22. defects                                      {false,true}  module has/has not one or more  

                                                             reported defects 
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5.1 Performance analysis of HELT 

Weka [28] was used to build a model based on hybrid 

algorithms called HELTs in Java. The datasets were split 

into 10 consecutive folds to conduct 10-fold cross-

validation. One part for testing and the other for training 

folds. Using the standard Scaler method in Weka, the 

features were then standardized and scaled. The 

performance of the HELT is presented in Tables 4–7, and 

the calculation of the MLT is given in Table 8.  

As shown in Table 2, the dataset was very imbalanced. 

Therefore, we used the oversampling technique SMOTE 

to make balance it. The comparative results indicate that 

performance improved in all datasets after applying the 

hybrid methodology (see Figures 2 and 3). As shown in 

Table 4, the performance of the AdaBoost SVM and the 

bagging SVM was very high for some datasets, while the 

AdaBoost RF and the bagging RF achieved 100 for 

dataset JM1. It became possible when we used for feature 

selection ClassifierAttributeEval, Ranker as a search 

method and K-mean for data Transformation. 

Table 4. HELT accuracy . 

 

AdaBoost NB 

 

AdaBoost SVM 

 
AdaBoost RF 

 Bagging NB 

Bagging 

SVM Bagging RF 

CM1 89.6 94.49 90.51 78.89 92.66 90.82 

JM1 99.84 100 100 99.75 100 100 

KC3 94.44 96.29 95.3 96.29 96.29 95.83 

MC1 99.2 99.8 99.7 98.55 99.65 99.6 

MC2 98.26 97.68 98.84 97.6 98.26 98.26 

PC1 98.08 98.22 98.77 98.08 98.49 98.63 

PC2 93.26 100 90.47 84.87 100 90.47 

PC3 91.32 100 88.85 82.28 100 88.58 

Table 5. HELT F-measure . 

 

 

AdaBoost NB 

 

AdaBoost SVM 

 
AdaBoost RF 

 
Bagging NB 

Bagging 

SVM 
Bagging RF 

CM1 89.6 94.5 90.05 78.1 92.6 90.8 

JM1 99.8 100 100 99.8 100 100 

KC3 94.5 96.3 95.4 96.3 96.3 95.9 

MC1 99.2 98.8 99.7 98.6 99.7 99.6 

MC2 98.3 97.7 98.9 97.7 98.3 98.3 

PC1 98.1 98.2 98.8 98.4 98.5 98.6 

PC2 93.2 100 90.2 85.2 100 90.2 

PC3 91.3 100 88.9 82.3 100 88.6 

Table 6. HELT AUC . 

 

 

AdaBoost NB 

 

AdaBoost 

SVM 

 

AdaBoost RF 

 
Bagging NB 

Bagging 

SVM 
Bagging RF 

CM1 94.5 93.8 96.3 91.3 97.7 96 

JM1 100 100 1OO 99.6 100 100 

KC3 97.7 96.3 98.3 98.8 98.3 98.6 

MC1 99.9 99.6 100 99.3 100 100 

MC2 99.6 97.8 99.7 99.8 99.5 99.5 

PC1 99.7 94.8 99.8 99.7 99.8 99.8 

PC2 93.2 100 97.4 92.7 100 97.3 

PC3 97.4 100 95.9 90.2 100 95.9 
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Table 7. HELT recall . 

 

 

AdaBoost NB 

 

AdaBoost 

SVM 

 

AdaBoost RF 

 
Bagging NB 

Bagging 

SVM 
Bagging RF 

CM1 89.6 94.5 90.05 78.9 92.7 90.8 

JM1 99.8 100 100 99.8 100 100 

KC3 94.4 96.3 95.4 96.3 96.3 95.8 

MC1 99.2 99.8 99.7 98.6 99.7 99.6 

MC2 98.3 97.7 98.9 97.7 98.3 98.3 

PC1 98.1 98.2 98.8 98.4 98.5 98.6 

PC2 93.3 100 90.5 85.2 100 90.5 

PC3 91.3 100 88.9 82.3 100 88.6 

Table 8. Accuracy MLT . 

 
NB SVM RF 

CM1 78.89 92.94 89.5 

JM1 94.98 95 96.11 

KC3 91.29 92 92.81 

MC1 93.9 97.98 94.44 

MC2 92.69 95.52 93.54 

PC1 92.67 93.61 92.81 

PC2 79.37 94.44 88.5 

PC3 82.28 93.99 89.1 

 

 

Fig. 2. MLT and HELT accuracy for Naive Bayes. 

 

Fig. 3. MLT and HELT accuracy for SVM.

0
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CM1 JM1 KC3 MC1 MC2 PC1 PC2 PC3

Figure 2 : Accuracy MLT and Accuracy HELT for 
Naive Bayes 
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Fig. 4. MLT and HELT accuracy for RF. 

VI.  PAIRED T-TESTS 

For this purpose “The hypotheses can be formulated in 

two different ways, expressing the same concept and 

being identical mathematically [30]”: we uses SPSS for 

paired T-test. Here we uses the accuracy, F-measure and 

recall on all dataset to check the hypothesis is rejected. 

“H0: µ1 = µ2: In terms of their ability to predict defects, 

different methods used in the analysis are statistically 

similar”. 

“H1: µ1 ≠ µ2: In terms of their ability to predict defects, 

different methods used in the analysis are statistically 

different”. 

where 

 

1. “µ1 is the population means of Algorithm 1, and 

2. µ2 is the population means of Algorithm 2”. 

Table 9. Paired t-test results. 

  

Paired Differences 

t df P-Value Mean Std. Deviation 

Std. Error 

Mean 

95 Confidence Interval of 

the Difference 

Lower Upper 

Pair 1 AdaBoostNB - 

AdaBoostSVM 

-2.81 3.498 1.23 -5.73 0.114 -2.27 7 0.067 

Pair 2 AdaBoostNB - 

AdaBoostRF 

0.195 1.523 0.53 -1.078 1.468 0.36 7 0.728 

Pair 3 AdaBoostNB - 

BaggingNB 

3.461 5.003 1.76 -0.72 7.644 1.95 7 0.091 

Pair 4 AdaBoostNB - 
BaggingSVM 

-2.668 3.316 1.17 -5.44 0.103 -2.27 7 0.057 

Pair 5 AdaBoostNB - 
BaggingRF 

0.226 1.638 0.57 -1.14 1.596 0.39 7 0.708 

Pair 6 AdaBoostSVM - 

AdaBoostRF 

3.00 4.801 1.69 -1.01 7.019 1.77 7 0.120 

Pair 7 AdaBoostSVM - 
BaggingSVM 

0.14 0.719 0.25 -0.46 0.742 0.55 7 0.596 

Pair 8 AdaBoostSVM - 

BaggingRF 

3.03 4.806 1.69 -0.98 7.054 1.78 7 0.117 

Pair 9 AdaBoostRF - 

BaggingNB 

3.26 4.28 1.51 -0.32 6.849 2.15 7 0.068 

Pair 

10 

AdaBoostRF - 

BaggingRF 

0.03 0.33 0.12 -0.25 0.315 0.26 7 0.802 

Pair 
11 

BaggingNB - 
BaggingSVM 

-6.13 7.87 2.78 0.320 0.451 -2.20 7 0.063 

Pair 

12 

BaggingNB - 

BaggingRF 

-3.23 4.33 1.53 -6.86 0.392 -2.10 7 0.073 

Pair 
13 

BaggingSVM - 
BaggingRF 

2.89 4.74 1.68 -1.07 6.864 1.72 7 0.128 
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Figure 4 : Accuracy MLT and Accuracy 
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As all the p-values are greater than the significance 

level (0.05, the null hypothesis is accepted. Consequently, 

the performances of various techniques used for 

predicting defects are statistically identical, i.e. the HELT 

performance is equally effective for all datasets. 

 

VII.  ANSWERS TO THE RESEARCH QUESTIONS 

The answers to different study questions are the 

following: 

 

Q1. How well does the HELT predict software defects 

using the change of metrics?  

Answer: In all four HELTs used for software defect 

prediction, the performance of AdaBoost SVM and 

bagging SVM was best in terms of accuracy, recall 

precision, and AUC. 

Q2. How HELT is better than existing machine 

learning techniques (MLTs) for software defect 

prediction? 

Answer: A high accuracy rate was shown by HELT vs. 

MLT based on the software defect prediction model. 

Q3. Are the available techniques in discussion 

hypothetically equal?  

Answer: The null hypothesis was accepted for the 

accuracy of the techniques, therefore, there is no 

statistical difference between the performances of 

different algorithms. 

 

VIII.  THREATS TO VALIDITY 

As an open-source NASA repository based on java 

was used, so there is a chance of threat to generalize 

results for other languages like Python, R programming, 

etc. The size of the dataset may also affect the probability 

of the class being defective, and the dataset collection 

may not be representative. The latter is mitigated in our 

analysis by testing the classifier output on eight well-

known datasets that have been widely used in the 

previous literature. “The optimization algorithms may 

over-fit and bias the results. Instead of randomly splitting 

the datasets using the simple train test split (20–30 for 

testing and 70–80 for training), we split the dataset into 

training and test sets using 10-fold cross-validation to 

prevent the over-fitting problem that could be triggered 

by random splitting”. 

 

IX.  CONCLUSION 

This study compared the results of different machine 

learning algorithms with hybrid ensemble learning for 

software defect prediction. As it is effective at reducing 

testing efforts, the identification of defective classes in 

software has been considered. Scientific data were used 

to predict the software's future release, and classification 

accuracy F-measurements and ROC-AUC metrics were 

used to test the performance of various algorithms. To 

improve the data balance, the SMOTE method was used.  

The results of the study showed that the performance 

of HELT with AdaBoost SVM, AdaBoost RF, and 

bagging SVM gives the best results in accuracy recall, 

AUC and F-measure, with up to 100 accuracy. Future 

studies should explore and compare the performance of 

Artificial Neural Networks approaches and Hybrid 

ensemble classifiers with other oversampling methods as 

data imbalance has a significant impact on the 

performance of the current software defect prediction 

approaches.   
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