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Abstract: Automatic Environmental Sound Recognition (AESR) is an essential topic in modern research in the field of 

pattern recognition. We can convert a short audio file of a sound event into a spectrogram image and feed that image to 

the Convolutional Neural Network (CNN) for processing. Features generated from that image are used for the 

classification of various environmental sound events such as sea waves, fire cracking, dog barking, lightning, raining, 

and many more. We have used the log-mel spectrogram auditory feature for training our six-layer stack CNN model. 

We evaluated the accuracy of our model for classifying the environmental sounds in three publicly available datasets 

and achieved an accuracy of 92.9% in the urbansound8k dataset, 91.7% accuracy in the ESC-10 dataset, and 65.8% 

accuracy in the ESC-50 dataset. These results show remarkable improvement in precise environmental sound 

recognition using only stack CNN compared to multiple previous works, and also show the efficiency of the log-mel 

spectrogram feature in sound recognition compared to Mel Frequency Cepstral Coefficients (MFCC), Wavelet 

Transformation, and raw waveform. We have also experimented with the newly published Rectified Adam (RAdam) as 

the optimizer. Our study also shows a comparative analysis between the Adaptive Learning Rate Optimizer (Adam) and 

RAdam optimizer used in training the model to correctly classifying the environmental sounds from image recognition 

architecture. 

 

Index Terms: AESR, CNN, Log-Mel Spectrogram, MFCC, Adam, RAdam, Relu, Image, Classification. 

 

1.  Introduction 

In recent times, automatic sound recognition has gained much impetus. It has been implemented in 

multidisciplinary areas like an audio surveillance system [1], detection of an impostor in the wildlife areas [2], 

environmental sound recognition in home automation [3], and extenuation of noise [4]. Various non-human sounds 

without music in our regular day to day life creates environmental sound, for example, glass breaking, door knock, 

pouring of water, the sound of an engine, helicopter, crying of a baby, and so many more. Recognition of such domestic 

and environmental sounds can open the door for innovative and significant business applications. The progression in the 

field of image classification generated from audio sound using deep learning techniques [5,6,7] are leading 

academicians and researchers to start using featured images created from the audio clip in a far more effective way to 

classify sound events. In AESR task, the objective is to recognize the type of a specific sound by labeling them into 

multiple events. These audio events recognition tasks are often assorted and cluttered with the acoustic scene 

classification [8] problem, where a sound feed to the neural network as input is required to be recognized into multiple 

acoustic scenes. However, we limit the range of our study to the recognition of sound events in an environment from 

audio clips.  

Conventional audio features extraction methods such as Mel Frequency Cepstral Coefficients (MFCC), Linear 

Predictive Coding (LPC) [9], Zero-Crossing Rate (ZCR), Wavelet Transformation have been used in the past to extract 

features from a sound event. However, the problem with MFCC is that it shows inadequacies in detecting sound when 

there is noise in the audio sample. LPC calculates in a linear structured way, so; it fails to take the non-linear features of 

an audio signal. ZCR is effectively used in detecting endpoint in musical appliances measurement. Nevertheless, 
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Measurement is functional only on longer fragments of the signal since small chunks might have just a few zero 

crossings or none at all. However, recent research suggests that Log-Mel Spectrogram (LMS) feature works better in 

detecting an environmental sound event. Last few years, Deep Neural Network (DNN) has made great success in 

automatic speech recognition and music information retrieval. 

The Log-Mel Spectrogram (LMS) feature of an audio signal is considered as one of the most robust features for 

sound classification [10]. LMS is calculated for each frame of an auditory sample. Then a map is generated by forming 

the features of each frame along the time axis. CNN can be used to learn hidden patterns through a large amount of 

training data. Applying CNN to detecting environmental sound has gained an essential improvement by exploring log-

mel spectrogram features.  

Classification of sound from a featured image is one of the most trending topics in modern research. Orthodox 

machine learning algorithms such as Support Vector Machine (SVM), K Nearest Neighbor (KNN) & Gaussian Mixture 

Model (GMM) are already applied to detect and classify audio sound [11, 12].  

There exists an exploration gap that concerns the competence of DNNs that was designed to identify objects when 

it comes to detecting a sound event based on spectrogram images. Our goal in this study is to improve the accuracy of 

detecting environmental sounds by proposing LMS based stack CNN model and hyper tuning the model with two types 

of padding in the CNN architecture and also make a comparative analysis of the model’s performance by using Adam 

and Rectified Adam (RAdam) as the optimizer.  

The remaining article is organized as follows. Section II describes the related work in AESR. In section III, we 

provide a brief depiction of the datasets used. Section IV presents the methodology and the network architecture of our 

study. In Section V, we describe the results of our experiments and the comparison of our results with other studies. 

Finally, we conclude our study and discuss real-world aspects of AESR in section VI. 

2.  Literature Review 

With the advancement of Deep Convolutional Neural Network and its efficient use in computer vision, speech 

recognition, language modeling, and other related areas, it is proven that CNN based architecture outclasses the 

conventional methods in various classification tasks. Hence, they have been applied in the automatic sound event 

recognition task in recent years. 

Piczak [13] evaluated the outcome of CNN based model in the AESR task by training on segmented spectrograms. 

He extracted log-mel features of each frame as an audio feature in a two-layer CNN model with max-pooling and two 

fully connected layers and achieved state of the art performance compared with the traditional methods. 

Salamon & Bello [14] proposed a CNN model that contains three convolutional layers and one fully connected 

layer by using the log-mel feature as the two-channel input as well as augmenting data by pitch-shifting, time-stretching, 

dynamic range compression, and added background noise to the audio clips to increase the variety of data to train the 

model more efficiently. Their model improved the accuracy of classification by six percent on the urbansound8k dataset 

compared to Ref. [13]. 

CNN models like AlexNet and GoogleNet [15] initially developed for image recognition tasks has been exploited 

in many research works with state of the art outcome in environmental sound recognition.  

Authors in Ref. [16], extracted the LMS, MFCC, and Cross Recurrence Plot (CRP) feature set from the sound clips 

and concatenated as a three-channel input to train the AlexNet and GoogleNet models with outstanding results in 

detecting environmental sound events. 

In multiple research, raw waveforms were used to achieve the automatic learning of features in AESR [17, 18]. It 

is a combination of CNN that is used for extracting features from sound clips and Recurrent Neural Networks (RNN) 

for progressive aggregation of the features extracted using CNN. However, the results of the classification were 

unsatisfactory compared to the LMS feature.  

Authors in Ref. [19], have developed a deeper classification network based on EnvNet, also referred to as EnvNet-

v2, and achieved competitive performances using between class (BC) learning method. They generated the BC sounds 

by combining sounds from two diverse classes with a random ratio and trained their model with that. 

Authors in Ref. [20], have proposed a network with dilated convolutional filters (enlarged filters) to gain more 

contextual information and more particular high-level features than traditional CNN architecture and experimented with 

their model with multiple activation functions to see which performed better in terms of classifying a specific sound 

event. According to their study, LeakyRelu achieved better accuracy than other activation functions with 81.9% 

accuracy in the urbansound8k dataset. 

Uzkent, Barkana & Cevikalp in Ref. [21] introduced a new 2-D feature set based on Pitch Range (PR) of 

environmental sound, and an autocorrelation function used in the feature extracting method using Support Vector 

Machine (SVM). SVM classifier using the Gaussian kernel provided the highest accuracy of 85.6% in detecting non-

speech environmental sound among the classifiers they have used.  
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Authors in Ref. [22] proposed a novel stacked CNN model which takes either raw waveform (RawNet) or log-mel 

(MelNet) feature as input. Using Dempster-Shafer (DS) evidence theory, they have developed an ensemble DS-CNN 

model by combining the previous two models for classifying environmental sound. Their MelNet model achieved 

90.2% accuracy in the urbansound8k dataset, 91.4% accuracy in the ESC10 dataset, and 81.1% accuracy in the ESC50 

dataset. Their RawNet model achieved 65.8% accuracy in the ESC50 dataset, 85.2% accuracy in the ESC10 dataset, 

and 87.7% accuracy in the urbansound8k dataset. Their Ave-CNN and Pro-CNN model achieved an accuracy of 91.6% 

and 91.9% in the urbansound8k dataset.  

Authors in Ref. [23], have used log-mel featured based spectrogram images to train the CNN and Tensor Deep 

Stacking Network (TDSN) architecture. Their CNN model achieved an accuracy of 77% in the ESC10 dataset and 49% 

in the ESC50 dataset. Their TDSN model achieved an accuracy of 56% in the ESC10 dataset. 

Authors in Ref. [24] proposed a novel robust optimization algorithm RAdam, which is a variant of the adaptive 

stochastic optimization algorithm, Adam. They have explored the warmup heuristic used for adaptive optimization 

algorithms. According to the authors, RAdam rectifies the adaptive learning rate of Adam to gain a more consistent 

variance. 

Authors in Ref. [25] evaluated the performance of Machine Learning (ML) algorithms such as K-Nearest Neighbor 

(KNN), Naive Bayes (NB), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Decision Tree (DT) 

to recognize urban sound on embedded devices concerning execution time and accuracy and they have also proposed a 

cascade approach to combine ML algorithms by analyzing the characteristics of embedded devices. 

In this study, our objective is to progress the classification performance of the LMS based recognition of 

environmental sound by proposing a stacked CNN model and hyper tuning the model with two types of padding (same 

and valid) and also test the models’ performance using two types of adaptive optimizer algorithm named Adam and 

Rectified Adam (RAdam). 

3.  Datasets 

In our study, we have selected three publicly available datasets for evaluation of the model, ESC-50 [26], ESC-10 

[26], and UrbanSound8K [27]. We wanted to train our model in a variety of sound samples of the environment from 

rural country place to nature, forest, sea, and urban society activities. Most of the previous researches conducted in this 

topic only worked with ESC-10 and ESC-50 datasets or only with the Urbansound8k dataset. We have selected all three 

in order to get more data for training the model with thousands of sound events of different categories. ESC-50 dataset 

contains two thousand short recorded audio clips of five seconds comprising of fifty equally sized classes. It is divided 

into major groups of animals, human non-speech sounds, interior/domestic sounds, natural soundscapes, water sounds, 

and urban noises and preset into five folds for cross-validation. The dataset consists of fifty .wav files sampled at 16 

kHz for fifty diverse classes.  

ESC-10 is a less complicated identical subclass with ten equally sized classes (dog barking, rain, sea waves, baby 

crying, a clock ticking, person sneezing, helicopter, chainsaw, rooster, fire crackling) of four hundred recordings 

selected from the ESC-50 dataset. Though the number of audio samples in the ESC-10 dataset is minimal to use for any 

deep learning techniques, we wanted to evaluate our model’s performance in the real dataset without any augmentation.  

UrbanSound8K is a pool of 8732 small sound clips (less than 4 seconds) of different urban sound (air conditioner, 

car horn, playing children, dog bark, drilling, engine idling, gunshot, jackhammer, siren, street music) preset into ten 

folds.  

4.  Methods & Architecture 

A. Experimental Setup and Workflow of the study 

We used a laptop with 16 GB RAM, an Intel Core i7-8750 CPU (8 cores @2.20 GHz), and NVIDIA GeForce 

GTX 1050-Ti graphics in the experiments. The PC was running Windows 10, and we have used Anaconda Python and 

the deep learning framework TensorFlow with Keras. 
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Fig.1. Basic workflow diagram of our study. 

The basic workflow of our study is shown in figure 1. At first, we selected those audio clips, which were over three 

seconds long to generate high-level spectrogram featured images as valid data. We have used the librosa library in 

python to do that task for us. Then using librosa’s melspectrogram feature, we generated 128x128 pixel log-mel 

spectrogram images by iterating through all the valid data and appended the class-ID of each data with its audio sample. 

It is done by dividing the frequency selection of audible sound into 128 components. It ranges from 0 to 22.05 kHz. 

There are 128 components across the time domain as well. It is divided into frames of 23.7 ms since each valid sound 

clips are over 3 seconds long. Hence, the overall input becomes a 128x128 matrix A, consisting of real numbers R, as 

shown in equation (1). 

 

                                
128 128x

i
A R                                                                            (1) 

B. Network Architecture  

The following tables 1 & 2 represents the architecture of the proposed CNN model for classifying environmental 

sound. Spectrogram image and wave plot representation of a sound event (siren) is provided in figure2. 
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Table 1. Summarization of the Proposed Architecture. 

Input Shape (128 x 128 x 1) log-mel 
spectrogram images. 

Conv2D 16 kernels with a 3x3 
receptive field. 

Max Pooling Size: (2x2) 

Dropout 0.25 

Activation function Relu 

Conv2D 32 kernels with a 3x3 

receptive field. 

Max Pooling Size: (2x2) 

Dropout 0.25 

Activation function Relu 

Conv2D 64 kernels with a 3x3 
receptive field. 

Max Pooling Size: (2x2) 

Dropout 0.25 

Activation function Relu 

Conv2D 128 kernels with a 3x3 

receptive field. 

Max Pooling Size: (2x2) 

Dropout 0.25 

Activation function Relu 

Flatten(); Dropout: 0.5 

Fully Connected Layer Dense(512) 

Activation function Relu 

Dropout 0.6 

Fully Connected Layer Dense(10) for ESC-10 & 

Urbansound8K datasets and 
Dense(50) for ESC-50 

dataset. 

Activation function Softmax 

 

We evaluated the model with K-fold cross-validation in all the datasets with K=5 for ESC-50 and ESC-10 datasets 

and K=10 for the urbansound8k dataset. We have used dropout in each layer to prevent overfitting.  

 

 
(a) 

 
(b) 

Fig.2. (a) Spectrogram image of a siren, (b) wave plot of a siren. 
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Table 2. The architecture shape and number of parameters of the proposed six layers stack CNN model. 

Layer (Type) Output Shape Number of 

Parameters 

conv2d_1 (Conv2D) (None, 126, 126, 16) 160 

max_pooling2d_1 
(MaxPooling2D) 

(None, 63, 63, 16) 0 

dropout_1 (Dropout) (None, 63, 63, 16) 0 

activation_1 (Activation) (None, 63, 63, 16) 0 

conv2d_2 (Conv2D) (None, 63, 63, 32) 4640 

max_pooling2d_2 
(MaxPooling2D) 

(None, 31, 31, 32) 0 

dropout_2 (Dropout) (None, 31, 31, 32) 0 

activation_2 (Activation) (None, 31, 31, 32) 0 

conv2d_3 (Conv2D) (None, 31, 31, 64) 18496 

max_pooling2d_3 

(MaxPooling2D) 

(None, 15, 15, 64) 0 

dropout_3 (Dropout) (None, 15, 15, 64) 0 

activation_3 (Activation) (None, 15, 15, 64) 0 

conv2d_4 (Conv2D) (None, 15, 15, 128) 73856 

max_pooling2d_4 
(MaxPooling2D) 

(None, 7, 7, 128) 0 

dropout_4 (Dropout) (None, 7, 7, 128) 0 

activation_4 (Activation) (None, 7, 7, 128) 0 

flatten_1 (Flatten) (None, 6272) 0 

dropout_5 (Dropout) (None, 6272) 0 

dense_1 (Dense) (None, 512) 3211776 

activation_5 (Activation) (None, 512) 0 

dropout_6 (Dropout) (None, 512) 0 

dense_2 (Dense) (None, 10) 5130 

activation_6 (Activation) (None, 10) 0 

Total params: 3,314,058 

Trainable params: 3,314,058 

Non-trainable params: 0 

5.  Result Analysis 

A.  Model’s performance in the datasets: 

Two types of padding (same and valid) were used in the convolutional layer. We tested the model on both Adam 

and RAdam optimizer. In our experiment in recognizing environmental sound from log-scaled mel spectrogram 

featured images, Adam optimizer performed better than Rectified Adam (RAdam) optimizer in terms of correctly 

classifying sound events. The batch size was set at 32 when fitting the model. In every training of our model, we 

noticed that though RAdam showed robust characteristics in its heuristics to obtain a more stable variance, its accuracy 

in detecting sound was lesser than Adam optimizer in every training. 

Table 3. Performance chart of the model in the Urbansound8k dataset. 

Padding Optimizer Accuracy No. of epochs 

Same Adam 92.9% 

220 
Valid Adam 89% 

Same RAdam 82.5% 

Valid RAdam 77% 

Table 4. Performance chart of the model in the ESC-10 dataset. 

Padding Optimizer Accuracy No. of epochs 

Same Adam 91.7% 

1000 
Valid Adam 81% 

Same RAdam 82.2% 

Valid RAdam 75% 
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Table 5. Performance chart of the model in the ESC-50 dataset. 

Padding Optimizer Accuracy No. of epochs 

Same Adam 65.8% 

1000 
Valid Adam 57% 

Same RAdam 44% 

Valid RAdam 33% 

 

From our study, we find that the accuracy of the model decreased significantly when valid padding was used in the 

architecture. The validation accuracy curve in each training of the experiment with the highest accuracy in both 

optimizers shown in tables 3-5 is presented in figure no. 3 to figure no. 8.  

 

 

Fig.3. Training accuracy vs. Validation accuracy curve of the model in the urbansound8k dataset with Adam optimizer and the same padding in the 

convolution layer with a validation accuracy of 92.9%. 

 

Fig.4. Training accuracy vs. Validation accuracy curve of the model in the urbansound8k dataset with Rectified Adam optimizer and same padding in 

the convolution layer with a validation accuracy of 82.5%. 
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Fig.5. Training accuracy vs. Validation accuracy curve of the model in the ESC-10 dataset with Adam optimizer and the same padding in the 
convolution layer with a validation accuracy of 91.7%. 

 

Fig.6. Training accuracy vs. Validation accuracy curve of the model in the ESC-10 dataset with Rectified Adam optimizer and same padding in the 
convolution layer with a validation accuracy of 82.2%. 

 

Fig.7. Training accuracy vs. Validation accuracy curve of the model in the ESC-50 dataset with Adam optimizer and the same padding in the 

convolution layer with a validation accuracy of 65.8%. 
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Fig.8. Training accuracy vs. Validation accuracy curve of the model in the ESC-50 dataset with Rectified Adam optimizer and same padding in the 

convolution layer with a validation accuracy of 44%. 

The normalized confusion matrixes of the model in Urbansound8k, ESC-50, and ESC-10 datasets, respectively, are 

presented in figures 9 to 11. The confusion matrix is a summary of the prediction results on a classification problem. 

Diagonal elements of each matrix show the validation accuracy of predicting the environmental sound of specific sound 

events or classes.  

Table 6. Functional chart of a confusion matrix 

  Predicted Data 

  (Positive: P) (Negative: N) 

Actual Data 
(Positive: P) TP FN 

(Negative: N) FP TN 

 

We can calculate the accuracy of the proposed CNN model as the number of all accurate predictions divided by the 

total number of valid data presented the dataset using equation (2). 

 

       

TP TN
Accuracy

TP FP FN TN




  
                                                                  (2) 

 

Here, TP  = True Positive event prediction, TN  = True Negative event prediction, FP = False Positive event 

prediction, and FN = False Negative event prediction.  

Validation Accuracy on Urbansound8k dataset from figure 9: 

 

(.87 .95 .91 1 .94
%

9
* 100

1

1 .89 .86 .9

0

. 7 )
Accuracy

       




92.9%Accuracy   
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Fig.9. Class-wise normalized confusion matrix of the model in the urbansound8k dataset with Adam optimizer and padding (same) in the 

convolution layer with a validation accuracy of 92.9%. Here, labels, 0=Air conditioner, 1=Car horn, 2= Children playing, 3=Dog bark, 4=Drilling, 
5=Engine idling, 6=Gun shot, 7=Jackhammer, 8=Siren, and 9=Street music [dataset: Urbansoound8k]. 

Validation accuracy in ESC-10 dataset from figure 10,  

 

(1 1 1 0.67 1
%*

0. 1
1

5 1 1

0

1
0

)
0

1

Accuracy
        

  

91.7%Accuracy   

 

 

Fig.10. Class-wise normalized confusion matrix of the model in the ESC-10 dataset with Adam optimizer and padding (same) in the convolution 

layer with a validation accuracy of 91.7%. Here, labels, 0=dog, 1=rooster, 2=rain, 3=sea waves, 4=crackling fire, 5=crying baby, 6=sneezing, 

7=clock tick, 8=helicopter, and 9=chainsaw [dataset: ESC10]. The model correctly predicts the sound of dog, rooster, rain, crackling fire, sneezing, 
clock tick, the helicopter, and chainsaw with 100% accuracy. 
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Fig.11.Class-wise normalized confusion matrix of the model in the ESC-50 dataset with Adam optimizer and padding (same) in the convolution layer 

with a validation accuracy of 65.8% [dataset: ESC-50].  The model correctly classifies label 0=cow, 4=frog, 5=cat, 7=insects, 9=crow, 10=rain, 
13=crickets, 18=toilet flush, 19=thunderstorm, 22=clapping, 37=clock alarm, 38=clock tick, 39=glass breaking, 41=chainsaw and 46=church bells 

sound with 100% accuracy. It classifies label 1=rooster, 34=can opening, 36= vacuum cleaner, and 11=sea waves sound between 67% to 80% 

accuracy. The classification accuracy of the rest of the classes was between 25% to 50%. The model somehow failed to predict the sound of crying 
baby and dog and gets confused with water drop, sheep, and sneezing in the ESC-50 dataset. 

B.  Comparison of our model with other baseline models 

In tables 7, 8, 9, we have compared our result with other states of the art neural network models. In the     

Urbansound 8k dataset, our approach yields the best accuracy of 92.9%. In the ESC 10 and ESC 50 dataset, our 

accuracy is 91.7% and 65.8%, respectively.  

Table 7. Comparison of classification accuracy with other baseline models on the Urbansound8k dataset. Bold mark with green background indicates 
our result.  

Model Feature Accuracy 

Piczak [13] Log-mel 73.7% 

Salamon [14] Log-mel 79% 

AlexNet [15] Log-mel 92% 

 Boddapati [16] MFCC+CRP+Spectrogram 93% 

Dai [18] Raw waveform 71.68% 

Zhang [20] Log-mel 81.9% 

MelNet [22] Log-mel 90.2% 

RawNet [22] Raw waveform 87.7% 

DS-CNN [22] Combine (DS evidence) 92.2% 

Ave-CNN [22] Combine (Average) 91.6% 

Pro-CNN [22] Combine (Product of probabilities) 91.9% 

Our Approach Log-mel 92.9% 
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Table 8. Comparison of classification accuracy with other baseline models on the ESC-10 dataset. Bold mark with green background indicates our 
result. 

 

Table 9. Comparison of classification accuracy with other baseline models on the ESC-50 dataset. Bold mark with green background indicates our 
result 

Model Feature Accuracy 

EnvNet [10] Raw waveform  64% 

Piczak [13] Log-mel 64.5% 

RawNet [22] Raw waveform 65.7% 

Khamparia [23] Log-mel 53% 

Our Approach Log-mel 65.8% 

6. Conclusion 

In our paper, we have projected an intelligent stack CNN model to recognize environmental sound events that is 

one of the less explored areas in the present research field. We used the Log-Mel (LM) spectrogram as the primary 

feature and generated LM-spectrogram images for each valid sound clip in the evaluated datasets. We have used three 

public datasets, Urbansound8k, ESC-50, and ESC-10, to assess the classification performance of the model. We 

performed multiple hyper tuning of the model with different dropout rates, different types of padding in the convolution 

layer, changing the max-pooling layer size as well as tuning with multiple stride steps to see which combination 

provides the best accuracy in recognizing environmental sound efficiently. We evaluated the model with Adam 

optimizer and Rectified Adam optimizer. Though Rectified Adam optimizer has a better warmup heuristic to achieve 

the highest accuracy in a shorter number of epochs standard Adam optimizer performed better in terms of providing 

better classification accuracy. Our model outperformed multiple baseline models in the automatic environmental sound 

reorganization task with an accuracy of 92.9% in the Urbansound8k, 91.7% in the ESC-10, and 65.8% in the ESC-50 

datasets. However, trainable parameters of 3.3M provide a greater computation complexity and more significant 

memory. In the future, we will put our sight to increase the classification accuracy of the model, even more, to 

recognize more detailed sound samples with varying frequency and signal to noise ratio as well as dropping the 

computational cost of the model. This system can be applied as a hearing aid for different environment settings and 

could open the door for multiple practical applications used on embedded systems for commercial purposes. 
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