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Abstract—Urinalysis remains one of the most commonly 
performed tests in clinical practice. Laboratory work can be 
greatly relieved by automated analyzing techniques. 
However, noisy and imbalanced urine samples make 
automatically identifying and classifying urine-related 
diseases become very difficult. This paper proposed hybrid 
sampling-based ensemble learning strategies by improving 
training data and classification performance. Having 
compared the effectiveness of several learning classifiers 
and data processing techniques, the experiments showed 
that the suggesting methods provided better classification 
accuracy than other approaches. 
 
Index Terms—urinalysis, noisy data, imbalanced data, 
sampling methods, classification, ensembles 
 

I.  INTRODUCTION 

Improvements in automated urinalysis are largely 
requested by laboratory practice. In most laboratories, the 
general urine-screening procedure consists of chemical 
test strip, microscopy of urine sediment and automated 
urinary flow cytometry (commonly known as UF). 
Different methodologies in screening use their own test 
parameters and lead to different types of the test report. 
Traditionally, manual microscopy is regarded as a testing 
standard. But it is extremely time consuming and given 
the large volume of requests for routine urinalysis, its 
precision could be influenced by some misreading of a 
person. Recent studies with traditional statistical analysis 
show that information provided by urinary flow 
cytometry combined with test strip analysis, followed by 
visual microscopic examination of discordant samples 
offers the optimal analysis mode for urine screening [1-3]. 
Nevertheless, the test strip procedure has significant false 
negative and false positive rates [2], improvements in 
automated UF predictions are much more needed to 
eliminate labor-intensive manual microscopy.  

In our previous study, a GA-based fuzzy rule learning 
algorithm [4] was proposed to solve this problem. We 
determined that an UF predicting model is useful for the 

selection of urine samples that need microscopic 
confirmation in different populations. The experiments 
started comparing the urine data from the test strip and 
UF on all samples. If the results from the test strip agree 
with those from UF, they are accepted. Otherwise, GA-
based methods are invoked to find the UF features to 
classify samples and create rules to specify microscopic 
examined parameters. Although having achieved some 
improvements, their classification performances were not 
satisfied.  

A problem that affects practical classification accuracy 
is poor quality of the data. Noisy and imbalanced urine 
samples in our application are challenges to setup a 
predicting model. Noise might be in the classification 
label set by comparing the results of the test strip and UF, 
or in the features of UF, for automated UF systems 
provide only scattergram analysis, which limits the 
number of types of particles that can be differentiated in 
urine samples.  

The aim of the present work was to effectively handle 
imperfections in the data. One approach is to use 
ensemble learners which have been demonstrated to 
perform better than a single classifier and be robust in the 
presence of those imperfections [5-9]. The other approach 
is based on improvement of training data by removing 
class noise and adjusting imbalance. 

When creating ensemble learners, it is very important 
to use the available data to produce classifiers with 
uncorrelated errors. The general methods include 
manipulating the input features, using a different random 
class relabeling, injecting randomness and subsampling 
the training examples by generating different views of the 
data to build every individual classifier [5]. Bagging and 
AdaBoost, the two most popular examples, belong to 
subsampling method and widely used to enforce weak 
classifiers. Random Forest [8], a variant of Bagging, is 
also described as one of the most powerful ensembles. 
Either of them operates by taking a base learning 
algorithm and invoking it many times with different 
training sets. In Bagging, each bootstrap sample, i.e. 
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Input: S- training dataset; L- base classifier; N- number 
of bootstrap samples; I- indicator function 

1. for i = 1 to N { 
2. B = bootstrap sample from S 
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Output: classifier C* 
 

Figure 1.  The Bagging Algorithm. 

Input: S- training dataset; L- base classifier; M- 
number of trees; I- indicator function 

1. for i = 1 to M { 
2. Bi = bootstrap samples from S 
3. Ti = a tree derived from Bi, at each node restricted 
to a randomly selected attributes without pruning the 
decision tree using L 

4. Ci = Ti(Bi, L ) } 

5. ))((maxarg)(*
1
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Output: classifier C* 
 

Figure 2.  The Random Forest Algorithm. 

training set, is constructed by subsampling the original 
one with replacement. The results of all the learners are 
finally integrated by majority voting. The Random Forest 
consists of many individual trees. Each tree votes on an 
overall classification for the given set of data and the 
algorithm chooses the individual classification with the 
most votes. There are two different sources of 
randomness in Random Forests: random bootstrap and 
random selection of attributes. The AdaBoost algorithm 
takes a different resampling approach by maintaining a 
set of weights over the original training set and adjusting 
these weights after each classifier is learned by the base 
learning algorithm. Bagging tends to reduce the variance 
and in turn to be robust in the presence of some levels of 
noise. AdaBoost is showed to bring on larger 
classification error reductions than Bagging on average in 
terms of the bias and variance. Bias measures how 
closely the learning algorithm's average guess matches 
the target, while variance measures how much the guess 
fluctuates for the different training sets of the given size 
[9]. 

In the case of class noise, removing misclassified 
instances from the training data resulted in a classifier 
with significantly higher predictive accuracy [16]. In 
practice, there are two main approaches towards learning 
from noisy data: data cleansing and robust learning. As 
for data cleansing methods, the designs behind them are 
very similar: classifiers trained from a portion of the 
training data are used to justify the excluded training 
samples, with misclassified instances identified as noise. 
As for robust learning methods, they add a new 
component to the learning algorithms that can handle 
noisy data and maintain good performance [17]. 

There have been many approaches to learn from 
imbalanced data [10-11]. At the data level, sampling 
learning is the one of most common techniques. The 
basic idea of sampling is to reduce imbalances by altering 
the distribution of training instances. In general, this can 
be fulfilled by over-sampling and under-sampling 
approaches. The over-sampling method increases the 
number of minority class instances to reduce the degree 
of imbalanced distribution. The under-sampling method 
extracts a smaller set of majority instances while 
preserving all the minority instances.  

This paper investigates the potential of Bagging, 
Random Forest, AdaBoost ensembles and aims to present 
a combined ensemble approach to further reduce the 
predicting errors of urinalysis. At the data level, data 
processing techniques are studied and we propose using a 
hybrid approach that consists of rebalancing data and 
reducing the effect of class-label noise and incomplete 
UF attributions in order to improve the quality of urine 
dataset. The experiments have demonstrated that our 
suggesting approaches yield better classification results. 

The remainder of this paper is organized into four 
sections. Section 2 describes important implementation 
techniques. The setup of experiments and evaluation 
methods are presented in Section 3. Section 4 illustrates 
the experiment results, as well as performance evaluation 

of related approaches. Finally, conclusions and future 
works are discussed in the last section. 

 

II.  APPROACHES 

A.  Bagging Algorithm 
The Bagging algorithm votes classifiers generated by 

different bootstrap samples. Each classifier is trained on 
the average of 63.2% of training instances. Bagging takes 
a base classification learning algorithm L and training set 
S as input, and returns a committee of classifiers C*. A 
classifier Ci is built from each bootstrap samples. A final 
classifier C*(x) is built from C1(x), C2(x) ,…, CN(x), 
where each classifier returns a classification y∈Y, whose 
output is the class that obtains the most votes from the 
committee members when applied to a new case x. The 
algorithm is shown as below. 

B.  Random Forest 
The Random Forest consists of many individual trees. 

It is designed to be diverse and more robust with respect 
to noise by using randomness: random bootstrap and 
random selection of attributes. As shown in Fig. 2, each 
tree forms a dataset “inbag” by sampling with 
replacement members from the training set. This is 
referred to as “bootstrapping”. The number of dataset in 
the “inbag” data set is equal to that of the training data set. 
Usually one third of the training data set is “out of bag” 
and used to test the tree. Diversity is obtained by 
randomly choosing attributes at each node and using the 
attributes that provide the highest level of learning.  
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Input: S- training dataset of size m; L- base classifier; N-
number of iterations 
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Figure 3. The AdaBoost Algorithm. 

Input: S- training dataset of size m; L- Random Forest 
classifier; N- number of iterations; It- specifying the 
iteration at which each subcommittee t should terminate 

1. B = S with instance weights assigned to be 1 
2. k=1 
3. For i = 1 to N { 
4. If I t =i, reset B to random weights; increment k 
5. Ci = L(B) 
6. If 5.0>iε , reset B to random weights; increment k 
goto step 5 
7. )1/( iii εεβ −= ;compute new weights and normalize} 
8. )/1log(maxarg)(*

)(:
∑
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=
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Output: classifier C* 
Figure 3.  The Combined Algorithm. 

C.  AdaBoost Algorithm 
The AdaBoost algorithm generates a set of classifiers 

and votes them. But it takes a different resampling 
approach: sampling is proportional to an instance’s 
weight and changes the weights of the training instances 
based on classifiers that were previously built. The goal is 
to force the inducer to minimize expected error over 
different input distributions. Finally, the predictions of all 
classifiers are combined by weighted voting as shown in 
Fig. 3. 

 

D.  Combined Ensemble Algorithm 
Considering different mechanisms and effects of the 

above three algorithms, we try to obtain the benefits of 
them to retain AdaBoost’s bias reduction while adding 
more Bagging’s variance reduction and Random Forest’s 
diversity. The Combined Ensemble Algorithm (CEA) 
therefore has been presented to combine Bagging and 
AdaBoost techniques based on Random Forest. Fig. 4 
shows the framework of that Bagging-AdaBoost-Random 
Forest algorithm. 

 

E.  Data Cleansing 
The noisy urine data necessitates the use of noise 

handling techniques. In the experimental model, noise 
filters were used to identify misclassified instances in a 
training set. The basic idea is to use a set of learning 
algorithms to create classifiers that act as a filter for the 
training data [16]. It assumes that the errors in the class 
labels are independent of the particular model. We used 
two approaches to implement filtering. One way is to 
construct a filter using one algorithm. The other approach 
uses an ensemble filter to detect misclassified instances 
by constructing a set of base-level classifiers and then 
using their classification errors to identify misclassified 
instances. 

In general, collecting information from different 
models provides a better method for detecting 
misclassified instances than from a single model. Thus, 
ensemble filters will make fewer detection errors than a 
single algorithm filter. 

 

F.  Imbalance Handling 
Imbalances can occur either between the two classes or 

within a single class. A between-class imbalance 
corresponds to the case where the number of examples 
representing the one class differs from another class 
(majority class vs. minority class); and a within-class 
imbalance corresponds to the case where a class is 
composed of a number of different subclusters and these 
subclusters do not contain the same number of examples 
(small disjuncts vs. large disjuncts) [12]. At the data level, 
one of most common way to handle imbalance is 
sampling. The basic idea is to minimize rarity by altering 
the distribution of training set. Typically the class 
distribution is altered to reduce the problems associated 
with minority classes, but the distribution of cases can 
also be altered to deal with small disjuncts [13]. 

The basic sampling techniques include over-sampling 
and under-sampling. Both decrease the overall level of 
imbalance and improve the performance of classifiers. 
However, random over-sampling might lead to minority 
instances over-represented and under-sampling could 
potentially lose some informative instances of majority 
instances. In practice, getting a trade-off between the 
over- and under-sampling can minimize total 
misclassification errors. 

 

Ⅲ.  EXPERIMENTAL DESIGN 

A.  Data Preparation 
The urine data used in this study was provided by the 

First Affiliated Hospital of Sun Yat-sen University, 
located in Guangzhou, P.R. China. There are 2395 
samples with 50 features grouped in three categories of 
erythrocyte-, leukocyte- and bacteria-related diseases. 
These features are believed to be basic information and 
symptoms required by senior physicians to diagnose 
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urine-related diseases in clinic. Each group has its 
corresponding features in terms of experts’ knowledge. 
Some of the features are granted to be very important and 
some combinations of them may influence the diagnosis. 
Traditionally, manual microscopy is considered to be a 
standard to help physicians to make a final decision. 

In our experimental setup, UF attributes are firstly used 
to classify a urine sample into four types which are 
normal, inherited disorder, hematuria, hematuria-risk 
ones, and then microscopic examination is required to 
review related features of last three types with different 
ways. The erythrocytes group has been included in the 
experiment. Similar experiments can be conducted based 
on the other two groups.  

The samples prepared in the dataset was labeled with 
350 inherited disorder reviewed, 67 hematuria reviewed, 
1282 normal, and 696 hematuria-risk reviewed cases 
according to the results of the test strip and UF. By 
analyzing the relevance between attributes and the class 
attribute respectively, we added some related attributes of 
available data to basic features physicians have suggested 

in order not to lose any useful information. The class 
distribution is shown in Table Ⅰ. 

 

B. Data Reprocessing 
The work described here focuses on improving the 

quality of training data. 
The classification techniques usually assume that the 

training samples are uniformly-distributed between 
different classes. In our application, the imbalance among 
different classes has been shown in Table Ⅰand small 
disjuncts were also found probably within majority 
classes by applying the classifier C4.5 to the dataset. 
Therefore, we present a Combined Sampling Method 
(CSM) that adjusts the number of each class respectively 
by altering the distribution of cases, getting a trade-off 
between the over- and under-sampling. 

Class noise can occur for subjectivity, data entry error 
or inadequacy of the information used to classify each 
instance [13]. Class-noisy urine data may arise from 
inadequate information. We use noise filters to remove 
misclassified instances from the training set. 

To obtain a more reliable estimate, all experiments 
were performed using 10-fold cross validation. The urine 
dataset is separated into ten parts, with the combination 
of 90% as training and the remaining 10% as test. 
Repeating ten times with each part acted as test data once, 
this process allows a relatively complete use of the 

samples in the data set. In addition, 10 independent runs 
of 10-fold cross validation can alleviate any biasing that 
may occur during the random partitioning process. 

C.  Experimental Model 
Experimental models were designed to describe the 

different strategies and configurations of combined 
methods. To validate the performance of methods, the 
experiments were performed based on six different 
models for the same urine dataset. 

The first model is a typical learning approach that 
contains four well-known learning algorithms: C4.5, 
Bagging, Random Forests and AdaBoost implemented in 
Weka[15].  

The second model uses the designed sampling method 
CSM to adjust imbalance and applies four algorithms of 
the first model again. 

The third model is also based on the first model but 
instead it employs a one algorithm filter to discard the 
mislabeled instances. 

The fourth model is same as the third except that it 
uses an ensemble filter to detect misclassified instances. 

The fifth model combines the third model with the 
second, removing mislabeled cases by single-algorithm 
filter and then tuning unbalance; whereas the sixth model 
combines the fourth and second using an ensemble filter 
instead of one algorithm filter. 
. 

D.  Evaluation methods 
Our study utilized basic evaluation measures, F-

Measure and ROC Area to evaluate the performance of 
all learning models on noisy and imbalanced urine data.  

Three commonly used evaluation measurements are 
precision, sensitivity and specificity.  

The classification precision is defined as the correctly 
classified instances rate provided that a specific class has 
been predicted. TP and TN denote the number of positive 
and negative instances correctly classified, while FP and 
FN refer to the number of misclassified positive and 
negative instances. 

FPTP
TPecision
+

=Pr . (1) 

Sensitivity measures the proportion of actual positives 
which are correctly identified. 

FNTP
TPySensitivit
+

= . (2) 

Specificity is defined to measure the proportion of 
negatives which are correctly identified. 

FPTN
TNySpecificit
+

= . (3) 

The F-Measure is a combined measure for precision 
and sensitivity.  

 
ySensitivitecision

ySensitivitecisionMeasureF
+
××

=−
Pr

Pr2 .         (4)  

TABLE I.   
CLASS DISTRIBUTION IN THE ORIGINAL DATASET 

Class Number of Instances Percentage

Inherited disorder 350 14.61 

Hematuria 67 2.80 

Normal 1282 53.53 

Hematuria-risk 696 29.06 
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The receiver operating characteristic curve (ROC) is a 
fundamental tool for diagnostic evaluation. It plots the 
true positive rate on the y-axis versus the false positive 
rate on the x-axis. Each prediction result represents one 
point in the ROC space. The area under the ROC curve 
(AUC) is used to measure the model’s ability to identify 
instances of each class.  

 

Ⅳ.  RESULTS AND ANALYSIS 

 

A.  Urine Datasets 
The original urine dataset described in the previous 

section contained some kind of noise and imbalance. The 
experiments started from adjusting imbalance using the 
CSM method and Table Ⅱ shows the result of class 
distribution of this second dataset. The total number of 
instances remained the same, while the number of 
majority classes and minority classes slightly decreased 
and increased respectively. 

The third dataset was also obtained from the original 
urine dataset by employing a one algorithm filter to 
discard the mislabeled instances. C4.5 was chosen to 
construct the filter in our study. The result shown in 
Table Ⅲ illustrated that the total number of instances 
decreased and mislabeled cases were found in the last 
three classes. The reduced rate of each class ordered in 
the table is 0.00%, 5.97%, 8.89% and 42.24%, which 
indicated that there has been much noise in “Hematuria-
risk” class. 

By applying an ensemble filter to the original dataset, 
that we chosen Bagging and C4.5, the total and each class 
numbers of instances are demonstrated in Table Ⅳ. The 
reduced rate of each class ordered in the table is 0.00%, 

19.4%, 12.71% and 54.45%, which indicated that much 
more noise in “Hematuria-risk” class and certain amount 
of noise in “Hematuria” and “Normal”class have been 
detected. 

 
The datasets that the fifth and sixth model used are 

shown in Table Ⅴ. The number of instances of each class 
displays that unbalance among four classes has been 
tuned with the numbers of majority classes decreased and 
minority classes increased in some measure. Note that the 
total number of instances in the fifth dataset is the same 
as in the third dataset, while the sixth and fourth dataset 
have the same instance numbers as well. 

 

B.  Performance Evaluation 
The performance of each learning method was 

evaluated using C4.5 as a reference and six experimental 
models designed in the earlier section were used. In the 
following tables, M come from M1 to M6 has the 
meaning “Model”. For instance, M1 refers to the first 
model. C, B, R and A in the first column of tables refer to 
C4.5, Bagging, Random Forest and AdaBoost 
respectively. 

Table Ⅵ displays the basic performance and F-
Measure for each method included in 6 models. Note that 
we use ensemble CEA just for the original urine dataset 
and the second dataset rebalanced by CSM to testify its 
performance. The results show that CEA was better than 
other learning methods. 

When sampling CSM is introduced, the overall 
performances of all methods in the second model were 
much better than in the first model, especially for 
AdaBoost.  

TABLE III.   
CLASS DISTRIBUTION IN THE SECOND DATASET 

Class Number of Instances Percentage

Inherited disorder 387 16.16 

Hematuria 224 9.35 

Normal 1106 46.18 

Hematuria-risk 678 28.31 

 

TABLE V.   
CLASS DISTRIBUTION IN THE THIRD DATASET 

Class Number of Instances Percentage

Inherited disorder 350 17.65 

Hematuria 63 3.28 

Normal 1168 58.90 

Hematuria-risk 402 20.27 

 

TABLE II.   
CLASS DISTRIBUTION IN THE FORUTH DATASET 

Class Number of Instances Percentage

Inherited disorder 350 19.02 

Hematuria 54 2.93 

Normal 1119 60.82 

Hematuria-risk 317 17.23 

 

TABLE IV.   
NUMBER OF INSTANCES IN THE FIFTH AND SIXTH DATASET 

Class the Fifth Dataset the Sixth Dataset

Inherited disorder 404 385 

Hematuria 191 174 

Normal 955 897 

Hematuria-risk 433 384 
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For noise handling, when given data from an ensemble 
filter, all methods in Model 4 performed much better than 
Model 3 with single-algorithm filtering. 

When filtering combined with sampling CSM, all 
methods in Model 5 were able to surpass Model 3 and 
Model 6 went beyond Model 4, whereas Model 4 had 
slightly higher performance than Model 5 

In Table Ⅶ, we show the performance of the above 
methods using ROC Area. The last column in Ⅶ gives 
the average values of area under the ROC curve, while 
the other 4 columns correspond to class-label ranging 
from C1 to C4. 

As shown in Table Ⅶ, CEA and three ensemble 
algorithms, Bagging, Random Forest and AdaBoost, 
perform significantly better when implemented with 
CSM. This is due to the reductions of imbalance among 

training classes, as well as rare cases in class 3 and class 
4. Another important fact is that ensemble learners seem 
to be impacted more by using CSM when area under the 
ROC curve is used to measure performance. Comparing 
Model 3 to Model 1, it is shown that Random Forest and 
AdaBoost made no significant differences as Model 3 did 
not apply sampling CSM. All of methods in Model 4, 

Model 5 and Model 6 achieved comparable higher 
accuracies. 

Ⅴ.  DISCUSSION AND CONCLUSIONS 

The aim of this paper was to do research whether the 
suggesting urinalysis predicting models can be efficiently 
incorporated into laboratory investigation of urine-related 
diseases. Several approaches including ensemble CEA, 

TABLE  Ⅶ 
AUC MEASURE OF METHODS 

Method 
ROC Area 

C1 C2 C3 C4 AVG 

M1_C 1.000 0.948 0.762 0.714 0.788 

M1_B 1.000 0.964 0.822 0.787 0.842 

M1_R 1.000 1.000 0.807 0.764 0.828 

M1_A 1.000 1.000 0.789 0.740 0.811 

M1_CEA 1.000 1.000 0.837 0.803 0.856 

M2_C 1.000 1.000 0.896 0.875 0.917 

M2_B 1.000 1.000 0.953 0.944 0.962 

M2_R 1.000 1.000 0.963 0.954 0.970 

M2_A 1.000 1.000 0.957 0.948 0.965 

M2_CEA 1.000 1.000 0.969 0.962 0.975 

M3_C 1.000 0.984 0.943 0.914 0.948 

M3_B 1.000 0.980 0.975 0.963 0.977 

M3_R 1.000 0.959 0.903 0.669 0.874 

M3_A 0.999 0.976 0.932 0.789 0.916 

M4_C 0.999 1.000 0.985 0.975 0.986 

M4_B 0.999 1.000 0.995 0.991 0.995 

M4_R 1.000 1.000 0.992 0.986 0.993 

M4_A 0.999 1.000 0.996 0.993 0.996 

M5_C 1.000 1.000 0.958 0.939 0.966 

M5_B 1.000 1.000 0.985 0.978 0.988 

M5_R 1.000 1.000 0.989 0.981 0.991 

M5_A 1.000 1.000 0.989 0.985 0.992 

M6_C 1.000 1.000 0.988 0.982 0.990 

M6_B 1.000 1.000 0.995 0.993 0.996 

M6_R 1.000 1.000 0.998 0.996 0.998 

M6_A 1.000 1.000 0.996 0.995 0.997 

TABLE VI.   
EVALUATION MEASURES OF METHODS 

Method 
Performance Evaluation 

Precision Sensitivity Specificity F-Measure

M1_C 0.718 0.730 0.760 0.718 

M1_B 0.730 0.738 0.774 0.731 

M1_R 0.718 0.732 0.758 0.718 

M1_A 0.686 0.696 0.747 0.690 

M1_CEA 0.738 0.749 0.771 0.736 

M2_C 0.869 0.87 0.917 0.869 

M2_B 0.887 0.888 0.928 0.887 

M2_R 0.889 0.889 0.924 0.888 

M2_A 0.885 0.885 0.926 0.885 

M2_CEA 0.898 0.899 0.933 0.898 

M3_C 0.922 0.922 0.933 0.922 

M3_B 0.913 0.914 0.924 0.913 

M3_R 0.877 0.880 0.867 0.874 

M3_A 0.916 0.920 0.924 0.916 

M4_C 0.982 0.982 0.985 0.982 

M4_B 0.984 0.984 0.987 0.984 

M4_R 0.954 0.955 0.950 0.954 

M4_A 0.979 0.979 0.982 0.979 

M5_C 0.948 0.948 0.969 0.948 

M5_B 0.953 0.953 0.972 0.953 

M5_R 0.949 0.949 0.963 0.948 

M5_A 0.952 0.952 0.969 0.952 

M6_C 0.986 0.986 0.992 0.986 

M6_B 0.988 0.988 0.994 0.988 

M6_R 0.980 0.980 0.986 0.980 

M6_A 0.987 0.987 0.993 0.987 

 



 Effective Training Data Improved Ensemble Approaches for Urinalysis Model 31 

Copyright © 2011 MECS                                                                          I.J. Modern Education and Computer Science, 2011, 4, 25-31 

sampling CSM and noise filtering methods are presented 
to improve the performance of these urinalysis models.  

The ensemble CEA was compared to four learning 
methods, which showed that it generally outperformed 
those existing algorithms.  

For CSM approach, the experiments demonstrated that 
it can solve imbalance problems by adjusting distribution 
of instances and the average of precision, sensitivity, 
specificity, F-Measure, ROC Area of learners have been 
significantly improved after applying the sampling CSM. 

Filtering was designed to identify class noise, i.e. 
mislabeled instances in our urine dataset. The results of 
an empirical evaluation indicated that filtering greatly 
improved classification accuracy. A comparison of 
ensemble filtering to single algorithm filtering illustrated 
that the ensemble filter performed better than the 
individual filter. 

We finish by indicating some possible directions for 
future research. One of future work will include an 
investigation of urine data by checking class-label using 
microscopy of urine sediment. Using domain knowledge 
to estimate the amount of class-label noise in a dataset 
would be the best choice. Another future work will be to 
extend the filtering approach by labeling errors in training 
data. Errors can be cataloged into different levels. Some 
types of errors can be corrected automatically, while 
other mislabeled data should be confirmed by domain 
experts. Finally, using a larger urinary test database for 
further improving the performance of the classifier. 
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