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Abstract— Complexity of algorithms for the servo control in 
the multi-dimensional, ultra-precise stage application has 
made multi-processor parallel computing technology needed. 
Considering the specific communication requirements in the 
parallel servo computing, we propose a communication 
service scheme based on VME bus, which provides high-
performance data transmission and precise synchronization 
trigger support for the processors involved. 
Communications service is implemented on both standard 
VME bus and user-defined Internal Bus (IB), and can be 
redefined online. This paper introduces parallel servo 
computing architecture and communication service, 
describes structure and implementation details of each 
module in the service, and finally provides data 
transmission model and analysis. Experimental results show 
that communication services can provide high-speed data 
transmission with sub-nanosecond-level error of 
transmission latency, and synchronous trigger with 
nanosecond-level synchronization error. Moreover, the 
performance of communication service is not affected by the 
increasing number of processors. 
 
Index Terms— Communication service, Parallel computing, 
VME bus, data transmission 
 

I.  INTRODUCTION 

In the 65nm twins-wafer-stages Lithography, three 6-
DOF (Degrees Of Freedom) stages exist and more than 
40 axles need to be controlled. The complexity of 
algorithms has led to the performance requirement 
exceeding the capabilities of a single processor; therefore, 
multi-processor parallel computing technology is needed 
[1] [2]. The parallel servo computing discussed in the 
paper has the following requirements on communication 
service: (1) in every parallel computing cycle, a large 
number of data need to be transmitted among various 
processors. The transmission latency must be low and 
accurate otherwise its uncertainty will disorder the timing 
sequence of parallel servo calculation; (2) Due to the 
complex coupling relations in the movements of related 
axes, the inconsistent output delay of control command 
will damage control model [2][3][12]. Hence, precise 
synchronous trigger is required. 

MPI (Message passing interface) is a library 
specification for message-passing, used widely on certain 

classes of parallel machines, especially those with 
distributed memory [4]. The study of MPI and its 
improvement is relatively richer. However, the 
communication service based on MPI suffers from the 
following problem: as the number of processors increases, 
the data transmission latency will increase significantly 
[5-8]; more importantly, only the estimate instead of the 
accurate value of the transmission time of a certain data 
packet is available and precise synchronous trigger can 
not be provided, which means that MPI is not suitable for 
communications service for ultra-high precision parallel 
servo computing.  

Yan Luxin and Zhang Tianxu [10] investigated a "Δ" 
type shared memory architecture based on FPGA, which 
achieved accurate transmission latency and relatively 
high bandwidth among three DSPs. However, the 
architecture of this shared memory is extremely complex 
when the complexity of transmission requirements 
increases (if more DSPs exist in the parallel architecture).  

James Kohout and Alan D. George [11] investigated a 
ring-type data transmission architecture, in which it 
achieved the bandwidth of 320Mbits/S between 
neighboring nodes. A problem of this transmission 
architecture is that ring size expands with the increasing 
number of nodes; even if pipeline operation is adopted to 
optimize data transmission, the transmission time of a 
certain data packet will still increase with ring size 
expanding.  

It is also difficult to achieve precise transmission 
latency when using TCP or MPI based on Ethernet link 
[13] [14], because the uncertainty caused by the upper 
layer protocols (such as data congestion, handshaking and 
error handling mechanism) makes it difficult to establish 
precise data transmission model. Even if the high 
communication bandwidth is achieved, synchronization 
performance can only achieve 200ns-level [12] or lower, 
which will generate intolerant synchronization position 
error that may destroy control model when stage is at 
high speed.  

FPDP (Front Panel Data Port) is probably a good 
choice. More details on FPDP are introduced in [16]. The 
main drawback with this method is that when redefinition 
is needed, all the nodes in the system need 
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reconfiguration. Since no signals are available for 
addressing on FPDP, the definition of data transmission 
sequence is done before the data transmission starts [16].  

Considering the specific need of communication 
service, it would be a better choice to adopt hardware 
architecture to implement data sending, transmission, and 
storage. Once the transmission timing is set, it would be 
executed consistently; also both transmission latency and 
bandwidth depend only on hardware performances. Such 
properties make the data transmission model more 
accurate with no extra software overhead. In this paper, 
we propose a high-performance communication service 
scheme, which provides high-performance data 
transmission and precise synchronization trigger support 
for multi-DSP parallel computing architecture. We design 
IB (Internal Bus) to construct data transmission channel 
with high bandwidth and stable transmission performance 
by using broadcast transmission. Communication service 
is implemented by FPGA (Field Programmable Gate 
Array).  

II. PARALLEL SERVO COMPUTING ARCHITECTURE AND 
COMMUNICATION SERVICE 

Parallel computing architecture is designed based on 
VME bus, where the upper computer is the only VME 
host. On the VME bus, P1connector is defined in the 
VME64x specification, while several pins in P2 
connector are reserved for users’ definition [15] [17]. IB 
has been defined in these reserved pins. Upper computer 
can access each processor via standard VME bus (P1) and 
IB (P2) has been designed as the high-speed data channel 
among the processors. IBMC (Internal Bus Master 
Controller) generates bus control signals following the 
defined IB timing specification. Under the control of 
those signals, IBSC (Internal Bus Slave Controller) 
finishes data transmission and generates synchronous 
trigger following the defined synchronous timing 

specification to synchronize parallel computing of multi-
DSP. VME_Ctrller provides interface to standard 
VME64x bus for IBMC, IBSC and DSP. To realize 
control and management towards IB, upper computer 
configures IBMC via VME interface to define the 
“behavior” of IB. The data transmission process on IB 
does not involve the participation of DSP software.  

The object discussed in this paper is the 
communication service composed of VME bus, 
VME_Ctrller, IB, IBMC, and IBSC, as shown in dashed 
frame in Fig.1. Communication service includes data 
transmission and synchronous trigger functions.  

Upper
Computer

DSP1

IBMCVME
Ctrller

VME Bus

IBSC VME
Ctrller

FPGA

DSP2 DSPn

Internal Bus (IB)

IBSCVME
Ctrller

FPGA

IBSCVME
Ctrller

FPGA

IBSCVME
Ctrller

FPGA

Communication
Service

Fig.1. Parallel servo computing architecture 

Data transmission is implemented on both VME bus 
and IB. Data sent by upper computer via VME bus 
contain task parameters to DSPs and configuration to 
IBMC (or IBSC). Other than sending all the data 
simultaneously, the upper computer sends data 
successively according to the slave address of each VME 
in the address map. Due to handshaking and arbitration 
involved in data transmission process on VME bus, it is 

  
Fig.2. Functions of communication service 
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relatively difficult to calculate precise transmission 
latency; moreover, the time difference between data 
receiving of different VME slave exists in the data 
transmission on VME bus. For these reasons, the data 
transmission on VME is defined as relaxed timing 
transmission. In contrast, the design for IB transmission 
is simple and strict, which happens in every parallel cycle 
to implement data exchange among DSPs. 

The functions of communication service are described 
in Fig.2. Synchronous trigger ensures simultaneous 
startup of calculation and simultaneous output of result in 
every parallel computing cycle. Trigger 1 is generated at 
the moment data transmission sequence begins on IB to 
inform DSP that only data-insensitive calculations can be 
implemented. Furthermore, the result of previous cycle 
will be outputted synchronously under the action of 
trigger 1. Trigger 2 is generated at the moment data 
transmission ends to start data-sensitive calculation, and 
IB remains idle until the end of current parallel 
computing cycle. The difference between data-sensitive 
and data-insensitive calculation is that for the former, the 
access IB data exchange memory is needed, which is not 
the case for the latter. For stage has the highest speed at 
1m/s and nanometer-level positioning accuracy has been 
required [2] [3], synchronous trigger with nanosecond-
level error is required.  

Only relaxed timing transmission is implemented on 
VME bus during the system initialization, whereas strict 
timing transmission is implemented on IB after the 
configuration and start up of IBMC. The alternate 
appearance of trigger 1 and 2 provides a strict timing 
reference for parallel computing. Unavoidably certain 
loss of efficiency exists: a DSP has to wait for next 
following synchronous trigger to start a new cycle of 
calculation after finishing the current one. This is 
necessary because otherwise the asynchronous output of 
result will damage control model. Moreover, the parallel 
cycle time can be reasonably set to reduce efficiency 
losses caused by waiting. 

According to the previous discussions, four features of 
communication service are presented below. (1) High 
speed and stable bandwidth are required. (2) Precise data 
transmission latency is necessary. For the reason that 
data-sensitive calculation starts after the end of data 
transmission; if data transmission latency changes 
dynamically, it is difficult to ensure that data–sensitive 
calculation has been finished in every parallel cycle when 
next data transmission begins. For this reason, a strict IB 
protocol has been designed to implement stable 
performance and uncertain factors such as routing, 
congestion and bus arbitration, etc are forbidden. (3) The 
length, source and destination addresses of data that are 
to be transferred in each cycle are all fixed. In every 
parallel servo cycle, only a data transmission sequence 
with fixed data length is needed, and every datum in the 
sequence has its own IB address and is transmitted 
regardless of the actual need in the current parallel 
computing cycle. It is indeed a tradeoff - efficiency is 
sacrificed for transmitting data that are not used to get 
fixed data length in the transmission sequence in return. 

Moreover, a “bonus” from this is that every datum in 
transmission sequence has its source and destination 
address because of its private location in IB address map. 
（ 4 ） For stage has the highest speed at 1m/s and 
nanometer-level positioning accuracy is required [2] [3], 
synchronous trigger with nanosecond-level error is 
required. The design of communication service that are 
introduced in section 3~5 are based on these 4 features.  

III. REALIZATION OF THE COMMUNICATION SERVICE 

A. Structure of distributed memory 
Distributed memory structure is adapted for data 

storage and exchange in parallel computing architecture. 
Every DSP has its related distributed memory, which has 
been divided into two parts, one for VME bus, and the 
other one for IB. DSP accesses the two parts via EMIF 
[9]. The memory for IB is discussed in this section. More 
details on memory for VME are introduced in [15]. 

In IBSC, DPRAM (Dual Ported RAM) is used for 
Memory (refers to distributed memory for IB, same in 
later context) with one port connected to IB, and one 
connected to DSP. The depth of Memory is 64K * 32bit, 
which is divided into 16 blocks.  

 Rules for Memory access are as follow: (1) Every 
DSP holds a private memory block whose base address is 
related to the number of VME slot where DSP is located. 
For example, The DSP2 installed in No.2 slot holds block 
at 0x2000-0x2fff corresponding to DSP side address: 
0xc000, 8000 - 0xc000, cffc. (2) For its own private block, 
each DSP can perform both read and write access; while 
for other blocks, only read access is valid. For every 
IBSC, definition of Memory is the same and the 
responsibility of IB data transmission is to realize the data 
exchange between different Memories in different IBSC. 
What DSP does is only to write the to-be-exchanged data 
into its private Memory block. 

B. Definition of IB protocol  
IB provides a real-time and fast medium for 

transferring data among IBSC. It consists of a 16-bit 
address bus, 32-bit data bus and 2 control lines. The 
relevant definition is described in table I. 

TABLE I.   
DEFINITION OF IB SIGNALS 

Signals 
IBSC 

IBMC Description Output 
Side

Input 
Side

ADD 
[15:0] 

In In Out 
Driven by IBMC.
IBSC uses these address 
lines to determine 
whether this cycle is to 
be a read or a write cycle 
for itself. 

AEn In In Out 
Driven by IBMC.
Indicating that 
ADD[15:0] are valid for 
low level; 

DATA 
[31:0] 

Out In Not 
care 

During each IB cycle 
these lines are driven by 
exactly one IBSC and all 
the other IBSCs store 
this data into DPRAM;

DTACK Out In
Not 
care 

Indicating that DATA 
are valid for low level;
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IB is a non-multiplexed synchronous broadcast bus for 
the following reasons: (1) although there is no 
synchronous clock signal, ADD and AEn signals are both 
triggered by the same internal global synchronous clock 
(DATA and DTACK are provided by IBSC), and no 
handshaking is involved in data transmission; (2) unlike 
shared address / data signal lines of multiplexed bus, the 
Address and data are given at the same time on separate 
address and data signal lines. (3) IBMC provides address 
and control signals, and the selected IBSC provides the 
data while all other IBSCs stores the data. Considering 
the requirement of strict data transmission latency, it is 
impossible to adapt complex handshaking protocol to 
determine which IBSC is the data sender. ADD and AEn 
signals are used to address the data sender (a certain 
IBSC). Once the ADD signals are valid (AEn valid), the 
identities of sender and receiver are determined.  

In every IB cycle, IBMC drives ADD and AEn signals 
and IBSC monitors those signals. If ADD [15:12] 
matches the number of slot in which IBSC is located, the 
current IBSC is selected. Obviously, during each cycle, 
there is always exactly one IBSC for sender, which puts 
data on the data lines, and then drives DTACK signal to 
confirm the validity of data. IBMC is the only IB master, 
while the quantity of IBSC is the same as that of DSP.  

C. Data exchange among Memory blocks 
In each parallel computation cycle, a data transmission 

sequence is to realize data exchange among different 
Memories. Data transmission sequence is composed of 
several IB cycles, and 32-bit data transmission is 
implemented in each IB cycle. As discussed above, the 
ADD signals in each IB cycle contain the definition of 
sender and receiver, so that it can set the data 
transmission sequence by setting IB address.  

 
Fig.3 Data transmission sequence 

Fig.3 demonstrates a data transmission sequence. The 
setting of the sequence depends on the actual data 
requirement among DSPs, and can be reconfigured by 
setting the relevant registers in IBMC. It is very 
important to downsize the sequence because it can 
significantly reduce the data transmission time, and 
meanwhile increase the ratio of data-sensitive computing 
in parallel cycle, which is indeed the efficiency of data 
transmission.  

Memory before data exchange is shown in Fig.4 (a). 
Upper computer stores raw data (or parameters) as the 
shared data into locations at address of 0x0000 to 0x0ffff, 
and each DSP stores data that are to be shared into its 
private block. Fig 4 (b) shows the Memory status when 

all defined IB addresses are traversed and data 
transmission is completed. All data that are planned to be 
transmitted are shared by all DSPs without taking into 
account the specific need of a certain DSP. One potential 
problem is that, during data transmission, the access of 
DSP to its private block may lead to conflict on IB. 
Considering the strict timing requirement of IB, once the 
conflict happens, transmission failure will occur, which is 
undoubtedly unacceptable. Therefore, the DSP 
calculation is divided into data-sensitive and data-
insensitive ones. In this way, the access conflict on IB is 
effectively avoided. 

 
Fig.4 Memory before and after data transmission 

D. Structure of IBSC and synchronous trigger 
Fig.5 illustrates the structure of IBSC, and its functions 

are described as follow: (1) providing address decoding 
function for DSP to access DPRAM, which is 
implemented in EMIF_Adapter module; (2) realizing IB 
data transmission. After the IB address is validated, BTC 
(Bus Timing Controller) will determine whether the IBSC 
is a sender or receiver in the current IB cycle, and then 
switch the direction of data bus and provide control 
signals (Addr, AWEn, AOEn) to execute data sending or 
storage; (3) generating an interrupt signal for DSP to 
provide synchronous trigger, when a certain IB address is 
validated.
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Fig.5. IBSC structure  

Conflict caused by simultaneous memory location 
access can not be ignored. The common solution is “busy 
flag arbitration” provided by DPRAM, which can hold 
the later access until the end of the previous access. 
However, IB should have a higher priority to preempt the 
access of DSP because of the uninterruptible data 
transmission on IB. Therefore, the busy signal provided 
by DPRAM is not enough to exempt IB data transmission 
from conflict, and the solution to this problem is the strict 
scheme for Memory access of DSP, as discussed in 
section 2.  

Synchronous trigger based on IB is an additional 
function for specific IB address. Each IBSC provides 
synchronous trigger for the associated DSP, and IB data 
broadcasting provides an excellent platform to make 
triggering with negligible synchronous error possible. 
The IB address of 0x0ffe (0x0fff) is chosen as the address 
for trigger 1 (2). IBSC monitors address lines, and BTC 
generates the INTn signals to interrupt DSP when the IB 
address matches the setting, as shown in Fig.5. 

Two aspects of the trigger that need address are: (1) 
apparently trigger is controlled by IB address, so 
triggering time depends on configuration of data 
transmission sequence in IBMC. As introduced in section 
2, the first and last addresses in the sequence are 0x0ffe 
and 0x0fff respectively, and thus trigger 1 and 2 are 
generated at the beginning and end of IB data 
transmission respectively; (2) Triggering timing is 
defined in IBSC by upper computer. Triggering timing 
requirement of DSP varies as clock frequency changes, so 
it is necessary to adjust the triggering timing during IBSC 
initiation to suit for different type of DSP in different 
clock frequency.  

E. Structure of IBMC and mechanism of reconfiguration 
online 

Fig.6 illustrates the structure of IBMC. Two types of 
data are transmitted to IBMC by upper computer via 
VME_Ctrller module - the contents for Addr_FIFO and 
configurations of IBMC_Regs. The defined IB addresses 
are stored in Addr_FIFO and every IB address 
corresponds to an IB cycle while all the IB cycles form 
the IB transmission sequence. During every execution of 
data transmission sequence, the defined IB addresses are 
outputted consecutively until FIFO is empty, then IB 

keeps idle until the next execution of sequence, as 
described in section 2. IBMC_Regs controls the actions 
of IBMC, including control of Addr_FIFO (enable or 
clear), definition of IB timing and a base-clock. Base-
clock is the reference clock of the parallel cycle, and on 
its raising edge, data transmission sequence is activated 
and synchronous triggers occur alternatively. The base-
clock frequency determines the time interval of parallel 
computation cycle, and this reference clock hidden in IB 
timing control offers "heartbeat" reference for the whole 
parallel computing architecture. 

Addr_FIFO

VME Ctrller

IB Timing
Ctrl

IBMC Ctrller 
Regs

FIFO Output
 Trigger

IB Timing 
Parameter

FIFO 
Pointer

Base Clk 

Fifo_status

Enable
Clear

Servo Clk
Generator

Servo Clk 
Parameter

Access to 
Regs

AEn

ADD

IBMC

Access to 
Addr_FIFO

Fig.6. Structure of IBMC 

Details for IB are defined as registers in VME slave 
(IBMC), and upper computer can redefine the “behavior” 
of IB by configuring the IBMC online. The redefinition 
of Addr_FIFO makes it easy to provide new data 
transmission function online without changing hardware 
architecture even when the data exchange requirement 
changes. The redefinition of IB timing means 
transmission rate can be customized according to the 
need in actual application, if necessary, new type of 
device can be used on IB without suffering from 
compatibility problem. The redefinition of base-clock 
makes the computing cycle interval adjustable to provide 
reasonable size of time slot for different computing load. 
The flexibility brought by online reconfiguration is the 
main reason to adopt the scheme of user-defined internal 
bus, and FPDP is given up because of this as well. 
IBMC_Regs are listed in Table II. 

TABLE II.   
REGISTERS LIST IN IBMC 

Register Name Description 

IBMC_Control_Reg Definition of control signal to IBMC and 
its Addr_FIFO. 

IBMC_Status_Reg Current status of IBMC.   magnetic 
induction 

IBMC_Err_Reg Error information.  
VME_INT_Control_Reg Setting for VME interrupts – interrupt 

enable, priority, and control. 
VME_INT_Vector_Reg Setting for interrupt vector.   
IB_Addr_FIFO_Reg  Writing Addr_FIFO through this address. 
IB_Addr_Length_Reg  Depth of Addr_FIFO, used to judge 

whether data transmission is over. 
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IB_Timing_Reg  Definition of IB timing. The setting is 
based on Internal global clock in IBMC as 
the minimum unit. 

BaseClk_Control_Reg  Setting for base clock – enable, running 
cycle. 

BaseClk_Status_Reg  Current status of base clock. 

IV. DATA TRANSMISSION MODEL AND ANALYSIS 
TEMPLATE 

The model described in this section is only for data 
transmission on IB where only one transmission mode is 
involved, as shown in Fig.7 (a). DSP1 is the only source 
node, while other DSPs are destination nodes, and 
broadcast mode with single host and multi-slave are 
adopted. Fig.7 (b) illustrates the analysis of data 
transmission model. 

 

 
Fig.7. Data transmission model 

TABLE III.   
PARAMETERS LIST IN DATA TRANSMISSION MODEL 

Parameter 
 

Description  

pT  
The length of time for one parallel computing cycle.

_so allT
 

The length of time the sending processor is engaged 
in the data transmission in a parallel computing 
cycle; during this time the processor cannot perform 
other operations. 

soT  
The length of time the sending processor is engaged 
in the transmission of a 32-bit data. 

waT   
The length of time spent in waiting execution of 
data transmission sequence. 

tlT   
The length of time spent in the transmission of a 
32-bit data from sending to the receiving node. 

_tl allT
  

The length of total time spent in the transmission 
network from sending to the receiving node in a 
parallel computing cycle. 

roT  
The length of time the receiving processor is 
engaged in the transmission of a 32-bit data. 

_ro allT
  

The length of time the receiving processor is 
engaged in the reception of data in a parallel 
computing cycle; during this time the processor 
cannot perform other operations. 

dL  
The size of data in transmission sequence, in word 
(32-bit), transmitted in a parallel computing cycle. 

K  The ratio between  and , which 
indicates the efficiency of data transmission 
function. 

_tl allT pT

N  
The number of processors in the parallel 
architecture. 

 
_tl all d tlT L T= ×                                               （1） 

_ _ _

( )
total so all tl all ro all wa

d so tl ro wa

T T T T T
L T T T T
= + + +

= + + +
         （2） 

/d tlK L T Tp= ×                                                  ( 3)   
In formula 1,  is the transmission latency of single 

datum, in word (32 bit), and its stability only depends on 
the network transmission performance. Therefore, 

 solely depends on 

tlT

_tl allT dL  and can be calculated 
accurately. In formula 2, soT  and  are determined by 
EMIF Settings, and  indicates the total time spent on 
waiting for data transmission service. In formula 3, 

indicates the efficiency of data transmission service, 
and the smaller it is, the less time spent on data 
transmission during the parallel computing cycle. The 
uncertainty of  is mainly caused by DSP software 

plan ( ), but not T . In practical parallel servo 

computing,  must be accurate and to small 

proportion of  for the reason that partition of data-
insensitive and data-sensitive computing is based on it. 
On the contrary, there is no high requirement for  
accuracy. 

roT
waT

tl

K

T
totalT

_ all

p

wa _ all

tl

T
T

totalT

V. EXPERIMENT AND RESULT 

The time parameters of IB timing mentioned in Fig. 2 
are listed in table IV. 

TABLE IV.   
TIME  PARAMETERS OF IB TIMING 

 
Parameter

Value ( ns)  
Description  Min Tpy Max 

t1  - 20 - ADD[15:0] valid before AEn 
valid 

t2  0 10 20 AEn valid to DATA[31:0] 
valid 

t3  10 10 20 DATA[31:0] valid to 
DTACK valid 

t4  20 20 30 DTACK low pluse 

t5  - 10 - DTACK invalid to 
DATA[31:0] high impedance

t6  0 20 20 DATA[31:0] high impedance 
to AEn remains valid 

t7  10 10 30 ADD[15:0] remain valid after 
AEn invalid 
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Fig.8 (a) plots  with respect to  using results 
from experiment with ( =6). Indicators of the goodness 
of the fit are: SSE（sum of squared error）=1.19e-005, 
RMSE（root mean square error）=0.001992, R-square= 
1. From the plot, it is not difficult to see that the linear 

dependency of T  on  is almost perfect. 

_tl allT
N

_tl all

dL

dL
Fig.8 (b) plots the value of  obtained from 

experiment. The error is of sub-nanosecond scale, and the 
major part of it is caused by non-uniformity of signal 
transmission characteristics in IB backplane and internal 
reference clock jitter in IBMC. According to the 
experimental results,  is accurate enough, so that the 

 and  can be both calculated accurately using 
the value of 

tlT

tlT
_tl allT K

dL . 

 
(a)      vs , with =6;  _tl allT dL N

 
（b）  vs tlT N  

Fig.8. Performance of IB data transmission 

VI. CONCLUSION  

Communication service proposed in this paper is based 
on standard VME bus and Internal Bus (IB) in P2, which 
provided high-performance data transmission and precise 
synchronization trigger support for the processors 
involved in parallel computing. Several conclusions can 
be drawn from preceding discussion and analysis of 
experimental result. (1) The maximum number of 
processors is 15 in the communication service. It can be 
increased to 19 by modifying the IB protocol, and the 
ceiling is 19 because there are only 21 slots in standard 

VME rack while two of them are occupied by upper 
computer and IBMC. (2) The stable achieved bandwidth 
in communication is 10M *32bit/S, and it can be 
increased significantly by improving signal transmission 
characteristics in IB backplane. (3) The data transmission 
latency error is of sub-nanosecond scale and 
synchronization error is of nanosecond scale, both of 
which are not affected by the number of processors. (4) In 
practical application, time spent on data transmission is 
only 6.575% in every parallel computing cycle.  

However, the assumption, on which the 
communication service is built, is that the data 
transmission need is clearly specified - only one data 
transmission sequence with static source and destination 
addresses is needed in every parallel computing cycle. 
The over-simplified assumption undermines its universal 
applicability to most parallel computing architectures. 
What’s more, limited by the number of the number of 
slots in the standard VME rack, it’s impossible for it to 
support more processors. 

Future research would focus on the following two 
aspects: (1) Improving the universal applicability of 
communication service. The design of a strict and precise 
multi-layer communication model based on high-speed 
serial link is a potential solution. However, the 
transmission model must be strict and precise, and the 
communication protocol must avoid the factors such as 
handshaking, unfixed routing, data congestion .etc, which 
cause the uncertainty of communication performance. We 
are developing the research of precise synchronization 
based on high-speed fiber channel right now. (2) 
Implementation of high performance communication in 
multi VME racks. If the number of processors exceeds 19, 
right now we can not implement communication service 
discussed.  
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