
I.J.Modern Education and Computer Science, 2010, 1, 48-56
Published Online November 2010 in MECS (http://www.mecs-press.org/)

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

Tuning Schema Matching Systems using Parallel
Genetic Algorithms on GPU

Yuting Feng

School of Computer Science & Technology, Soochow University, Suzhou, China
Email: vivian_716@sina.com

Lei Zhao, Jiwen Yang

School of Computer Science & Technology, Soochow University, Suzhou, China
Email: {zhaol, jwyang}@suda.edu.cn

Abstract—Most recent schema matching systems combine
multiple components, each of which employs a particular
matching technique with several knobs. The multi-
component nature has brought a tuning problem, that is to
determine which components to execute and how to adjust
the knobs (e.g., thresholds, weights, etc.) of these
components for domain users. In this paper, we present an
approach to automatically tune schema matching systems
using genetic algorithms. We match a given schema S
against generated matching scenarios, for which the ground
truth matches are known, and find a configuration that
effectively improves the performance of matching S against
real schemas. To search the huge space of configuration
candidates efficiently, we adopt genetic algorithms (GAs)
during the tuning process. To promote the performance of
our approach, we implement parallel genetic algorithms on
graphic processing units (GPUs) based on NVIDIA’s
Compute Unified Device Architecture (CUDA).
Experiments over four real-world domains with two main
matching systems demonstrate that our approach provides
more qualified matches over different domains.

Index Terms—schema matching, tuning, genetic algorithms,
GPU, CUDA

I. INTRODUCTION

Schema matching is the task of finding semantic
correspondences, i.e. matches, between disparate
metadata structures. It is a key problem in numerous
applications, such as e-commerce, data warehousing,
web-oriented data integration, schema evolution and
migration, and peer-to-peer data management [1].

Traditionally, schema matching is performed manually,
and it is a labor-intensive, time-consuming, and error-
prone process. Thus researchers have developed various
matching techniques and prototypes, i.e. matchers, which
exploit element names, data types, descriptions, schema
structures, and other types of information to find matches
between schemas (see Ref. [1]—[3] for recent surveys).
None of these matchers outperforms all the others on all
existing benchmarks (like XBenchMatch [4]). Therefore,
many matching systems (e.g., Ref. [5]—[9]) combine

multiple matchers, called matching components, to
achieve better matching results. The multi-component
nature makes matching systems extensible and
customizable, however, as pointed out in Ref. [10], it also
brings a tuning problem that is to determine which
components to execute and how to adjust the knobs (e.g.,
thresholds, weights, etc.) of these components, for given
matching situation.

In this paper, we consider the tuning problem as an
optimization problem. We describe an approach to
automatically tune schema matching systems using
genetic algorithms. Given a schema S and a matching
system ࣧ, we first generate a synthetic workload ࣱ
which consists of a set of matching scenarios involving S,
then apply ࣧ to scenarios in ࣱ and learn the best
configuration using genetic algorithms. We implement
parallel genetic algorithms on consumer-level GPU based
on NVIDIA’s Compute Unified Device Architecture
(CUDA) and promote the performance of genetic
algorithms.

The main interesting features of our approach are:
 Learning a configuration which effectively

improves the performance of a matching system
with genetic algorithms. We allow users to make
a trade-off between precision and recall while
evaluating the performance of a configuration
candidate.

 Providing a matching scenario generator which
produces various matching scenarios for the input
schema. It handles both relational and XML
schemas, and it can be used as a training set
generator for other learning-based matchers.

 Implement parallel genetic algorithms using
consumer-level GPU based on CUDA, and
optimize the performance of genetic algorithms
with low exact cost.

 Experiments over four real-world domains with
two main matching systems demonstrate that our
approach provides more qualified matches over
different domains.

The rest of the paper is organized as follows. Section 2
briefly surveys related work. Section 3 focuses on the
drawbacks of existing solutions and the motivation of our
work. Section 4 contains an overview of our approach.
Section 5 describes the implementation on GPU. The

Corresponding author: Lei Zhao.

 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU 49

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

results of experiments that show the performance of our
approach are presented in section 6. Finally, section 7
gives a conclusion.

II. RELATED WORK

Schema matching has received increasing attention
since 1990s. Various matching techniques and prototypes
have been developed. These techniques exploit
information such as element names, data types, structures,
number of sub-elements, integrity constraints, and
instance data to find semantic correspondences between
schemas (see Ref. [1]—[3] for recent surveys). Beyond
the schema and instance data information, several types
of external evidence have been exploited, like past
matches [5, 6] and usage information [11] — [13].

Obviously, an effective matching solution should
employ many of the techniques, each on the type of
information that it can exploit. Some recent works (e.g.,
Ref. [5], [7]—[9]) have described a system architecture
that employs multiple matchers, each of which exploits
well a certain type of information mentioned above. Such
multi-component matching systems are extensible and
customizable for a particular application domain [14, 15].
However, there is another serious problem for domain
users: given a particular matching task, how to choose
the most suitable components to execute, and how to set
the multiple knobs (e.g., thresholds, weights, coefficients,
etc.). This problem is called the schema matching systems
tuning problem.

Lately, several researchers present their solutions to
solve the tuning problem of multi-component matching
systems. In Ref. [16], F. Duchateau et al. present a
factory which generates matchers according to user
requirements. The factory learns how to apply the
similarity measures and classifiers to achieve high
matching quality based on matched schemas and expert
matches provided by users. The factory could build a
specified matcher for a given matching situation. In Ref.
[17], A. Marie et al. propose an approach to combining
matchers into to ensembles. They use the boosting
algorithm which is a machine learning technique to select
matchers that participate in an ensemble. The combined
matchers could achieve better result than random schema
matchers. F. Duchateau et al. describe a method which
chooses a set of matchers to execute using decision tree
algorithm [18]. The training process is also based on
expert correspondences provided by domain users. Y. Lee
et al. present the eTuner framework which mainly
concerns relational schema matching problems [10].
eTuner generates a synthetic workload by perturbing
input schemas randomly, and then finds the best
configuration using staged greedy search method. In Ref.
[19], E. Peukert et al. optimize the schema matching
process using rewrite technique, which is often used in
database query optimization. They represent the matching
process as a directed graph model, and choose the
components with lower cost using filter-based rewrite
rules.

Some of the existing solutions focus on quickly
developing robust matchers for a particular matching

situation (e.g., Ref. [16, 17]). And others attempt to
customize existing matchers for a given matching
situation (e.g., Ref. [10], [18, 19]). Our work can be seen
as a part of customization techniques. We are aiming at
automating the customization using learning techniques,
and reducing the high total cost of schema matching
process.

III. MOTIVATION

As previously mentioned, increasing matching systems
employ multiple matchers to produce better matching
results. However, without tuning, a matching system
tends to produce inferior performance, because it cannot
exploit domain characteristics. While necessary essential,
tuning is difficult for domain users, due to the wide
variety of matching techniques employed and the large
number of knobs involved.

Although some researchers have proposed their
solutions to the tuning problem, there are still two major
drawbacks. First, some solutions require domain users to
provide a knowledge base consists of matched schemas
and expert correspondences (e.g., Ref. [16-18]). This
requirement makes the solutions involve much manual
effort. E-Tuner could generate synthetic workload
automatically, but it only considers matching systems that
handle relational representations. In fact, most multi-
component matching systems could also handle other
types of data representations, such as XML schemas,
ontology, web forms, etc. Second, the configuration
found by existing solutions sometimes is actually local
optima rather than the global optimum of the tuning
problem. To find out the best configuration, a better
search strategy should be applied.

To solve previously mentioned drawbacks, our
approach aims at designing a workload generator for both
relational and XML schemas and searching the
configuration space with genetic algorithms.

As pointed in Ref. [10], the challenge of workload
generator is to develop perturbing rules for particular data
representation. We represent input schemas with general
data model and define a set of perturbing rules for both
relational and XML schemas. On the other hand, genetic
algorithms (GAs) have been demonstrated efficient
search methods for solving wide-range of real-world
problems, since introduced in 1960s. Although cannot be
proofed in mathematics, GAs are still considered as
powerful tools for optimization problems [20]. A recent
study has shown that GAs has certain stability and it
could improve the reliability by reiteratively computation
and estimate the effects of improvements [21]. GAs
might take a long time to find good solutions for some
difficult problems. A promising approach to overcome
this problem is to parallelize GAs [22]. Recently, several
researchers have implemented parallel genetic algorithms
(or parallel evolutionary algorithms) on graphics
processing units (GPUs), and have demonstrated GPUs
have a potential for acceleration of GAs (see Ref. [23] —
[26] for more details).

50 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

IV. OVERVIEW

Fig. 1 shows the architecture of our approach. There
are two main modules: a workload generator which
produces a synthetic workload ࣱ for the input schema S
and a GA-based tuner which searches for the most
suitable configuration of matching system ࣧ.

The rest of this section describes the workload
generator and GA-based tuner in detail.

A. Workload Generator
Given a schema S and the workload size n, the

generator returns a set of matching scenarios as the
synthetic workload ࣱ. The data model used internal by
the generator is the nested relational model which is
sufficiently general for both relational and XML schemas.

Definition 1: A matching scenario is a triple (), ,S T Ω ,
where S is a source schema, T is a target schema, and Ω
is a set of semantic correspondences between S and T .

1) Create schema pairs () () ()1 2, , , , , , nS T S T S TK :
the workload generator creates matching scenarios by
composing basic scenarios in different ways and
perturbing element names and data types of S randomly.
We define four basic matching scenarios: Copying,
Merging, Vertical Partition, and Nesting according to the
basic mapping scenarios described in Ref. [27] and real-
world schema matching specifications. The generator has
implemented a set of common name transformation rules.
Examples include replacing a name with a common
abbreviation or a synonym obtained from WordNet
database1, and dropping prefixes or suffixes. The
generator has also specified transformation rules between
different data types. Fig. 2 presents examples of basic
matching scenarios and perturbations.

The workload generator allows a user to tune the
generated matching scenarios through a set of
composition parameters. The composition parameters
consist of 4 repetition parameters ࣬ (one for each basic

scenario mentioned above), 2 construction parameters ࣝ
(specify the number of sub-elements of an element and

the depth of generated schemas), along with 2 standard
deviation parameters ࣞ. Every parameter in ࣝ is in fact
the mean value of a Gaussian distribution whose standard
deviation is the value of the corresponding parameter in
ࣞ.

2) Create semantic correspondences 1 2, , , nΩ Ω ΩK :
The workload generator retraces the generation history to
create Ω, which is a set of correct semantic
correspondences between S and Ti. Briefly, if element t of
Ti is created from elements 1 2, , ks s sK of S, then we

create{ }1 2, , , ks t s t s t= = =K as Ωi.

The generator could exploit auxiliary information ࣣ,
such as global schemas, expert matches, and dictionaries,
to build a better workload, which improves the GA-based
tuning performance. Fig. 3 gives a pseudo code
description of the workload generator.

B. GA-based Tuner
As previously described, our objective is to find out a

configuration of matching system ࣧ, which optimizes
the performance over a synthetic workload ࣱ, from a
potentially huge space. To address this problem, we
propose a tuning approach using the genetic algorithms.
Genetic algorithms are a family of computational models
inspired by evolution. These algorithms encode a
potential solution to a specific problem on a simple
chromosome-like data structure and apply recombination
operators (e.g. crossover operator and mutation operator)
to these structures so as to preserve critical information.
Genetic algorithms are often viewed as function
optimizers and could always locate good solutions in
reasonable amounts of time [20]. Fig. 4 shows the
prototype of GA-based tuner.

1) Initialize the population: Most GA practitioners
use bit-string representations to represent potential
solutions. We could represent a potential configuration as
a chromosome with multiple genes, each of which
reflects a knob of the configuration. When initializing,
the population is generated randomly.

1: Cognitive Science Laboratory, Princeton University. WordNet: A
Lexical Database for the English Language,
http://wordnet.princeton.edu

Figure 1. Architectural overview: This figure shows the main modules of our approach.

 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU 51

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

Figure 2. Examples of basic matching scenarios. (a) A copying scenario with perturbations on element names and data types. (b) A merging
scenario using a column “Type” to identify records from different tables in source schema. (c) A vertical partition scenario which divides a table
in source schema into two in the target. (d) A nesting scenario which creates a nested structure from a foreign key definition element in source

schema.

Figure 3. A pseudo code description of the workload generator.

Figure 4. A pseudo code description of GA-based tuner.

52 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

2) Evaluate potential solutions: The fitness value
of each individual in the population could be determined
by the quality of its corresponding matching result. We
allow domain users to specify the influence of Precision
and Recall in the fitness evaluation.

Definition 2: The fitness function is

() ()1
Precision RecallF Measure

Precision Recall
α

α α
×

− =
− × + ×

 (1)

α is a preference between Precision and Recall,
and 0 1α≤ ≤ . In particular, ()F Measure Precisionα− → ,
when 1α → , and ()F Measure Recallα− → , when 0α → .

3) Repeat generating process until termination:
Our tuner first selects the best-fit individuals and breeds
new individuals through crossover and mutation
operations, then evaluates the fitness of new individuals,
and replaces least-fit population with new individuals.
This generating process is repeated until a terminate
condition (like time or generations limit, fitness threshold
achieved, etc.) has been reached.

V. IMPLEMENTATION OF PARALLEL GENETIC
ALGORITHMS ON GPU

Parallel genetic algorithms (PGAs) have been
considered a promising approach to make GAs faster.
However, PGAs are usually applied on parallel,
distributed, and networked computers which are not easy
to access for many users. Recently, GPUs have become
powerful tools for general purpose computing. Since
GPUs have already been installed on most ordinary
personal computers, the exact cost for using GPUs is
quite low. Therefore, we implement PGAs on consumer-
level GPU to promote the performance of tuning process.

The rest of this section presents the architecture of
CUDA and our implementation of PGAs on GPU.

A. Architecture of CUDA
CUDA (Computer Unified Device Architecture) is a

general purpose parallel computing architecture which
can be performed on any NVIDIA graphics card from
GeForce 8 generation on both Linux and Windows
platform. CUDA comes with a software environment
that allows developers to use C as a high-level
programming language. Therefore, programmers could
develop parallelism programs on GPUs with relative ease
[28].

CUDA is a platform for massively parallel high-
performance computing on NVIDIA’s powerful GPUs.
At its cores are three key abstractions – a hierarchy of
thread groups, shared memories, and barrier
synchronization – that are simply exposed to the
programmer as a minimal set of language extensions.
These abstractions provide fine-grained data parallelism
and thread parallelism, nested within coarse-grained data
parallelism and task parallelism. CUDA lets programmer
partition the problem into coarse sub-problems that can
be solved independently in parallel by blocks of threads,
and each sub-problem into finer pieces that can be solved
cooperatively in parallel by all threads within the block.

Fig. 5 shows the architecture of CUDA. Thread is
basic unit to manipulate data in CUDA. The thread index
is a 3-dimesion vector, so that threads can be identified
using a one-dimensional, two-dimensional, or three-
dimensional thread index, forming a one-dimensional,
two-dimensional, or three-dimensional thread block. All
the threads have access to the concurrently block’s shared
memory. Those multi-dimensional blocks are organized
into one-dimensional or two-dimensional grids, each
block can be identified by one-dimensional or two-
dimensional index, and all grids share one global memory.

CUDA requires all the active processors to execute the
same instruction at the same time but on different data,
also called SIMD for Single Instruction Multiple Data. As
mentioned above, GAs need to evaluate different
individuals in the population using an identical fitness

Block0 Block1

Block3 Block4

Global Memory

Grid0

Block0 Block1

Block2 Block3

Grid1

Block2

Block5

Block4 Block5

Figure 5. The architecture of CUDA.

 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU 53

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

function and are suitable to be parallelized on the
architecture of CUDA.

B. Implementation of PGAs on GPU
There are several types of PGAs: global single-

population master-slave PGAs, single-population fine-
grained PGAs, multiple-population coarse-grained PGAs,
and hierarchical PGAs [22, 26]. In a master-slave PGA
there is a single population, but the evaluation of fitness
and/or genetic operators are distributed among several
processors. Fine-grained PGAs are suited for massively
parallel computers and consist of one population, which
has a spatial structure. The interactions between
individuals are limited: an individual could only compete
and mate with its neighbors. However, the neighborhoods
overlap permits some interactions among all individuals.
Multiple-population PGAs assume that several
subpopulations (demes) evolve in parallel and demes are
relatively isolated. These demes exchange individuals
occasionally, and the exchange is also called migration.
Hierarchical PGAs combine multiple-population PGAs
with master-slave PGAs or fine-grained PGAs, and have
better performance than any of them alone.

According to the architecture of CUDA, we implement
the multiple-population PGAs in a particular way.
Initialization: An initial population is generated on CPU
and transferred to the global memory of GPU.

1) Partition: The initial population is partitioned
into several subpopulations. Each subpopulation is
distributed to the shared memory of a thread block.

2) Evolution: Each thread block runs the evolution
independently. The implementations of genetic operators,
such as selection, crossover, and mutation have been
described in Ref. [24]—[26].

3) Migration: The model of migration is single-
direction migration. Each thread block transfers its best
individuals to its next block. Since every thread block
could be identified using thread block index, it is easy to
achieve such migration. Fig. 6 shows the migration model
of multiple-population PGAs.

4) Update & Termination: The global memory is
updated with new individuals. The process would stop if
the terminate condition has been reached.

VI. EXPERIMENTS

We have evaluated our approach over two common
matching systems, COMA++ [5] and SimFlood [29] with
similarity metrics from SimMetrics2, applied to four real-
world XML schema matching tasks. Publicans, Person,
and University are available in XBenchMatch
benchmark [4]. SMS is provided by YAM as a test case
[16]. Detailed features of each task are shown in Fig. 7.

To compare with our approach, we examine other two
tuning methods: (1) Applying the off-the-shelf matching
systems without any tuning. (2) Manual tuning, by
tweaking a few knobs, examining the output of a
matching system, and then adjusting the knobs again.

Our experiments are performed using an Intel Core2
Duo T5250 CPU 1024M RAM and an NVIDIA GeForce
8400M GS GPU. To compare with the implementation of

PGAs on GPU, we also implement the tuning process on
CPU with the help of JGAP3, a genetic algorithms and
genetic programming component provided as a java
framework.

To simplify the tuning process, we only consider a few
influential knobs of each matching system. This selection
is done by applying the attribute selection of Weka4
before running our approach.

We test each method 30 times to limit the impact of
randomness. Each time, we generate a synthetic workload
with 15--30 scenarios for each matching task. For our
approach, we set the preference between precision and
recall to 0.5, and the threshold of fitness value to 0.95.
We set different values to the population size. Concerning
about time consuming, we set the maximized number of
generation to 5.

Fig. 7 shows the matching performance of COMA++
and SimFlood. It demonstrates that our method could
effectively improve the performance of schema matching
systems. However, the performance of a tuned system is
relevant to the matching algorithms of the system. For
example, the average F-Measure (0.5) value of tuned
SimFlood over matching task Publicans is 0.3226 (less
than half of the average F-Measure (0.5) value of tuned
COMA++, 0.8205), because we do not use any dictionary
in this task, and the matching algorithm is mainly driven
by the initial textual match.

Fig. 8 shows the effects of population size on the run
time when we apply our approach on COMA++ system
for the SMS task. We divide the initial population into 2,
4, and 8 subpopulations (thread blocks). Each
subpopulation consist 10 individuals (threads). The
maximum number of threads per block of our device is
512, and is fair enough for larger subpopulations. The
experiment shows that our approach runs faster on GPU
especially when larger population involved. However, the
run time of tuning process still strongly depends on the
matching algorithms and the size of synthetic workload.

Grid

Block(1,0) Block(1,1) Block(1,2)

Block(0,0) Block(0,1) Block(0,2)

Figure 6. The migration model in our implementation of multiple-

population PGAs.

2: String Similarity Metrics for Information Integration,
http://www.dcs.shef.ac.uk/～sam/stringmetrics.html

3: JGAP: Java Genetic Algorithms Package,
http://jgap.sourceforge.net

4: Weka: Java Programs for Machine Learning,
http://www.cs.waikato.ac.nz/～ml/weka

54 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

TABLE I. SUMMARY OF FOUR XML MATCHING TASKS

(a)

(b)

Figure 7. Matching performance of (a) COMA++ and (b) SimFlood

Figure 8. The effects of population size on the run time while tuning COMA++ system for the SMS task.

 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU 55

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

VII. CONCLUSIONS

In this paper, we have presented an approach to
automatically tune schema matching systems using
genetic algorithms. To promote the performance of our
approach, we implement parallel genetic algorithms on GPU
based on CUDA. The main contributions of our work are:
(1) providing a matching scenario generator for learning-
based matchers, and (2) providing better performance by
tuning matching systems for particular matching situation.
Experiments over four real-world domains with two main
matching systems demonstrate that our approach provides
more qualified matches over different domains.

ACKNOWLEDGEMENT

The paper is supported by National Natural Science
Foundation of China (No. 61073061). The authors are
grateful to all the people for helpful suggestions. The
authors would like to thank all the anonymous reviewers
for their helpful comments on earlier drafts of this paper.

REFERENCES

[1] E. Rahm and P. A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” The VLDB Journal, vol. 10,
no. 4, 2001, pp. 334–350.

[2] P. Shvaiko and J. Euzenat, “A Survey of Schema-based
Matching Approaches,” Journal on Data Semantics IV, vol.
3730, 2005, pp. 146–171.

[3] H. H. Do, “Schema Matching and Mapping-based Data
Integration,” PhD Thesis, Department of Computer
Science, University at Leipzig, Germany, 2006.

[4] F. Duchateau, Z. Bellahsène, and E. Hunt, “XBenchMatch:
a Benchmark for XML Schema Matching Tools,” in
VLDB ’07: Proceedings of the 33rd International
Conference on Very Large Data Bases, 2007, pp. 1318–
1321.

[5] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm,
“Schema and Ontology Matching with COMA++,” in
SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, 2005,
pp. 906–908.

[6] Y. Qian, J. L. Nie, G. H. Liu, and S. H. Gao, “Corpus-
based Complex Schema Matching,” Journal of Computer
Research and Development (Chinese), vol. 43, no. Spply.,
2006, pp. 200-205.

[7] P. A. Bernstein, S. Melnik, and J. E. Churchill,
“Incremental Schema Matching,” in VLDB ’06:
Proceedings of the 32nd International Conference on Very
Large Data Bases, 2006, pp. 1167–1170.

[8] C. Drumm, M. Schmitt, H. H. Do, and E. Rahm,
“Quickmig: Automatic Schema Matching for Data
Migration Projects,” in CIKM ’07: Proceedings of the 16th
ACM Conference on Information and Knowledge
Management, 2007, pp. 107–116.

[9] P. Shvaiko, F. Giunchiglia, and M. Yatskevich, Semantic
Web Information Management, A Model-based Perspective.
Springer Berlin Heidelberg, 2010, ch. 9 Semantic
Matching with S-Match, pp. 183–202.

[10] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal,
“eTuner: Tuning Schema Matching Software using
Synthetic Scenarios,” The VLDB Journal, vol. 16, no. 1,
2007, pp. 97–122.

[11] A. Nandi and P. A. Bernstein, “HAMSTER: Using Search
Clicklogs for Schema and Taxonomy Matching,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, 2009,
pp. 181–192.

[12] H. Elmeleegy, M. Ouzzani, and A. Elmagarmid, “Usage-
based Schema Matching,” in ICDE ’08: Proceedings of the
24th International Conference on Data Engineering, 2008,
pp. 20–29.

[13] G. R. Ding, G. H. Wang, and Y. H. Zhao, “Multi-schema
Integration based on Usage and Clustering Approach,”
Journal of Computer Research and Development (Chinese),
vol. 47, no. 5, 2010, pp. 824-831.

[14] P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix,
“Industrial-strength Schema Matching,” SIGMOD Record,
vol. 33, no. 4, 2004, pp. 38–43.

[15] H. H. Do and E. Rahm, “Matching Large Schemas:
Approaches and Evaluation,” Information Systems, vol. 32,
no. 6, 2007, pp. 857-885.

[16] F. Duchateau, R. Coletta, Z. Bellahsene, and R. J. Miller,
“YAM: a Schema Matcher Factory,” in CIKM ’09:
Proceedings of the 18th ACM Conference on Information
and Knowledge Management, 2009, pp. 2079–2080.

[17] A. Marie and A. Gal, “Boosting Schema Matchers,” in
OTM ’08: Proceedings of the OTM 2008 Confederated
International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful
Internet Systems:, 2008, pp. 283–300.

[18] F. Duchateau, Z. Bellahsene, and R. Coletta, “A Flexible
Approach for Planning Schema Matching Algorithms,” in
OTM ’08: Proceedings of the OTM 2008 Confederated
International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part I on On the Move to Meaningful
Internet Systems:, 2008, pp. 249–264.

[19] E. Peukert, H. Berthold, and E. Rahm, “Rewrite
Techniques for Performance Optimization of Schema
Matching Processes,” in Proceedings of EDBT 2010, 13th
International Conference on Extending Database
Technology, 2010, pp. 453–464.

[20] D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and
Computing, vol. 4, no. 2, 1994, pp. 65–85.

[21] Q. Yue, and S. Feng, “The Statistical Analyses for
Computational Performance of the Genetic Algorithms,”
Chinese Journal of Computers (Chinese), vol. 32, no. 12,
2009, pp. 2389–2392.

[22] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms,”
Calculateurs Paralleles, vol. 10, 1998.

[23] P. Pospichal, J. Jaros, and J. Schwarz, “Parallel Genetic
Algorithm on the CUDA Architecture,” in Proceedings of
the Applications of Evolutionary Computation,
EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES,
EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC,
Part I, 2010, pp. 442-451.

[24] C. F. Tan, A. G. Ma, and Z. C. Xing, “Research on the
Parallel Implementation of Genetic Algorithm on CUDA
Platform,” Computer Engineering & Science (Chinese),
vol. 31, no. A1, 2009, pp. 68-72.

[25] T. T. Wong, and M. L. Wong, “Parallel Evolutionary
Algorithms on Consumer-Level Graphics Processing
Unit,” Parallel Evolutionary Computations, 2006, pp. 133-
155.

[26] S. F. Zhang, and Z. M. He, “Implementation of Parallel
Genetic Algorithm Based on CUDA,” in ISICA '09:
Proceedings of the 4th International Symposium on
Advances in Computation and Intelligence, 2009, pp. 24-
30.

[27] B. Alexe, W. C. Tan, and Y. Velegrakis, “STBenchmark:
Towards a Benchmark for Mapping Systems,”

56 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

Copyright © 2010 MECS I.J.Modern Education and Computer Science, 2010, 1, 48-56

Proceedings of the VLDB Endowment, vol. 1, no. 1, 2008,
pp. 230–244.

[28] NVIDIA C., “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide,” NVIDIA Corporation,
2007.

[29] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching,” in ICDE ’02:
Proceedings of the 18th International Conference on Data
Engineering, 2002, pp. 117–128.

Yuting Feng received the B.S. degree in 2008 from Soochow
University, Suzhou, China. She has been a M.S. candidate in the
school of computer science and technology of Soochow
University since 2008. Her current research interests include
management information systems and information integration.

Lei Zhao received the Ph.D. degree in 2006 from Soochow
University, Suzhou, China. He has been a faculty member of the
school of computer science and technology of Soochow
University since 1998. He is now Associate Professor at the
Department of Network Engineering. His research interests
include distributed data processing, data mining, parallel and
distributed computing.

Jiwen Yang received the B.S. degree in 1984 from Nanjing

Normal University, Nanjing, China. He has been a faculty
member of the school of computer science and technology of
Soochow University since 1984. He is now Professor at the
Department of Information Management. His research interests
include distributed data processing, management information
system, parallel and distributed computing.

