
I.J. Modern Education and Computer Science, 2020, 1, 1-10
Published Online February 2020 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2020.01.01

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

Hybrid Ensemble Learning Technique for

Software Defect Prediction

Mohammad Zubair Khan
Department of Computer Science, College of Computer Science and Engineering,

Taibah University, Madinah, KSA.

Email: zubair.762001@gmail.com

Received: 05 November 2019; Accepted: 27 December 2019; Published: 08 February 2020

Abstract—The reliability of software depends on its

ability to function without error. Unfortunately, errors

can be generated during any phase of software

development. In the field of software engineering, the

prediction of software defects during the initial stages of

development has therefore become a top priority.

Scientific data are used to predict the software's future

release. Study shows that machine learning and hybrid

algorithms are change benchmarks in the prediction of

defects. During the past two decades, various approaches

to software defect prediction that rely on software metrics

have been proposed. This paper explores and compares

well-known supervised machine learning and hybrid

ensemble classifiers in eight PROMISE datasets. The

experimental results showed that AdaBoost support

vector machines and bagging support vector machines

were the best performing classifiers in Accuracy, AUC,

recall and F-measure.

Index Terms—Ensemble Learning, RF, AdaBoost,

Bagging, Software, Defects, MLT, HELT.

I. INTRODUCTION

Technology is continuously developing, leading to the

improvement of application products. The use of

software is a profitable business, and high-quality

software and software testing is in high demand [1].

Module testing evaluates the quality of software using

manual testing, but this is very complex and requires a

large amount of human effort. Automatic software testing

that can be used for software defect prediction before the

complete development of the software module is

therefore needed.

Defect detection saves the developer and testing team

time and money, and different techniques are being

introduced to minimize software defects. Effective

software application analysis requires more time, money,

and resources, but it can help analyze the causes of the

defect and improve software performance. The

performance of the software is also known as the

reliability of the software. Software applications are

tested in an inconsistent environment and their ability to

operate in the environment for a given amount of time is

measured [9]. This technique depends on estimating the

probability of the reliability of the software [10]. Several

software defect prediction models that use computer

metrics have been proposed during the past few decades.

For example, various software matrices like software

change matrices (SCMs) and code-based matrices

(CBMs) are currently used by researchers to identify

defects in software [2,3,4,5]. Experts have used different

CBMs to predict defective modules. SCMs matrices are

used to calculate the difference between two software

versions, while CBMs are used to measure code size and

complexity the development cycle of software due to

bugs arising, inserting or modifying functionality in the

software technology during its lifespan. Indeed, some

studies have concluded that CBMs are better than SCMs

for application defect prediction [6,7]. Application

improvement request starts after its production and is

managed and monitored by calculating various services,

processes, and resource software metrics [8]. Over time,

the products and assets used for software project creation

can change. A software module can be changed if a better

software module is available, and advanced tools are

used to add additional features to the existing software.

Organizations use Pareto analysis [11] for software

quality assessment in real-time environments where

software metrics are used together with the highest metric

value of specific software applications. This approach

provides better performance, but it is still not capable of

capturing multiple faults resulting in software testing

performance degradation.

To identify the defects in software modules, the study

that concludes the human evaluation is poor. A statistical

model is formulated in another software defect prediction

scenario using software metrics to predict software

defects. Such models are based on the problem analysis

of regression or function approximation [12]. These

techniques fail to deliver effective results, however. This

is because each piece of software's architecture is unique

with different combinations of functions, development

teams, and components from third parties. This causes

software defect prediction to be unacceptable. Also, a

“critical value” cannot be set for any of the software

metrics due to the variability in different terms and

cannot be agreed upon for defect prediction and data

analysis due to parametric models such as linear models,

Poisson regression, quadratic models, etc. Different

mailto:zubair.762001@gmail.com

2 Hybrid Ensemble Learning Technique for Software Defect Prediction

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

techniques have been suggested for recognizing defects

accurately, and the most recent methods use machine

learning techniques to automate defect detection [13].

Machine learning can predict software defects by

decreasing and categorizing the dataset according to the

clusters found within it. In this paper, a hybrid ensemble

learning technique is proposed for software defect

prediction based on feature selection, k-means clustering,

and ensemble learning (AdaBoost and bagging). The

main objective of this study was to measure the

performance of the hybrid ensemble learning technique

(HELT).

Q1. How well does the HELT predict software defects

using the change of metrics?

Q2. Study and analysis of the HELT and existing

machine learning techniques (MLTs) for software defect

prediction?

Q3. Are the available techniques in discussion

hypothetically equal??

The main contributions of this work are as follows:

a. Exploring the use of the HELT for software defect

prediction using a modification of metrics.

b. Comparing the HELT with existing MLTs based

on these datasets.

The work is organized as follows in section 1 includes

an introduction to the study, while the related research is

discussed in section 2. Section 3 then describes the

datasets, and the proposed model is outlined in section 4.

The results and performance analysis are given in section

5, and Section 6 provides a conclusion.

II. RELATED RESEARCH

Aleem et al. [23] “used 15 NASA datasets from the

PROMISE repository to compare the performance of 11

machine learning methods”. The study included NB,

multi-layer perception (MLP), support vector machines

(SVMs), AdaBoost, bagging, DS, RF, J48, KNN, RBF,

and k-means. The results showed that in most datasets,

bagging and SVMs performed well in accuracy, recall.

Similarly, Aleem et al.[24] applied “15 NASA datasets

from the PROMISE repository to compare the

performance of 11 machine learning methods” to observe

accuracy of algorithm. The study included NB, In five

NASA datasets, Perreault et al. [19] used five NASA

datasets and compared NB, SVMs, ANN, logistic

regression (LR), and KNN to calculate Accuracy, F-

measure.

Manjula and Florence [19] introduced a hybrid

approach for software defect prediction based on

machine learning and a genetic algorithm (GA). They

used a GA to pick better dataset features and a decision

tree (DT) template to predict software defects and

observe accuracy and recall. The results showed better

accuracy in the classification. Venkata et al. [22]

explored different machine learning algorithms and their

ability to recognize system defects in real time.

Researchers studied the effect of the reduction of

attributes on the routine of software defect prediction

models and attempted to combine PCA with different

classification models. This showed no improvements, in

accuracy.

Alsaeedi and Khan [13] proposed a new model using

10 Promise datasets and various ensemble learning and

MLT. The performance of Random forest (RF) was a

good with accuracy 91. Elish et al. [14] developed an

SVM for a software defect prediction scheme. This

approach helped solve the regression and classification

problems. Gray et al. [15] also introduced a “software

defect prediction” based on the SVM classification

technique in which data is preprocessed to reduce

randomness before classification input. Similarly, Rong

et al. [16] have recently proposed a new “software defect

prediction technique” that uses SVM classification for

improvised bat algorithms with centroid strategy (CBA)

performance optimization capability.

Byoung et al. [17] “developed a polynomial neural

function-based network (pf-NN) classifiers (predictors)

and used to predict software faults. This method is a

hybrid of fuzzy C-means and techniques of genetic

clustering that helps achieve nonlinear functional

parameters also observe accuracy, recall. For learning

methods, a weighted cost function (objective function) is

used and a generic receiver operating characteristics

(ROC) analysis is used to evaluate device clustering

output (fuzzy C-means, FCM) is used to establish the

rules ' premise layer while the corresponding

consequences of the rules are developed by using some

local polynomials. For pf-NNs, the learning algorithm is

presented with provisions for handling imbalanced

classes”. Clustering techniques do not achieve better

classification performance and to solve this, the

technique of machine learning is also used to predict

computer defects. These MLTs use SVMs, Naïve Bayes

classifiers, decision trees, neural networks, and deep

learning techniques.

Choudhary et al. [3] used an MLT for SCM-based

software fault prediction. They contrasted their models

for fault prediction with existing CBM-based models,

and RF, J48, and KNN were used for fault prediction.

The results of RF have 0.73 highest accuracy, while J48

and KNN have accuracies 0.375, 0.415, respectively, and

highest recall. In the present work, the implementation of

hybrid MLT built for defects prediction models from

existing SCM.

Malhotra [4] used MLTs based on object-oriented

software metrics (OOSM) for software defect prediction.

“They conducted android software experiments obtained

from the Git repository”, and MLP, logistic regression

(LR), and SVMs were deployed. Compared to other

techniques, MLP and LR showed superior performance,

while SVMs showed the worst performance in terms of

accuracy.

Yang et al. [18] “developed a system of learning-to-

rank to predict software defects and other algorithms”,

while Bishnu et al. [20] developed a k-means clustering

design for a software prediction scheme. “Using the

QuadTree k-means algorithm, further performance was

 Hybrid Ensemble Learning Technique for Software Defect Prediction 3

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

investigated to help find the optimal clusters using an

initial threshold value. The main advantage of this

technique is that it is capable of achieving maximum gain

and can be used for software fault prediction”. Threshold

selection needs to be further optimized or fully automated

according to the various application scenarios for

software applications, however.

Alsawalqah et al. [25] tested the effect of SMOTE as a

base classifier on the Adaboost ensemble system with

J48. Our findings showed that SMOTE could help boost

the ensemble method's output on four NASA datasets.

Kalai Magal et al. [21] “combined a selection of features

with RF to improve software prediction accuracy. The

selection of features was based on correlation

calculations and aimed to select the ideal subset of

features. The selected features were then used with RF to

predict software defects” using correlation-based feature

selection. The PROMISE server performed various

experiments on free NASA datasets. The tests showed

clear changes to conventional RF using the new RF.

Rhmann et al. [26] proposed a hybrid model for

software defect prediction. For experimental purposes,

Android software was used, and the Git repository was

used to retrieve Android's v4–v5 and v2–v5 for the

prediction of defects. Reports have shown that GFS-

logit-boost-c is best able to predict defects.

III. PROPOSED MODEL

The proposed methodology is divided into two parts.

The first refers to the preprocessing, which includes

transforming the data, selecting the features of the dataset,

and applying clustering by dividing and labeling the

corresponding group in all datasets. A clustering strategy

Fig.1. Hybrid ensemble learning approach.

using k-means divided and marked the data for the

respective groups before applying the classifiers. The

second part of the methodology refers to the

classification using ensemble learning, i.e. AdaBoost and

bagging using Naïve Bayes, SVMs, and RF as a base

learner.

3.1 Transformation

EDGE_COUNT, ESSENTIAL_COMPLEXITY, and

ESSENTIAL_DENSITY were symbolic attributes that

contained marginal values. As some outer data was

filtered and updated during this stage, these nominal

values needed to be converted into numerical values in

advance and made suitable for classification phase inputs

using ENSEMBLE learning.

3.2 Discretization

Discretization is a function

F: 𝐴 𝐵 (1)

“assigning a class a A to each value v B in the

domain of the attribute being discretized. A desirable

feature for a practical discretization is:

𝐵 𝐴 (2)

i.e. a discretized attribute has fewer possible values.

Unsupervised methods

Equal width discretization is the simplest approach to

discretization. For each attribute a, calculate min(Va) and

max(Va). A variable k determines the number of intervals

preferred. Letting”:

𝑑 =
max(𝑉𝑎)−min (𝑉𝑎)

𝑘
 (3)

yields the following cuts in the intervals:

min(𝑉𝑎) + 𝑑, … … . , min(𝑉𝑎) + (𝑘 − 1)𝑑 (4)

“The equal width method assumes that the underlying

data fits somewhat well into a uniform distribution. It is

very sensitive to outliers and can perform extremely

poorly under some conditions”.

3.3 Feature Selection

The selection of features is the most critical stage in

the construction of hybrid models for software defect

prediction and for improving the efficiency of data

mining algorithms. Ultimately, classifier input data is in a

high-dimensional feature space, but not all features apply

to the classes to be categorized, and some of the data

includes features that are irrelevant, redundant, or noisy.

In this case, noisy data can be introduced by irrelevant

and redundant features that distract the learning

algorithm. Feature Selection reduces the number of

attributes; eliminates irrelevant, noisy, or redundant

features; and effects applications by speeding up

algorithms for data mining. Feature selection increases

4 Hybrid Ensemble Learning Technique for Software Defect Prediction

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

the rate of identification and reduces the false alarm rate

in software defect prediction.

A machine learning tool called WEKA 3.7. was used

to measure the ensemble classifier selection features to

check the classification quality of each of the feature sets.

The ClassifierAttributeEval and Ranker algorithms were

used to pick specific features from the dataset and to

eliminate the features that were irrelevant before the

clustering and classification. For this function, the whole

training dataset and 10-fold cross-validation was used.

The dataset was classified into 10 sub-datasets and the

above algorithms were applied to them all.

3.4 K-mean

K-mean clustering is an unsupervised solution and

used for hybrid ensemble learning methodology of

training datasets. The cluster centers are determined after

the initial random assignment of a sample to the clusters

with the nearest centers. The process is repeated until

there is no significant change in the cluster centers. The

mean distance of the component to the cluster centers is

used as the score when the cluster assignment is set. A

set of Xj vectors in which j = (1, . . . , n) was divided into

Gi groups in C, where I = (1, . . . , c). In the following

formula, the function centered on the Euclidean distance

between the Xj vector in group J and the corresponding

Ci cluster center

𝐽 = ∑ 𝐽𝑖
𝑐
𝑖=0 ∑ [∑ 𝑥||𝑋𝑘 − 𝐶𝑖||

2]𝑐
𝑘,𝑥€𝐺𝑖

𝑐
𝑖=1 (5)

IV. PERFORMANCE PREDICTION MATRICES

Various software defect prediction measurements were

addressed, such as true positive (TP), true negative (TN),

false positive (FP), and false-negative (FN): “TP

represents the number of defective instances of software

that are correctly classified as defective, while TN is the

number of instances of clean software that are accurately

classified as correct. FP denotes the number of instances

of clean software that are wrongly classified as defective

and FN denotes the number of instances of defective

software that are wrongly classified as clean [13]". The

matrices used for the software defect prediction are

shown in Table 1. Classification accuracy is one of the

primary simple metrics for assessing the performance of

predictive models and is often called the right

classification rate.

Table 1. Threshold metrics for classification evaluations [27].

Metrics Formula Evaluation Focus

Accuracy 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

“In general, the accuracy metric measures the ration

of correct predictions over the total number of
instances evaluated.”

Error Rate 𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

“Misclassification error measures the ratio of

incorrect predictions over the total number of

instances evaluated.”

Sensitivity 𝑡𝑝

𝑡𝑝 + 𝑓𝑛

“This metrics is used for the fraction of positive

patterns that are correctly classified.”

Specificity 𝑡𝑛

𝑡𝑝 + 𝑓𝑝

“This metric is used to measure the fraction of

negative patterns that are correctly classified.”

Recall 𝑡𝑝

𝑡𝑝 + 𝑓𝑝

“Recall is used to measure the fraction of positive
patterns that are correctly classified.”

F-measure 2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟

“This metric is Hormonic mean of Precision and
recall.”

Geometric
mean

√𝑡𝑛 ∗ 𝑡𝑝 “This metric is maximizing the 𝑡𝑝 𝑎𝑛𝑑 𝑡𝑛 rates.”

Average

Accuracy ∑
𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

“The average Effectiveness of all classes.”

Average Error

Rate ∑
𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

“The average error rate of all classes.”

Average
Precision ∑

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝐿

𝑖=1

“The average of per class precision.”

Average Recall

∑
𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝐿

𝑖=1

“The average of per class recall.”

Average

F-measure

2 ∗ 𝑃𝑀 ∗ 𝑃𝑁

𝑃𝑀 + 𝑃𝑁

“Average of per class f-measure.”

Note: Where 𝑡𝑝𝑖 is true positive rate for class 𝐶𝑖 , 𝑡𝑛𝑖 is true negative rate for class 𝐶𝑖 , 𝑓𝑛𝑖 is false negative rate for class

𝐶𝑖 , 𝑎𝑛𝑑 𝑓𝑝𝑖 is false positive rate for class 𝐶𝑖.

 Hybrid Ensemble Learning Technique for Software Defect Prediction 5

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

V. EXPERIMENTAL STUDY

“Table 2 provides a brief description of the PROMISE

datasets used in this analysis [29]. The attributes of

these datasets are presented in Table 3”.

Table 2. Datasets from PROMISE repository.

No Dataset Module Defective

module

Non-defective

module

Defective
Class

imbalance

rate

Non-defective

1. CM1 327 45 282 0.159 11.9

2. JM1 7782 1672 6110 0.274 21.5

3. KC3 194 36 158 0.228 18.6

4. MC1 1988 46 1942 0.024 2.3

5. MC2 125 44 81 0.543 35.2

6. PC1 705 61 644 0.095 8.7

7. PC2 745 16 729 0.022 2.1

8, PC3 1077 134 943 0.142 12.4

Table 3. PROMISE software defect prediction attribute details.

Attribute Information:

 1. loc: numeric McCabe's line count of code

 2. v(g): numeric McCabe "cyclomatic complexity"

 3. ev(g) numeric McCabe "essential complexity"

 4. iv(g): numeric McCabe "design complexity"

 5. n numeric Halstead total operators + operands

 6. v numeric Halstead "volume"

 7. l numeric Halstead "program length"

 8. d numeric Halstead "difficulty"

 9. i numeric Halstead "intelligence"

 10. e numeric Halstead "effort"

 11. b numeric Halstead

 12. t numeric Halstead's time estimator

 13. lOCode numeric Halstead's line count

 14. lOComment numeric Halstead's count of lines of comments

 15. lOBlank numeric Halstead's count of blank lines

 16. lOCodeAndComment: numeric

 17. uniq_Op numeric unique operators

 18. uniq_Opnd numeric unique operands

 19. total_Op numeric total operators

 20. total_Opnd numeric total operands

 21: branchCount numeric of the flow graph

 22. defects {false,true} module has/has not one or more

 reported defects

6 Hybrid Ensemble Learning Technique for Software Defect Prediction

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

5.1 Performance analysis of HELT

Weka [28] was used to build a model based on hybrid

algorithms called HELTs in Java. The datasets were split

into 10 consecutive folds to conduct 10-fold cross-

validation. One part for testing and the other for training

folds. Using the standard Scaler method in Weka, the

features were then standardized and scaled. The

performance of the HELT is presented in Tables 4–7, and

the calculation of the MLT is given in Table 8.

As shown in Table 2, the dataset was very imbalanced.

Therefore, we used the oversampling technique SMOTE

to make balance it. The comparative results indicate that

performance improved in all datasets after applying the

hybrid methodology (see Figures 2 and 3). As shown in

Table 4, the performance of the AdaBoost SVM and the

bagging SVM was very high for some datasets, while the

AdaBoost RF and the bagging RF achieved 100 for

dataset JM1. It became possible when we used for feature

selection ClassifierAttributeEval, Ranker as a search

method and K-mean for data Transformation.

Table 4. HELT accuracy .

AdaBoost NB

AdaBoost SVM

AdaBoost RF

 Bagging NB

Bagging

SVM Bagging RF

CM1 89.6 94.49 90.51 78.89 92.66 90.82

JM1 99.84 100 100 99.75 100 100

KC3 94.44 96.29 95.3 96.29 96.29 95.83

MC1 99.2 99.8 99.7 98.55 99.65 99.6

MC2 98.26 97.68 98.84 97.6 98.26 98.26

PC1 98.08 98.22 98.77 98.08 98.49 98.63

PC2 93.26 100 90.47 84.87 100 90.47

PC3 91.32 100 88.85 82.28 100 88.58

Table 5. HELT F-measure .

AdaBoost NB

AdaBoost SVM

AdaBoost RF

Bagging NB

Bagging

SVM
Bagging RF

CM1 89.6 94.5 90.05 78.1 92.6 90.8

JM1 99.8 100 100 99.8 100 100

KC3 94.5 96.3 95.4 96.3 96.3 95.9

MC1 99.2 98.8 99.7 98.6 99.7 99.6

MC2 98.3 97.7 98.9 97.7 98.3 98.3

PC1 98.1 98.2 98.8 98.4 98.5 98.6

PC2 93.2 100 90.2 85.2 100 90.2

PC3 91.3 100 88.9 82.3 100 88.6

Table 6. HELT AUC .

AdaBoost NB

AdaBoost

SVM

AdaBoost RF

Bagging NB

Bagging

SVM
Bagging RF

CM1 94.5 93.8 96.3 91.3 97.7 96

JM1 100 100 1OO 99.6 100 100

KC3 97.7 96.3 98.3 98.8 98.3 98.6

MC1 99.9 99.6 100 99.3 100 100

MC2 99.6 97.8 99.7 99.8 99.5 99.5

PC1 99.7 94.8 99.8 99.7 99.8 99.8

PC2 93.2 100 97.4 92.7 100 97.3

PC3 97.4 100 95.9 90.2 100 95.9

 Hybrid Ensemble Learning Technique for Software Defect Prediction 7

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

Table 7. HELT recall .

AdaBoost NB

AdaBoost

SVM

AdaBoost RF

Bagging NB

Bagging

SVM
Bagging RF

CM1 89.6 94.5 90.05 78.9 92.7 90.8

JM1 99.8 100 100 99.8 100 100

KC3 94.4 96.3 95.4 96.3 96.3 95.8

MC1 99.2 99.8 99.7 98.6 99.7 99.6

MC2 98.3 97.7 98.9 97.7 98.3 98.3

PC1 98.1 98.2 98.8 98.4 98.5 98.6

PC2 93.3 100 90.5 85.2 100 90.5

PC3 91.3 100 88.9 82.3 100 88.6

Table 8. Accuracy MLT .

NB SVM RF

CM1 78.89 92.94 89.5

JM1 94.98 95 96.11

KC3 91.29 92 92.81

MC1 93.9 97.98 94.44

MC2 92.69 95.52 93.54

PC1 92.67 93.61 92.81

PC2 79.37 94.44 88.5

PC3 82.28 93.99 89.1

Fig. 2. MLT and HELT accuracy for Naive Bayes.

Fig. 3. MLT and HELT accuracy for SVM.

0

50

100

150

CM1 JM1 KC3 MC1 MC2 PC1 PC2 PC3

Figure 2 : Accuracy MLT and Accuracy HELT for
Naive Bayes

NB ADABOOST-NB BAGGING-NB

85

90

95

100

105

CM1 JM1 KC3 MC1 MC2 PC1 PC2 PC3

Figure 3 : Accuracy MLT and Accuracy
HELT for SVM

SVM ADABOOST-SVM BAGGING-SVM

8 Hybrid Ensemble Learning Technique for Software Defect Prediction

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

Fig. 4. MLT and HELT accuracy for RF.

VI. PAIRED T-TESTS

For this purpose “The hypotheses can be formulated in

two different ways, expressing the same concept and

being identical mathematically [30]”: we uses SPSS for

paired T-test. Here we uses the accuracy, F-measure and

recall on all dataset to check the hypothesis is rejected.

“H0: µ1 = µ2: In terms of their ability to predict defects,

different methods used in the analysis are statistically

similar”.

“H1: µ1 ≠ µ2: In terms of their ability to predict defects,

different methods used in the analysis are statistically

different”.

where

1. “µ1 is the population means of Algorithm 1, and

2. µ2 is the population means of Algorithm 2”.

Table 9. Paired t-test results.

Paired Differences

t df P-Value Mean Std. Deviation

Std. Error

Mean

95 Confidence Interval of

the Difference

Lower Upper

Pair 1 AdaBoostNB -

AdaBoostSVM

-2.81 3.498 1.23 -5.73 0.114 -2.27 7 0.067

Pair 2 AdaBoostNB -

AdaBoostRF

0.195 1.523 0.53 -1.078 1.468 0.36 7 0.728

Pair 3 AdaBoostNB -

BaggingNB

3.461 5.003 1.76 -0.72 7.644 1.95 7 0.091

Pair 4 AdaBoostNB -
BaggingSVM

-2.668 3.316 1.17 -5.44 0.103 -2.27 7 0.057

Pair 5 AdaBoostNB -
BaggingRF

0.226 1.638 0.57 -1.14 1.596 0.39 7 0.708

Pair 6 AdaBoostSVM -

AdaBoostRF

3.00 4.801 1.69 -1.01 7.019 1.77 7 0.120

Pair 7 AdaBoostSVM -
BaggingSVM

0.14 0.719 0.25 -0.46 0.742 0.55 7 0.596

Pair 8 AdaBoostSVM -

BaggingRF

3.03 4.806 1.69 -0.98 7.054 1.78 7 0.117

Pair 9 AdaBoostRF -

BaggingNB

3.26 4.28 1.51 -0.32 6.849 2.15 7 0.068

Pair

10

AdaBoostRF -

BaggingRF

0.03 0.33 0.12 -0.25 0.315 0.26 7 0.802

Pair
11

BaggingNB -
BaggingSVM

-6.13 7.87 2.78 0.320 0.451 -2.20 7 0.063

Pair

12

BaggingNB -

BaggingRF

-3.23 4.33 1.53 -6.86 0.392 -2.10 7 0.073

Pair
13

BaggingSVM -
BaggingRF

2.89 4.74 1.68 -1.07 6.864 1.72 7 0.128

80
85
90
95

100
105

CM1 JM1 KC3 MC1 MC2 PC1 PC2 PC3

Figure 4 : Accuracy MLT and Accuracy
HELT for RF

RF ADABOOST-RF BAGGING-RF

 Hybrid Ensemble Learning Technique for Software Defect Prediction 9

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

As all the p-values are greater than the significance

level (0.05, the null hypothesis is accepted. Consequently,

the performances of various techniques used for

predicting defects are statistically identical, i.e. the HELT

performance is equally effective for all datasets.

VII. ANSWERS TO THE RESEARCH QUESTIONS

The answers to different study questions are the

following:

Q1. How well does the HELT predict software defects

using the change of metrics?

Answer: In all four HELTs used for software defect

prediction, the performance of AdaBoost SVM and

bagging SVM was best in terms of accuracy, recall

precision, and AUC.

Q2. How HELT is better than existing machine

learning techniques (MLTs) for software defect

prediction?

Answer: A high accuracy rate was shown by HELT vs.

MLT based on the software defect prediction model.

Q3. Are the available techniques in discussion

hypothetically equal?

Answer: The null hypothesis was accepted for the

accuracy of the techniques, therefore, there is no

statistical difference between the performances of

different algorithms.

VIII. THREATS TO VALIDITY

As an open-source NASA repository based on java

was used, so there is a chance of threat to generalize

results for other languages like Python, R programming,

etc. The size of the dataset may also affect the probability

of the class being defective, and the dataset collection

may not be representative. The latter is mitigated in our

analysis by testing the classifier output on eight well-

known datasets that have been widely used in the

previous literature. “The optimization algorithms may

over-fit and bias the results. Instead of randomly splitting

the datasets using the simple train test split (20–30 for

testing and 70–80 for training), we split the dataset into

training and test sets using 10-fold cross-validation to

prevent the over-fitting problem that could be triggered

by random splitting”.

IX. CONCLUSION

This study compared the results of different machine

learning algorithms with hybrid ensemble learning for

software defect prediction. As it is effective at reducing

testing efforts, the identification of defective classes in

software has been considered. Scientific data were used

to predict the software's future release, and classification

accuracy F-measurements and ROC-AUC metrics were

used to test the performance of various algorithms. To

improve the data balance, the SMOTE method was used.

The results of the study showed that the performance

of HELT with AdaBoost SVM, AdaBoost RF, and

bagging SVM gives the best results in accuracy recall,

AUC and F-measure, with up to 100 accuracy. Future

studies should explore and compare the performance of

Artificial Neural Networks approaches and Hybrid

ensemble classifiers with other oversampling methods as

data imbalance has a significant impact on the

performance of the current software defect prediction

approaches.

REFERENCES

[1] IEEE Standard Glossary of Software Engineering

Terminology: In IEEE Std 610.12-1990, 31 December

1990, pp. 1–84 (1990).

[2] Y. Zhou, B. Xu, H. LeungOn the ability of complexity

metrics to predict fault-prone classes in object-oriented

systems J. Syst. Softw., 83 (2010), pp. 660-674.

[3] G.R. Choudhary, S. Kumar, K. Kumar, A. Mishra, C.

CatalEmpirical analysis of change metrics for software

fault prediction Comput. Electr. Eng., Elsevier, 67 (2018),

pp. 15-24

[4] R. Malhotra empirical framework for defect prediction

using machine learning techniques with Android software

Appl. Soft Comput., Elsevier, 49 (C) (2016), pp. 1034-

1050

[5] R. Moser, Pedrycz W. SucciA Comparative Analysis of

the Efficiency of Change Metrics and Static Code

Attributes for Defect Prediction May 10–18 ICSE’08,

Leipzig, Germany (2008), pp. 181-190

[6] Tantithamthavorn, Chakkrit, Shane McIntosh, Ahmed E.

Hassan, and Kenichi Matsumoto. "An empirical

comparison of model validation techniques for defect

prediction models." IEEE Transactions on Software

Engineering 43, no. 1 (2017): 1-18.

[7] Nam, Jaechang, Wei Fu, Sunghun Kim, Tim Menzies,

and Lin Tan. "Heterogeneous defect prediction." IEEE

Transactions on Software Engineering (2017).

[8] Fenton and Bieman, 2015 N. Fenton, J. Bieman Software

Metrics. A Rigorous and Practical Approach (3rd edition),

CRC Press, Taylor, and Francis group (2015)

[9] Hassan, M. M., Afzal, W., Blom, M., Lindström, B.,

Andler, S.F., Eldh, S.: Testability and software robustness:

a systematic literature review. In: 2015 41st Euromicro

Conference on Software Engineering and Advanced

Applications, Funchal, pp. 341–348 (2015)

[10] Gondra, I.: Applying machine learning to software fault-

proneness prediction. J. Syst. Softw. 81(2), 186–195

(2008). https://doi.org/10.1016/j.jss.2007.05.035

[11] Thwin, M.M.T., Quah, T.-S.: Application of neural

networks for software quality prediction using object-

oriented metrics. J. Syst. Softw. 76, 147–156 (2005)

[12] Bo, Y., Xiang, L.: A study on software reliability

prediction based on support vector machines. In: 2007

IEEE International Conference on Industrial Engineering

and Engineering Management, pp. 1176–1180 (2007).

[13] Alsaeedi, A. and Khan, M.Z. (2019) Software Defect

Prediction Using Supervised Machine Learning and

Ensemble Techniques: A Comparative Study. Journal of

Software Engineering and Applications, 12, 85-

100.https://doi.org/10.4236/jsea.2019.125007

[14] Elish, K.O., Elish, M.O.: Predicting defect-prone software

modules using support vector machines. J. Syst. Softw.

81(5), 649–660 (2008)

https://www.sciencedirect.com/science/article/pii/S1319157818313077#bb0015

10 Hybrid Ensemble Learning Technique for Software Defect Prediction

Copyright © 2020 MECS I.J. Modern Education and Computer Science, 2020, 1, 1-10

[15] Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.:

Using the support vector machine as a classification

method for software defect prediction with static code

metrics. In: Engineering Applications of Neural Networks,

pp. 223–234. Springer, Berlin (2009)

[16] Rong, X., Li, F., Cui, Z.: A model for software defect

prediction using support vector machine based on CBA.

Int. J. Intell. Syst. Technol. Appl. 15(1), 19–34 (2016)

[17] Park, B.-J., Oh, S.-K., Pedrycz, W.: The design of

polynomial function-based neural network predictors for

detection of software defects. Inf. Sci. 229(20), 40–57

(2013)

[18] X. Yang, K. Tang, X. Yao A learning-to-rank approach to

software defect prediction IEEE Trans. Reliab., 64 (1)

(2015), pp. 234-246

[19] C. Manjula, L. FlorenceHybrid approach for software

defect prediction using machine learning with

optimization technique Int. J. Comput. Inf. Eng., World

Acad. Sci. Eng. Technol., 12 (1) (2018), pp. 28-32

[20] Bishnu, P.S., Bhattacherjee, V.: Software fault prediction

using Quad Tree-based K-means clustering algorithm.

IEEE Trans. Knowl. Data Eng. 24(6), 1146–1150 (2012)

[21] Jacob, S.G., et al. (2015) Improved Random Forest

Algorithm for Software Defect Prediction through Data

Mining Techniques. International Journal of Computer

Applications, 117, 18-22. https://doi.org/10.5120/20693-

3582

[22] Challagulla, V.U.B., Bastani, F.B., Yen, I.L. and Paul,

R.A. (2005) Empirical Assessment of Machine Learning-

Based Software Defect Prediction Techniques.

Proceedings of the 10th IEEE International Workshop on

Object-Oriented Real-Time Dependable Systems, 2-4

February 2005, Sedona, 263-270

[23] Aleem, S., Capretz, L. and Ahmed, F. (2015)

Benchmarking Machine Learning Technologies for

Software Defect Detection. International Journal of

Software Engineering & Applications, 6, 11-23.

https://doi.org/10.5121/ijsea.2015.6302

[24] Perreault, L., Berardinelli, S., Izurieta, C., and Sheppard,

J. (2017) Using Classifiers for Software Defect Detection.

26th International Conference on Software Engineering

and Data Engineering, 2-4 October 2017, Sydney, 2-4.

[25] Alsawalqah, H., Faris, H., Aljarah, I., Alnemer, L. and

Alhindawi, N. (2017) Hybrid Smote-Ensemble Approach

for Software Defect Prediction. In: Silhavy, R., Silhavy,

P., Prokopova, Z., Senkerik, R. and Oplatkova, Z., Eds.,

Software Engineering Trends and Techniques in

Intelligent Systems, Springer, Berlin, 355-366.

https://doi.org/10.1007/978-3-319-57141-6_39

[26] W. Rhmann, B. Pandey, G. Ansari et al., Software fault

prediction based on change metrics using hybrid

algorithms: An empirical study, Journal of King Saud

University – Computer and Information

Sciences,https://doi.org/10.1016/j.jksuci.2019.03.006

[27] Hossin, M.and Sulaiman, m.n. “a review on evaluation

metrics for data classification evaluations”. international

journal of Data Mining & Knowledge Management

Process (IJDKP) Vol.5, No.2, March 2015

[28] http://www.cs.waikato.ac.nz/ml/weka

[29] Software Defect Dataset: PROMISE REPOSITORY.

http://promise.site.uottawa.ca/SERepository/datasets-

page.html

[30] https://libguides.library.kent.edu/SPSS/PairedSamplestTe

st

Author’s Profile

Mohammad Zubair Khan got the Ph.D.

degree in CS&IT from Faculty of

Engineering, M.J.P. Rohilkhand

University, Bareilly India, and the Master

of Technology in Computer Science and

Engineering in 2006 from U.P.

Technical University, Lucknow, India.

He is currently working as Associate

Professor in the Department of Computer Science, College of

computer science and engineering Taibah University. Past he

has worked as head and Associate professor, in the Department

of Computer Science and Engineering, Invertis University,

Bareilly India. He has published more than 40 journals papers.

Mohammad Zubair Khan is a member of Computer Society of

India since 2004. His current research interests are data mining,

big data, parallel and distributed computing, and computer

networks. He has more than 15 years teaching and research

experience

How to cite this paper: Mohammad Zubair Khan, " Hybrid Ensemble Learning Technique for Software Defect

Prediction ", International Journal of Modern Education and Computer Science(IJMECS), Vol.12, No.1, pp. 1-10,

2020.DOI: 10.5815/ijmecs.2020.01.01

https://doi.org/10.5120/20693-3582
https://doi.org/10.5120/20693-3582
https://doi.org/10.5121/ijsea.2015.6302

